Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2012, Article ID 351709, 23 pages
doi:10.1155/2012 /351709

Research Article

Interval Oscillation Criteria of
Second Order Mixed Nonlinear Impulsive
Differential Equations with Delay

Zhonghai Guo,! Xiaoliang Zhou,? and Wu-Sheng Wang?

! Department of Mathematics, Xinzhou Teachers University, Shanxi, Xinzhou 034000, China
2 Department of Mathematics, Guangdong Ocean University, Guangdong, Zhanjiang 524088, China
3 Department of Mathematics, Hechi University, Guangxi, Yizhou 546300, China

Correspondence should be addressed to Xiaoliang Zhou, zxlmath@yahoo.cn
Received 19 December 2011; Revised 10 April 2012; Accepted 11 April 2012
Academic Editor: Agacik Zafer

Copyright © 2012 Zhonghai Guo et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We study the following second order mixed nonlinear impulsive differential equations with delay
(r(@a(x' (1)) +po()Pa (x () + Iy pi()Pp, (x(t-0)) = e(t), t 2 to, t# 7k, x(7)) = axx(7i), X' (7)) =
bx'(ty), k = 1,2,..., where ®,(u) = |u[*'u, o is a nonnegative constant, {7} denotes the
impulsive moments sequence, and Ty, — Tx > 0. Some sufficient conditions for the interval
oscillation criteria of the equations are obtained. The results obtained generalize and improve
earlier ones. Two examples are considered to illustrate the main results.

1. Introduction

We consider the following second order impulsive differential equations with delay

(r()Da(x' (1)) + o) Da(x(t)) + > pi() Dy (x(t - 0)) = e(t), t>to, t#7, 1.1)
i=1 .

x(1) = arx(7i), X (1) =bx' (7)), k=1,2,...,

where @, (1) = |u|*"'u, o is a nonnegative constant, {7} denotes the impulsive moments
sequence, and Ty41 — Tk > 0, for all k € N.
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Let ] C R be an interval, and we define

PLC(J,R) := {y : ] — R | y is continuous everywhere except each 7 at which y(7})
and y(7;) exist and y(7;) = y(7x), k € N}.
(1.2)

For given t; and ¢ € PLC([fo — 0,ty], R), we say x € PLC([ty — 0, o), R) is a solution of (1.1)
with initial value ¢ if x(t) satisfies (1.1) for t >ty and x(t) = ¢(t) for t € [ty — 0, to].

A solution of (1.1) is said to be nonoscillatory if it is eventually positive or eventually
negative. Otherwise, this solution is said to be oscillatory.

Impulsive differential equation is an adequate mathematical apparatus for the simula-
tion of processes and phenomena observed in control theory, physics, chemistry, population
dynamics, biotechnologies, industrial robotics, economics, and so forth. Because it has more
richer theory than its corresponding without impulsive differential equation, much research
has been done on the qualitative behavior of certain impulsive differential equations (see
(1, 2]).

In the last decades, there is constant interest in obtaining new sufficient conditions for
oscillation or nonoscillation of the solutions of various impulsive differential equations, see,
for example, [1-9] and the references cited therein.

In recent years, interval oscillation of impulsive differential equations was also
arousing the interest of many researchers. In 2007, Ozbekler and Zafer [10] investigated the
following equations:

(mt)a(y')) +at)pp(y) = (1), t#6;
A(mt)pa(y')) +qipp(y) = fi, t=6;, (€N),
(mt)y') +st)y +qt)ps(y) = f(1), t#6;
A(mt)y) +aipp(y) = fi, t=0;, (B21),

(1.3)

(1.4)

where ¢, (1) = |[ul*'u, p > a, {g;} and { f;} are sequences of real numbers. In 2009, they further
gave a research [11] for equations of the form

(r(Opa(x)) +pt)pa(x’) +qt)pp(x) = e(t), t#06;, (15)
A(r()ga (X)) + qipp(x) = e, t=6,, ’

and obtained some interval oscillation results which improved and extended the earlier ones
for the equations without impulses.
For the mixed type Emden-Fowler equations

(r)x'(H) +pOx(t) + D piO|x )" x(t) = e(t), t#m, w6
i=1 .

x(1¢) = arx(1x), x'(1}) =X/ (1), k€N,
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Liu and Xu [12] established some interval oscillation results. Recently, Ozbekler and Zafer
[13] investigated the more general cases

(r(HDa (X' (1)) +g(1)Da(x()) + D qu(B)Dp (x(1)) = e(t), t#6;,
k=1

x(6}) = aix(6;),  x'(6]) =bix'(6)),

(1.7)

where f1 > -+ > By > a > P > - > f, > 0.

However, for the impulsive equations, almost all of interval oscillation results in the
existing literature were established only for the case of “without delay.” In other words, for
the case of “with delay” the study on the interval oscillation is very scarce. To the best of
our knowledge, Huang and Feng [14] gave the first research in this direction recently. They
considered second order delay differential equations with impulses

X' +pt)f(x(t—7)) =e(t), t >ty t#k, k=1,2,...,

1.8
x(B) =aex(ty),  X(E) =bx'(t), k=1,2,... (18)

and established some interval oscillation criteria which developed some known results for
the equations without delay or impulses [15-17].

Motivated mainly by [13, 14], in this paper, we study the interval oscillation of the
delay impulsive (1.1). By using some inequalities, Riccati transformation and J functions
(introduced first by Philos [18]), we establish some interval oscillation criteria which
generalize and improve some known results. Moreover, examples are considered to illustrate
the main results.

2. Main Results

Throughout the paper, we always assume that the following conditions hold:

(A;) the exponents satisfy that 1 > -+ > > a > 1 >+ >, >0;

(Ap) r(t) € C([to,),(0,0)) is nondecreasing, e(t), pi(t) € PLC([to,»),R), i =
0,1,...,n;

(A3) {ax} and {bi} are real constant sequences such that by > ax >0, k € N.

It is clear that all solutions of (1.1) are oscillatory if there exists a subsequence {k;} of
{k} such that a, <0 for all i € N. So, we assume ay > 0 for all k € N in condition (As3).

In this section, intervals [c1,d1] and [c;,d;] are considered to establish oscillation
criteria. For convenience, we introduce the following notations (see [12]). Let

k(s) =max{i: ty < < s}, ri =max{r(t) : t € [cj, dj]},

2.1
Q(Cj,dj) = {’(,0] S Cl [C]',dj] :w,-(t)¢0, w](c,) = w,(d]) = 0}, ] =1,2. ( )
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For two constants ¢,d ¢ {7} with ¢ < d and k(c) < k(d) and a function ¢ € C([c,d],R), we
define an operator Q : C([c,d],R) — R by

k(d) b* a

b x _ g
Qde] = (Tr(rn1) — > p(r) (2.2)

a a’
Ae(o)+1 (Tk(0)+1 - C) i=k(c)+2 a; (T = Ti-1)

Ko+~ o)+

where 3! = 0if s > t.
In the discussion of the impulse moments of x(t) and x(f — o), we need to consider the
following cases for k(c;) < k(d;)

(Sl) Tk(c/-) +0 < Cj and Tk(d/-) +0 > dj,

(S2) Tk(c;)) + 0 <¢j and Tk(d;) + 0 < d;,

(83) Tk(c]-) +0 > Cj and Tk(d]-) +0 > d,‘,
)

(54) Ti(c;) + 0 > ¢j and Tk + 0 < d;,
and the cases for k(c;) = k(d;)

(gl) Tk(c;) + O < Cj,
(§2) Cj < Tk(;) +O < d]',

(§3) Tk(c;) +0 > d]'.

Combining (S*) with (S%), we can get 12 cases. In order to save space, throughout the
paper, we study (1.1) under the case of combination of (S1) with (S1) only. The discussions
for other cases are similar and omitted.

The following preparatory lemmas will be useful to prove our theorems. The first is
derived from [19] and second is from [20].

Lemma 2.1. For any given n-tuple {1, P, ..., Pn} satisfying (A1), then there exists an n-tuple
{m, M2, ..., Mu) such that

Zn:ﬂﬂli =a, im =1 0<mi<l1, (2.3)
i=1 i=1

where A € (0,1].

Lemma 2.2. Suppose X and Y are nonnegative, then
AXYH XA <(A-1)YY, A>1, (2.4)
where equality holds if and if X =Y.
Leta>0,B>0,A>0,and y > 0. Put

A=1+ % X =A@y Y= < 2 )aB“A‘“Z/ (a+1), (2.5)
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It follows from Lemma 2.2 that

1
By - Ay@/a < a* B

< A (2.6)

Theorem 2.3. Assume that for any T > to, there exist ¢j,d; & {7k}, j = 1,2, such that T < c1 <
di<cy<dyandforj=1,2

pi(t) 20, te[cj-odi]\{n}, i=0,12,...,m 27)
(-1)e(t) 20, te[cj—o,d;]\ {7} '
If there exist wj(t) € Q(cj,d;) and p(t) € Cl([cj,d]-], (0, o0)) such that, for k(cj) < k(d;),j=1,2,

dt

a
J‘Tk(Cj)H <t = Th(c;) — G)

Wi(t)

< <t - Tk(cj)>a

k(dj)-1 Ti+0 o\ i1 o _g)*
. [ W]-(t)(t—T’)udH Wj(t)udt]

i=k(c)+1 L/ bi(t+o-m) T+0 (t-m)"
d; t— Tk(d-) !
o Wi(t) ( : ) _dt
Th(d;) bz(dj) <t +0 - Tk(d].))
dj , /(t) w(t) a+l i .
+ f p(t) <p0(t)|wj(t)|a+1 —r(h) <)w].(t)| + % dt > pyri Q) [y | ],
G

(2.8)

where p; is maximum value of p(t) on [c;, d;] and, for k(c;) = k(d;), j = 1,2,

(t- )" ol P Olw e\
f <wj<t>m +p(t) <po(t>|wj<t>| 40 <|w]~<t>| + DD dt> 0,

(2.9)

where W(t) = 1o " le(t) ™ T, " (pi(D)" [w; ()| with g = 1 - 3y i and 1,12, ..., 1 are
positive constants satisfying conditions of Lemma 2.1, then (1.1) is oscillatory.

Proof. Assume, to the contrary, that x(f) is a nonoscillatory solution of (1.1). Without loss of
generality, we assume that x(t) > 0 and x(t — o) > 0 for t > ty. In this case the interval of ¢
selected for the following discussion is [c1, d1]. Define

r(H)Dq (x'(1))

“h=rO=g @)

te [Cl,dl]. (2.10)
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It follows, for t # T, that

) - t D, (x(t -
u'(t) = —pt)po(t) — p(t) I:i—zlpi(t)(bﬁi_a(x(t -0))+ (Da(f((t)—' 0))] (x(t-0))

Dy (x(t))
p(t) a (a+1)/a .
O O
Now, let
-1 le(t)] _ ﬂ;lpi(t)q)ﬂi—a (x(t-0)), i=1,2,...,n, (2.12)

D= @, (x(t-0))’

where 11,1, ..., 1, are positive constants satisfying conditions of Lemma 2.1 and 7o = 1 -
>t ni- Employing in (2.11) the arithmetic-geometric mean inequality (see [20])

Zn:q,-vi > ﬁv?i (2.13)
i=0 i=0
and in view of (2.3), we have that
! _ _ (Da(x(t ~ 0)) _ a (u+1)/a P ( )
(O < PO ~pOY = T = T s S, 14
where
p(t) = 710"°|e(t)|”°l_[11_"1 (pi(t)". (2.15)

First, we consider the case k(c1) < k(dy).

In this case, we assume impulsive moments in [c1,d1] are Ti(c,)+1, Tk(e)+2/ - - - » Th(dh)-
Choosing wi (t) € Q(c1, d1), multiplying both sides of (2.14) by |w; (#)|**! and then integrating
it from ¢ to di, we obtain

Tk(cl)+l k(d)-1  A7ip
f j j W (B)leon ()
k(c )+1 Tk(dy)

(c1)+1 k(dy) i ]
) t t (+a)/a t a+1dt
< <'[ c1 i= k(c1)+1f J‘Tk(d )> ( (t) ) ( (t)r(t))l/a |u( )| >|w1( )|
(c1)+1 di)-1 740 - a( 0)
_ d
(5 )1 )t

dq

- p®polt)wi ()" dt,

C1

(2.16)
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where Wi (t) = p(t) g (t)|w: (#)|*L. Using the integration by parts formula in the left-hand side
of above inequality and noting the condition w;(c1) = wi(d1) = 0, we obtain

k(d1)

Z w1 ()| [u(r) — u(r))]

i=k(c1)+1

Th(cy)+ k(dl) -1 Ti+1
€1 i= k(c1)+1 Tk(dy)

[t D@uton @0} yut) + A0

o o Ok wi (1)

——(p(t):zt))w|u(t>|<““>/“|w1<t>|““]dt

Th(c )+1 k(dl) -1 Ti+0 Tisl agp_
_ J‘ 1 I:J‘ J‘ ] f Mwl(t)dt
i=k(c1)+1 Tk(dq) X (t)

dy
- p®po()fwr () dt,

C1

Th(cy)+1 k(dl> 1 amig
i= k(cl )+1 Tk(dy)

’ [(“ 1)'“’1“)'“|”<f>l<Iw'1<t>| . M)

(a+ Dp(t)

——<p(t):(‘t))1/uIu(t)l“*“”ﬂwﬂt)ﬂ”]dt

Th(c )+1 k(dl) 1 Ti+0 Tis1 dy P
€1 i= k(c1)+1 Tk(dq) (t)

dq
- p®)po()[wr (t)|* dt.

C1

(2.17)

Letting y = o1 (]*[u(t)], B = (a + 1) (e} (5)] + | () |ws (1)]/ (a + Dp(B)]), A = a/ (p(B)r(£)) /"
and using (2.6), we have for the integrand function in above inequality that

(a + Deor (]|} (1) [Ju(t)] - (1) %oy (1)

20

|P t) | |w1 (t)| >u+1. (2.18)

<p)r(t) <|w/1(t)| + (a+1)p(t)
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In view of the impulse condition in (1.1) and the definition of u we have, for t = 7,
k=1,2,... that

ba
u(ry) = a_”(Tk) (2.19)
k

From (2.19), we have

k(d1) k(d1) b
> @) u(m) —u(z)] = 3 <1—a—;>|w1(ri>|““u(n>. (2:20)

i=k(cy)+1 i=k(cy)+1 i

Therefore, we get

k(d1) be
Z <1 - a_> o1 ()| ()

i=k(c1)+1 i
% o' ®)]lwr ()1 \
< p(t)r(t)<|w’1(t)| + —) dt
o k(d ) (a+1)p(t) (221)
Tk(c1)+l 1)-1 Ti+0 Tisl 1 x"‘(t _ O‘)
_ <f L U f ] IW > xa(t) Wi (t)dt
dy
| p®)po)|ew: (t)|* dt.
On the other hand, for t € [c1,d1] \ {7},
(r(t)@a(x' (1)) = e(t) — po(t)Da(x(t)) - Zpi(t)q)ﬂ,-(x(t -0))<0. (2.22)

Hence r(t)®,(x'(t)) is nonincreasing on [c1,d1] \ {7« }.
Because there are different integration intervals in (2.21), we will estimate x(t—0) /x(t)
in each interval of t as follows.

Case 1. t € (13, Tis1] C [c1,d1], fori=k(c1) +1,...,k(dy) - 1.
Subcase 1. 1f 7; + 0 < t < 7311, then (t — 0,t) C (73, Ti41]. Thus there is no impulsive moment in

(t-o,t). Forany s € (t — 0,t), we have

x(s)—x(7) =x'¢1)(s—7), & €(ms). (2.23)



Abstract and Applied Analysis 9

Since x(7;) > 0, r(s) is nondecreasing, function ®,(-) is an increasing function and
r(t)D,(x'(t)) is nonincreasing on (7, Tjs1), we have
(1)

r(&1) (&) Da(x'(é1))

Pa((5)) 2 25 Pa((5) > L2 (¥ (@) = 1) = =275 (s = )" .
S %;)x’(sﬁ(s ST = O (X () (5 - 7)), & € (11,5).
Therefore,
a)cc((ss)) < _1 . (2.25)
Integrating both sides of the above inequality from ¢ — ¢ to t, we obtain
X0 JIZT20 e (g4 0,7l (2226)

>
x(t) t—7;

Subcase 2. If T; <t < T+ 0,thent; —0 <t-0 <71 <t <7 +0. There is an impulsive moment
7;in (t — o,t). For any t € (73, 7; + 0), we have

x(t) - x(1) =x'(&)(t-7), &€ (Ti,h). (2.27)

Using the impulsive condition of (1.1) and the monotone properties of r(t), @.(-) and
r(t) D, (x'(t)), we get

0 (x0)  antey) = "L e r(n)tbra(éx)’(r:)) e
2 2 (2.28)
(1) Dy (bix! (1) (- 7))
- r($2)
Since x(7;) > 0, we have
x() r(7:) x(m)
(3 -o) < F (o5 ™). (229
In addition,
x(1;) > x(7;) = x(7 - 0) = x'(&)0, & € (1 -0,T). (2.30)
Using the same analysis as (2.24) and (2.25), we have
X(m 1 (2.31)

x(t;) o©



10 Abstract and Applied Analysis

From (2.29) and (2.31) and note that the monotone properties of ®,(-) and r(t), we get

x()y N\ _r®m) o (b, bi
¢)u<m al> <—r(§2)¢)a<o_(t Tl)> SCDa<O_(t T1)>. (2.32)
Then,

x(t) b;

_x(Ti) <a;+ E(t—Ti). (233)

In view of (A3), we have

x(T;) o o
> . 2.34
()  omtbi-m) > biro-m) @34
On the other hand, similar to the above analysis, we get
!
X 1 se(ri—0,1). (2.35)

x(s) s-Ti+o’
Integrating (2.35) from t — o to 7;, where t € (73, T; + 0), we have

x(t-o0) S t—1;

) — >0, (2.36)

From (2.34) and (2.36), we obtain

x(t-o0) t—7;

x® bhro-my  E@TTO) (2.37)

Case 2 (t € [c1, Ti(cy)+1])- Since Ti(e)+0 < c1, thent—o € [c1—-0, Ti(c;)+1=0] C (Tk(c,)s Th(cy)+1—0]-
So, there is no impulsive moment in (¢ — o, t). Similar to (2.26) of Subcase 1, we have

x(t-0) t—Tke)—0O

, te , : . 2.38
x(t) t_Tk(cl) [Cl Tk(c )+1] ( )

Case 3 (t € (Tk(d1)/d1])- Since Tk(dy) + O > di, thent—-o € (Tk(d1) —o0,di-0] C (Tk(d1) - O'/Tk(dl))~
Hence, there is an impulsive moment 74, in (-0, t). Making a similar analysis of Subcase 2,
we obtain

x(t-o0) t— Th(ay)
>0, t € (T, dif. (2.39)
x(8) " i) (t+0 = Teea)) (-]



Abstract and Applied Analysis 11

From (2.21), (2.26), (2.37), (2.38), and (2.39) we get

k(dy) b
> <1 - a—> [eon ()| ()

i=k(c1)+1 i
dy | Th(cy)+1
) AGIZAG] ’[ 1 (t = Th(e)) —0)"
< tyr(t w- (t _— dt— Wi (t —dt
LY “<' Ol e . MOy
(2.40)
k(g—l [ Ti+0 (t ) p Tit] ( )(t ) d]
- W1(f)—,x t— | Wit
i=k(c1)+1 L7 7 b (t+ 7)" Ti+0 (t-m)"
dy t—m c
- f Wit Coma)” g (" pypott ot
Th(dy) k(d )(t +0 - Tk(d1)> c
On the other hand, for t € (1;_1,7;] C [c1,d1], i = k(c1) +2,...,k(dy), we have
x(t) = x(tic1) = x' Q) (t—7i21), &€ (Tip ). (241)

In view of x(7;_1) > 0 and the monotone properties of @, (-), r (t)D,(x'(f)) and r(t), we obtain

Du(x(1) > 0o (X () On(t =7 > L0, (4 (0)Dult - 1), 4)
This is
O 249
Letting t — 77, we have
() - p(t)r(gi;((i;;i)) <& ’_’1;171)“, i=k(c)+2,...,k(dy). (2.44)
Using similar analysis on (c1, Tk(e,)s1], we get
() < —t (2.45)

(Th(es1 — 1)

Then from (2.44), (2.45), and (A3), we have

k(dy) b ) - k(d1) )
Z (a—la - 1>|w1(Ti)|a+ u(t) < pin |w1(Tk(cl)+1)| 0(c1) + Z |1 ()| ¢ (7:)

i=k(c1)+1 i=k(c1)+2

= P17‘1Q [|w1|a+1]
(2.46)

where 0(c1) = (B 1 — ey 1)/ @ ey (Teieys = €1)" and §(mi) = (b — a%)/af (7~ Ti1)".
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From (2.40) and (2.46), we obtain

Th(cy)+1 t—T —o)”
J‘ Wl (t) ( k(c1) a) dt
“ (t = Ti(er))
k(dy)-1 T+0 a Tivl a
t-T; t—7i—
n Z Wl(t)%dt + Wl(t)%dt
i=k(cy)+1 L7 Ti bl‘ (t +0- Ti) Ti+0 (t - Ti)
ch t— “
N Wi — (t = ) it (2.47)
Th(dy) b an (t+0 = T))

dy

dy
+| pB)po(t)wr (t)* dt —f p)r(t) <|w'1(t)| +

C1

EOIZAO
@rpn )

<pinQ® [|w1|a+1]-

This contradicts (2.8).

Next we consider the case k(c1) = k(d;). From the condition (S1) we know that there is
no impulsive moment in [c1, d1 ]. Multiplying both sides of (2.47) by |w; (t)|**! and integrating
it from ¢y to d;, we obtain

dy

d
J‘ ul(t)|w1(t)|u+ldt <— ’[ #W|u(t)|(a+l)/u|wl (t)|a+1dt
a a (p(t)r(t)) (2.48)
_ f T att-0) (t)dt - ; (H)po (B)]wor (1) dit
c1 xa(t) ! C1 p po ' '

Similar to the proof of (2.21), we have

i o , ) a+l
[ [_x ( ")wm)+p<t>po<t>|w;<t>|"‘”—p<t>r<t><|w}<f>|+M) ]dtso'

o x*(t) (a+1)p(t)
(2.49)
Using same way as Subcase 1, we get
x(t-o0) t—c
x(t) t—C1+0’ te [C1,d1]. (250)

From (2.49) and (2.50) we obtain

@ (t-c1)* | PO 0]\
Ll [Wl(t)m +p(t)po(t) [w; ()| - p(H)r(t) <|w]-(t)| + W) dt <0.

(2.51)

This contradicts condition (2.9).
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When x(t) < 0, we can choose interval [c;, d,] to study (1.1). The proof is similar and
will be omitted. Therefore, we complete the proof.

O
Remark 2.4. In article [14], the authors obtained the following inequalities:
x(t) t]' +7—t
. > .t
(6 >aj————20, te (tj, tj+ 1), (2.52)
See [14, equation (2.9)],
x(t)-T t-t
———>——20, te(t,ti+71). 2.53
x(t,-) = ( 1777 T) ( )
See [14, equation (2.10)].
Dividing [14, equation (2.10)] by [14, equation (2.9)], they obtained
- t—t;
xX() -7 >0, te(t,t+1). (2.54)

x(t) g aj(tji+t—t) ~

See [14, equation (2.11)]

This is an error. Moreover, similar errors appeared many times in the later arguments,
for example, in inequalities (2.15), (2.19), and (2.20) in [14]. Moreover, the above substitution
can lead to some divergent integrals, for example, the integrals in (2.22), (2.24) in [14].
Therefore, the conditions of their Theorems 2.1-2.5 must be defective. In the proof of our
Theorem 2.3, this error is remedied.

Remark 2.5. When o = 0, that is, the delay disappears, (1.1) reduces to (1.7) studied by
Ozbekler and Zafer [13]. In this case, our result with p(t) = 1 is Theorem 2.1 of [13].

Remark 2.6. When o = 0, that is, the delay disappears in (1.1) and & = 1, our result reduces to
Theorem 2.1 of [12].

Remark 2.7. When ax = by = 1forall k = 1,2,... and o = 0, that is, both impulses and delay
disappear in (1.1), our result with @ = 1 and p(t) = 1 reduces to Theorem 1 of [21].

In the following we will establish a Kong-type interval oscillation criteria for (1.1) by
the ideas of Philos [18] and Kong [22].

Let D = {(t,s) : to < s < t}, H,H, € C'(D,R), then a pair function Hy, H, is said
to belong to a function set #, defined by (Hi, Hy) € K, if there exist hi,hy € Lioc(D,R)
satisfying the following conditions:

(C1) Hy(t, t) = Hy(t,t) =0, Hi(t,s) >0,Hy(t,s) >0 for t > s;
(Cp) (0/0t)H (t,8) = hy(t,s)H1(t,s), (0/0s)Hx(t,s) = ha(t,s)Ha(t, s).

We assume that there exist ¢;,d;j,6; & {7x,k = 1,2,....}(j = 1,2) such that T < ¢; <
61 < di £ ¢ < 6, < dy for any T > ty. Noticing whether or not there are impulsive
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moments of x(t) in [cj, 6;] and [8;,d;], we should consider the following four cases, namely,
(S5) k(cj) < k(6)) < k(d;); (S6) k(cj) = k(6j) < k(d)); (S7) k(cj) < k(6;) = k(d;) and (S8)
k(cj) = k(6;) = k(d;). Moreover, in the discussion of the impulse moments of x(t — o), it is
necessary to consider the following two cases: (S5) Tk(s;) + 0 > O; and (S6) Tk(s;) + 0 < 6j. In
the following theorem, we only consider the case of combination of (S5) with (S5). For the
other cases, similar conclusions can be given and the proofs will be omitted here.

For convenience in the expression below, we define, for j = 1,2,

1
= —
Y H(5),0)
ThiepHl — (t = Th(cj) ~ a)
X f Hy (t' Cf)—adt
¢ (t - Tk(q))
R (= )" (t-7- o)
* H t,c —ldt + H t,c —dt
i:k(zcj)+l[ 7 1( J)ba(t+o ;)" io 1( ]) —T)° ]
6 __ (t - Tk(5].)> 5;
+ H,; (t, Cj) —dt + I p(t)po(t)Hy (t, C].)dt
Tk(6)) bZ(éj) t+o0— Tk(ﬁj)> .
(t) a+1
i [ oo e e 28| e,
HETT — F- i)
HZ,]' =: % f ] Hz(dj,t) < i ) adt
HZ( jr ]) 6; bZ(6j)<t+0'—Tk(5]_)>
TP t =Tk — ’
+f ] HZ(djff)gdt
e (=)
k(dj)-1 Ti+0 a -
i T) i+1 (t T O')
+ H d,t—’dt+j 7, p 1m0
i:k(zﬁj;mli . 2( / )b“(t+o )" o 2( j )——— )" ]
di t = Tk, )
+ ] H2(dj,t) ( ]> _dt
il b)) <t +0 - Tk(d,))
- —J‘ p(Or(t)Ha(d;, t) |ha(dj, t) + —= A0) Mldt
(0{ a+l jr jr (t)

dj
+[ppOH @ ar
oj

(2.55)
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where FI1 (£, ¢;)= Hi(t, ¢;)gs(t), Ha(d;, £) = Ha(d;, D (t) and ¢ (8) = 15" le(® P T 1, ™ (pa(8))"
with 0 = 1 - 3,1 and #11,72,...,1, are positive constants satisfying conditions of
Lemma 2.1.

Theorem 2.8. Assume (2.7) holds. If there exists a pair of (H1, Hy) € H such that

PiTj 5
I +Th; > —21 _QYTH, (., ¢;)] +
1, 2,j H1(6]~,c]~)QC][ 1(v )]

PiTj

WQg [H2(dj, )], j=12, (2.56)

then (1.1) is oscillatory.

Proof. Assume, to the contrary, that x(t) is a nonoscillatory solution of (1.1). Without loss of
generality, we assume that x(t) > 0 and x(t — o) > 0 for t > t;. In this case the interval of ¢
selected for the following discussion is [c1,d;]. Similar to the proof of Theorem 2.3, we can
get (2.14) and (2.19). Multiplying both sides of (2.14) by H;(t, 1) and integrating it from ¢;
to 61, we have

" eowmdr < [ en( 2 u -

0 o T\ P (p()r(D)
o afy 61

[ e 5 - [ eoptmo,

C1 C1

T |u(t)|(1+a)/a> dt
(2.57)

where Hi(t,c1) = Hi(t,c)p(ys(t), ¢(t) = 1" le(®I TTi; " (pi(H)™ with o = 1 - 3L, 73
and 71,12, . . ., ], are positive constants satisfying conditions of Lemma 2.1.

Noticing impulsive moments Ti(c,)+1, Tk(c;)+2/ - - - » Tk(6,) are in [c1,61] and using the
integration by parts formula on the left-hand side of above inequality, we obtain

61 Th(cy)+1 Th(cy)+2 61
Hl(t,cl)u'(t)dt: J‘ +J‘ +"'+I >H1(t,c1)du(t)

c1 C1 Th(cy)+1 Tk(67)
k(6 @
= Z <1 - —lu>H1 (7i, c1)u(t;) + Hi (61, c1)u(61) (2.58)
i=K(ey)+1 a

Th(cy)+1 Th(cp)+2 o1
_ J‘ +J. +...+I Hi(t, c1)hi(t, cr)u(t)dt.
1 Th(cq)+1 Tk(67)
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Substituting (2.58) into (2.57), we obtain

61 _ xa(t _ O.) k(61) a
Hy(t,e1)————dt< > ( =% -1 )Hi(m,c1)u(n) - Hi(61,c1)u(61)
a1 x(t) i=K(e)+1 \ %

Th(cy)+1 Th(cy)+2 61
+ J‘ +f +--~+I Hi(t, 1)
cl T(c)+1 Tk(51)

(2.59)
P (t) a (a+1)/a]
x | [h1(t, L - d
[ 1(t, 1) + o) ‘|“(t)| (p(t)r(t))l/“m(t)' t
61
- p(Hpo(t)Hi(t, c1)dt.

1

Letting A = a/(p(t)r(t))l/"‘, B=|hi(t,c1) +p' (t)/p(t)|, y =|u(t)| and using (2.6) to the right-
hand side of above inequality, we have

61 xu(t_ O') k(61) a
Hy(t,c1)————dt< > | =5 -1 )Hi(z,c)u(m) - Hi(61,c1)u(61)
a x*(t) AN
15} ' a+1
' p (t)‘
NI — Dr()Hy(t c1) bt c) + == ar  (2.60)
61

— p(t)po(f)Hl (t, Cl)dt.

C1

Similar to the proof of Theorem 2.3, we need to divide the integration interval [c, 61] into
several subintervals for estimating the function x(t — 0)/x(t). Using the methods of (2.26),
(2.37), (2.38), and (2.39) we estimate the left-hand side of above inequality as follows:

61 a
t—
Hit )X (u 9 4t
o x*(t)
Thc)+1 __ t—T —o)”
> f H1 (i’, Cl)—( Ke) a) dt
a (t = Tk(e) )
k(61)-1 Tt (t _ T.)a Tivl (t i O_)u :
+ Ht,e)——"  _gry | Hit o) g
i=k(§)+1|: T b? (t +0— Ti)a Ti+0 (t - Ti)a
o __ t—T “
+ H; (t, Cl) ( k(51)) dt

_dt.
Tk(éy) b, (E+0 = Tiey)
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From (2.60) and (2.61), we have

Th(c))+1 __ t—T
f Hi(t c1) Mdt

@ (t = Tkeen)”
k(61)-1 Tit0 (t ) Ti+1 ( )
+ H(t,c)a—dt+ H(tc)—dt
Lk%)u[ i ' ' b (t+ )" Ti+0 ' ! (t—m)"
61 t—
o] Hies (t-mie)”
Tk(s1) b, (t+o - k()"
1 61 p ( ) a+l 61
- p(t)r(t)H1 (t Cl) ]’ll(t C1) + — dt +J p(t)po(t)Hl (t, Cl)dt
(a+1)1 ). p(t) o

KG) /e
< — — 1 )Hi(7i, c))u(r;) = Hi(61, c1)u(61)-

i=k(§)+l<ai >
(2.62)

On the other hand, multiplying both sides of (2.14) by H,(d;, t) and using similar analysis to
the above, we can obtain

frk(ﬁl) HZ(dl t) (t - Tk 51))“ + J‘Tk(61)+1 ﬁz(dl t) ( - Tk(51) )
5 by (t+0=Tke)" o (t=Tkn)”
k(d1)-1 Ti+0 (t ) Tiel __ (t O')
+ Hz(dl,t)—dt+ Hy(dy, )19 g
i=k(%)+1 [ ba (t ) T+0 (t - Tl)
dl dl

(t = Tk@a)”

+ Hz(dl,t) dt+ | p®po(t)Ha(dy, t)dt
Th(dq) (d )(t +0 - Tk(d1)> 5
: ) P
_ W p()r(t)Ha(dy, t) |ha(dy, t) + —= (t) ;

k(d1) a
< > <—1,,, - 1>H2(d1;Ti)u(Ti) + Hy(dy, 61)u(61).
—k@)+1 \ i

(2.63)

Dividing (2.62) and (2.63) by H1(61,¢1), and H»(d1,61) respectively, and adding them, we
get

G
I+ < =———— — — 1 )Hi(7i, c1)u(m)
Hi(61,01) k%)H l l

1K e
- Zi 1Y Ho(dy, 7 u(m).
* 6 2, (a? > T

(2.64)
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Using the same methods as (2.46), we have

k(61) a
> (a_loc - 1>H1 (7i, c1)u(t;) < p1n QY [Hi( a1)],
i=K(e)+1 \ %

(2.65)
k(dr)

ribf d
7 — 1 ) Ho(dy, mi)u(mi) < pin Q) [Ha(dy, )]

i=k(61)+1 i

From (2.64), (2.65), we can obtain a contradiction to the condition (2.56).
When x(t) < 0, we choose interval [c, d>] to study (1.1). The proof is similar and will
be omitted. Therefore, we complete the proof. O

Remark 2.9. When ¢ = 0, that is, the delay disappears and « = 1 in (1.1), our result
Theorem 2.8 reduces to Theorem 2.2 of [12].

3. Examples

In this section, we give two examples to illustrate the effectiveness and nonemptiness of our
results.

Example 3.1. Consider the following delay differential equation with impulse:

x"(t) +y1'x<t - 1”—2> |3/2x(t - %) +y2'x<t - 1”—2> |_1/2x<t - 1”—2> =—sin(2t), t#7%, (3.1)
x(1¢) = arx(1x), x' (1) = bix' (1),  t=1,

where 7y : 7,1 = 2nar + 57 /18, T, = 2nor + 11r/18,n € N and py, p, are positive constants.

For any T > 0, we can choose large ny such that T < ¢; = 2nor + /6, di = 2nx +
xw/3, ca =2nmw+xw/2, dy =2n+2x/3, n=mny,ny+1,.... There are impulsive moments 7,
in [¢1,d1] and Ty, in [¢2, d2]. From 7,0 — 71 = /3 > xr /12 and Ty411 — Tnp = 5 /3 > /12
for all n > ngy, we know that condition 7,1 — Tx > 0 is satisfied. Moreover, we also see the
conditions (S1) and (2.7) are satisfied.

We can choose 19 = 11 = 1o = 1/3 such that Lemma 2.1 holds. Let w; (t) = wy(t) =
sin(6t) and p(t) = 1. It is easy to verify that Wi (t) = 3(y1ﬂ2)1/3| sin(2t)|'/3sin?(6t). By a simple
calculation, the left side of (2.8) is the following;:

Th(cy)+1
f ! Wl (t) ( Tk(cl) )
C1 (t Tk(Cl))
k(dy)-1 Ti+0 ( T )11 Tisl ( O')
+ W (t)u—’dt+ W (t)—dt
i—k(2a:)+1|: i ! b (t ) Ti+0 ! ( Tl)
dq t—1T ) dq
+) o moy Corial g (" ppofonia

Tk(dy) b a, )(t +0 = Tea)” a
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; o POl O
[ ooro(fuon+ D)

2nr+5mr/18 t-2n-Nor-11x /18 -x /12

= Wi (¢t
J‘Zn,,wé 1®) t—2(n- 1) —11x/18

2nor+r/3 t —2nor —5x/18 2nar+or/3
+ dt -

dt

Wi (t) 36 cos®6t dt

2nr+5x/18 bn,1 (t - 2nar — 5.7['/18 + ]l'/lZ)
J‘5”/ 18 t+4771/36 5 f”“ t—5x/18

Wi (f) 2T L0 Wit — 27120 gy
e Ottt SO a7 T

0.715
~3\/‘uly2<0199+ box ) 3ar.

2nar+/6

(3.2)
On the other hand, we have

[ ] 27 b, by —any an1 (33)

an,1

Thus if

0.715 27 by — ay
3¢/jijia <0.199 + = ) >3 + EJ—“‘, (3.4)
n,1

ana

the condition (2.8) is satisfied in [c1, d;]. Similarly, we can show that for t € [cy,d,] the
condition (2.8) is satisfied if

0.003 b —
>237r+£"’2—a"’2. (3.5)
4o

3\//41‘1/12 <O 057 + b

app

Hence, by Theorem 2.3, (3.1) is oscillatory, if (3.4) and (3.5) hold. Particularly, let ax = by, for
all k € N, condition (3.4) and (3.5) become

71
3//41142(0.199 + Ob 5> > T,
n,1
0.003
v/ 12 <0.057 + b ) >

(3.6)

Example 3.2. Consider the following equation:

(=3)| #(-3) o f(:-3)

x(1¢) = arx(tx), (1) =bex' (), k=1,2,...,

-1/2 2
x"(t) + papr (t) x<t - 5) =e(t), t#tx,

(3.7)
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where pi, up are positive constants; 7 : 7,1 = N +3/2, 7,0 = N +5/2, 1,53 = In +15/2,
Tua=9n+17/2 (n=0,1,2,...) and Ts1 — 7« > 0 = 2/3. In addition, let

(t-9n)°, t € [9n,9n + 3],

pi(t) = p2(t) = § 3°, te[9n+3,9n+6],

3.8
On+9-1)°, te[9n+6,9n+9], 58)

e(t) =(t-9n-3)°, te[Inm+9].

For any t; > 0, we choose n large enough such that t) < 9n, and let [¢1,d1] = [9n + 1,91 + 3],
[co,da] = [9n+7,9n+ 9], 61 = 9n+2 and 6, = 9n + 8. It is easy to see that condition (2.7)
in Theorem 2.8 is satisfied. Letting H(t,5) = Ha(t,s) = (t - s)°, we get hi(t,s) = —ha(t,s) =
3/(t - s). By simple calculation, we have

T, = 3/ IQM/Z(t—9n—1)3(9n+3—t)(t—9n)2t"9”"1/6dt
sV | F—9n+1/2

In+2
t-9-3/2 9
+ t—9n-1)>(9n +3 - t)(t - 9n)’ dtb -2
.[9n+3/2( A ) ) by1(t—9n—-5/6) } 8

8

3/2 u2 2 2 3
w-1°@-u)(u-1/6) uw(u—-1)"@-u)(u-3/2) 9
H1#2< i i/2 du + J‘a/z Bur(t=5/6) du> -

0290 9
~3 —
Y032+ 52 ) -
9n+13/6
t-9n-3/2
I, =3¢/ Mm+3-1t)"(t-9n
2 ﬂ1ﬂz{f9n+2 On )t -on)” by1(t-9n+5/6)
In+5/2
In-13/6
+ In+3-t -9n —dt
J‘9n+13/6( ) U ) n-3/2

In+3
t-9n-5/2 9
-4t -9n)? [
*J 0307090 bn,z(f—9n—11/6)d} 5

A, /6123 - u)*(u - 3/2) *2 123 - u)* (u—13/6)
_3M{I2 bn1(u+5/6) dt+f13/6 u-3/2 “

B -w'w-5/2) 9
+I5/2 bpo(u—11/6) dt 8

~ 39 WW( +0.056 + O'OO5> 22

by o 8

(3.9)
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Then the left-hand side of the inequality (2.56) is

0392  0.005\ 9
> (3.10)

H11 +H21~3\//11‘l/l2<0 376 + bnll +?’2 Z

Because 11 = 12 = 1, Ti(e))+1 = Tk(5)) = Tna = I +3/2 € (c1,61) and Tis,)+1 = Th(dy) =
Tno = 9N +5/2 € (61,d1), it is easy to get that the right-hand side of the inequality (2.56) for
j=1is

—ana b n2 — An2

H1(61,c )Qc1 [Hi(:, c1)] + ngl [Ha(d1, )] = 4an 4arns (3.11)
Thus (2.56) is satisfied with j = 1 if
0.392  0.005 9 buyi—an1 bup—ann
33/t <o o+ 5 W) e (3.12)

When j = 2, with the same argument as above we get that the left-hand side of
inequality (2.56) is

Il +11p
1572 (44— 92 (u=3) (u—-7)%(u - 19/6) .
= 3V/pp { ,[ u-5/2
8 o2/ N3,
. J‘ wu-9)"u-3)(u-7)"(u-15/2) du
15/2 bys(u—41/6)
49/6 (. N5, 17/2 (o N5
+J' (u-3)9-u)’(u 15/2)du+J‘ (u—-3)9—u)’(u 19/6)du
8 bn,3(u_41/6) 49/6 u-5/2
9 _ NG
+J‘ wu-3)9-u)’(u-17/2) aul _ 9
17/2 n4(u_47/6) 4
0.724  0.001 9
~ 3.3 ) -Z
3/ p1 2 (O 400 + bn,3 + brs > 7
(3.13)
and the right-hand side of the inequality (2.56) is
5, . _ —anpj3 bn,4 —ana
H2(62, CZ) QC2 [Hl( 7 CZ)] H (d 6 ) Q62 [H2 (er )] 4a 3 4an/4 . (314)
Therefore, (2.51) is satisfied with j = 2 if
0.724 0.001 9 bn,3 —anj bn,4 — an4
3\ /U142 <O 400 + b B m) Z 4an,3 + 4[1”/4 . (315)
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Hence, by Theorem 2.8, (3.7) is oscillatory if

0392 0.005\ 9 byi—au1  buo—ans
3 J 0.376 _ —_ 4 4 % %
m( ’ bn,l " bn,2 > g 4 41111,1 " 4[1-,1,2

(3.16)
0.724 0.001 9 bys—ans; bps—aua
5 7 ; ; , ,
3/ p1 2 <0.400 + by + bos > > 1 + 4an + dans
Particularly, when ay = by, for all k € N, condition (3.16) becomes
0.392 0.005
3 -
3\ /U142 <0376 + bn : + bn 5 > ,
’ ’ (3.17)

S 2

4
0.724  0.001 9

34 /#1,u2 <0400+ bn,3 + bnl4 ) > Z
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