
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 340824, 25 pages
doi:10.1155/2012/340824

Research Article
Solving Nonlinear Partial Differential Equations by
the sn-ns Method

Alvaro H. Salas

FIZMAKO Research Group and Department of Mathematics, University of Caldas/ National
University of Colombia, Campus la Nubia, Manizales, Colombia

Correspondence should be addressed to Alvaro H. Salas, asalash2002@yahoo.com

Received 2 January 2012; Accepted 30 January 2012

Academic Editor: Muhammad Aslam Noor

Copyright q 2012 Alvaro H. Salas. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We present the application of the sn-ns method to solve nonlinear partial differential equations.
We show that the well-known tanh-coth method is a particular case of the sn-ns method.

1. Introduction

The search of explicit solutions to nonlinear partial differential equations (NLPDEs) by using
computational methods is one of the principal objectives in nonlinear science problems. Some
powerful methods have been extensively used in the past decade to handle nonlinear PDEs.
Some of them are the tanh-method [1], the tanh-coth method [2], the exp-function method
[3], the projective Riccati equation method [4], and the Jacobi elliptic functions method.
Practically, there is no unified method that could be used to handle all types of nonlinear
problems.

The main purpose of this work consists in solving nonlinear polynomial PDE starting
from the idea of the projective Riccati equations method. We derive exact solutions to
the following equations: Duffing equation, cubic nonlinear Schrodinger equation, Klein-
Gordon-Zakharov equations, quadratic Duffing equation, KdV equation, Gardner equation,
Boussinesq equation, symmetric regular long wave equation, generalized shallow water
wave equation, Klein-Gordon equation with quadratic nonlinearity, Fitzhugh-Nagumo-
Huxley equation, and double sine-Gordon equation.
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2. The Main Idea

In the search of the traveling wave solutions to nonlinear partial differential equation of the
form

P(u, ux, ut, uxx, uxt, utt, . . .) = 0, (2.1)

the first step consists in considering the wave transformation

u(x, t) = v
(
φ(ξ)
)
, ξ = x + λt + ξ0, ξ0 = arbitrary constant, (2.2)

for a suitable function φ = φ(ξ), where λ is a constant. Usually, φ(ξ) = ξ (the identity function).
Using (2.2), (2.1) converts to an ordinary differential equation (ODE) with respect to

(shortly, w.r.t.) the function v(ξ)

Q
(
v, v′, v′′, . . .

)
= 0, (2.3)

with Q being a polynomial with respect to variables v, v′, v′′,. . ..
To find solutions to (2.3), we suppose that v(ξ) can be expressed as

v(ξ) = H
(
f(ξ), g(ξ)

)
, (2.4)

where H(f, g) is a rational function in the new variables f = f(ξ), g = g(ξ), which satisfy the
system

f ′(ξ) = rf(ξ)g(ξ),

g2(ξ) = S
(
f(ξ)
)
,

(2.5)

with r /= 0 being some constant to be determined and S(f) a rational function in the variable
f = f(ξ). We show that the system (2.5)may be solved exactly in certain cases. In fact, taking

f(ξ) = ϕN(ξ), (2.6)

where ϕ(ξ)/= 0 and N/= 0, system (2.5) reduces to

ϕ′(ξ) =
r

N
ϕ(ξ)g(ξ),

g2(ξ) = S
(
ϕN(ξ)

)
.

(2.7)

From (2.7)we get

(
ϕ′(ξ)
)2 =

r2

N2
ϕ2(ξ)S

(
ϕN
)
. (2.8)



Abstract and Applied Analysis 3

Equation (2.8) is of elliptic type. Choosing S(f) and N adequately, we may obtain distinct
methods to solve nonlinear PDEs. More exactly, suppose we have solved (2.8). Then, in view
of (2.5) and (2.6) functions f and g may be computed by formulae

f(ξ) = ϕN(ξ), g(ξ) =
f ′(ξ)
rf ′(ξ)

=
N

r

ϕ′(ξ)
ϕ(ξ)

. (2.9)

To solve (2.3) we try one of the following ansatz:

v(ξ) = a0 +
n∑

j=1

fj−1(ajf + bjg
)
, (2.10)

v(ξ) = a0 +
n∑

j=1

ajf
j ,

v(ξ) = a0 +
n∑

j=1

(
ajf

j + bjf
−j
)
.

(2.11)

We substitute any of these ansatz into (2.3) and we obtain a polynomial equation either
in the variables f = f(ξ) and g = g(ξ) or f = f(ξ). We equate the coefficients of
figj(i, j = 0, 1, 2, 3, . . .) to zero, and we obtain a system of polynomial equations in the
variables aj , bi, λ, . . . . Solving this system with the aid of a symbolic computational package
such as Mathematica 8 or Maple 15, we obtain the desired solutions. Sometimes, we replace
ξ with kξ and then the corresponding system is regarded w.r.t. the variables f = f(kξ) and
g = g(kξ), where k = const.

We also may solve coupled systems of nonlinear equations. Indeed, suppose that we
have a coupled system of two equations in the form

P(u, ũ, ux, ũx, ut, ũt, uxx, ũxx, uxt, ũxt, utt, ũtt, . . .) = 0,

P̃(u, ũ, ux, ũx, ut, ũt, uxx, ũxx, uxt, ũxt, utt, ũtt, . . .) = 0.
(2.12)

We first apply the wave transformation

u(x, t) = v
(
φ(ξ)
)
, ũ(x, t) = ṽ

(
φ̃(ξ)
)
,

ξ = x + λt + ξ0, ξ0 = arbitrary constant,
(2.13)

for a suitable pair of functions φ = φ(ξ) and φ̃ = φ̃(ξ) in order to obtain a coupled system of
two ODEs in the form

Q
(
v, ṽ, v′, ṽ′, v′′, ṽ′′, v′′′, ṽ′′′, . . .

)
= 0,

Q̃
(
v, ṽ, v′, ṽ′, v′′, ṽ′′, v′′′, ṽ′′′, . . .

)
= 0,

(2.14)

where Q and Q̃ are polynomials w.r.t. the variables v, ṽ, v′, ṽ′, v′′, ṽ′′, v′′′, ṽ′′′, . . ..
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We seek solutions to system (2.14) in the forms

v(ξ) = a0 +
n∑

j=1

fj−1(ajf + bjg
)
,

ṽ(ξ) = ã0 +
ñ∑

j=1

fj−1
(
ãjf + b̃jg

)
,

(2.15)

v(ξ) = a0 +
n∑

j=1

ajf
j ,

ṽ(ξ) = ã0 +
ñ∑

j=1

ãif
i,

(2.16)

v(ξ) = a0 +
n∑

j=1

(
ajf

j + bjf
−j
)
,

ṽ(ξ) = ã0 +
ñ∑

i=1

(
ãif

i + b̃if
−i
)
.

(2.17)

The integers n and ñ are determined by the balancing method.
We substitute any of ansatz (2.15), (2.16), or (2.17) into (2.14), and we obtain a

system of two polynomial equations either w.r.t. the variables f = f(ξ) and g = g(ξ) or
w.r.t. the variable f = f(ξ). We equate the coefficients of figj (resp., the coefficients of fi)
(i, j = 0, 1, 2, 3, . . .) to zero, and we obtain a system of polynomial equations w.r.t the variables
ai, bj , ãi, b̃j , λ, . . . . Solving this system with the aid of a symbolic computational package
such as Mathematica or Maple, we obtain the desired solutions. Sometimes, with the aim to
add an additional parameter k, we replace ξ with kξ and then the corresponding system is
regarded w.r.t. the variables f = f(kξ) and g = g(kξ), where k = const.

The same technique is applied for solving systems of three or more equations.

3. The sn-ns Method and Its Derivation

Let N = −1, r = 1 and S(f) = af−2 + b + cf2, where

Δ = b2 − 4ac > 0. (3.1)

This choice gives us (2.8) in the form

(
ϕ′)2 = aϕ4 + bϕ2 + c. (3.2)
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We may express the general solution of this equation in terms of the Jacobi elliptic functions
ns or nd as follows:

ϕ(ξ) = ±
√

−b +
√
Δ

2a
ns(k(ξ + C) | m), C = arbitrary constant, (3.3)

where

k =

√
−b +

√
Δ

2
, m =

√
b2 − 2ac + b

√
Δ

2ac
. (3.4)

Solution (3.3) is valid for a > 0, b < 0, and 0 < c ≤ b2/4a.
On the other hand, function ξ → √−1ns (

√−1k(ξ + C) | m) is real valued for any real
k,m, ξ, and C. We may verify that function

φ(ξ) = ±
√
−1
√

−b +
√
Δ

2a
ns
(√

−1k(ξ + ξ0) | m
)
, (3.5)

where k andm are given by (3.4), is a solution to equation

(
ϕ′)2 = aϕ4 − bϕ2 + c, a > 0, b < 0, 0 < c ≤ b2

4a
. (3.6)

Thus, we always may find a solution to (3.2)when a > 0 and 0 < c ≤ b2/4a for any b /= 0.
Now, let us assume that a < 0. It may be verified that a solution to (3.2) is

ϕ(ξ) = ±
√

−b −
√
Δ

2a
nd(k(ξ + C) | m), C = arbitrary constant, (3.7)

where

k =

√
b +

√
Δ

2
, m =

√

−b
2 − 4ac + b

√
Δ

2ac
, for b /= 0, c > 0. (3.8)

Observe that for any A > 0 function ξ →nd(
√−A(ξ +C)|m) is real valued for any real values

ofm, ξ, and C. We conclude that (3.2) has exact solutions for any a/= 0 and b /= 0.
Projective equations are

f ′(ξ) = f(ξ)g(ξ),

g2(ξ) =
a

f2(ξ)
+ b + cf2(ξ).

(3.9)
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Taking C = 0 in (3.3)we see that solutions to system (3.9) are

f(ξ) = ϕ−1(ξ) =
√
a

k
sn(kξ | m), g(ξ) =

f ′(ξ)
f(ξ)

= ksn(kξ | m)cs(kξ | m)ds(kξ | m).

(3.10)

This motivates us to seek solutions to (2.3) in the form

v(ξ) = a0 +
n∑

j=1

[
ajsnj(kξ) + bjnsj(kξ)

]
. (3.11)

Usually, n = 1, 2 and then v(ξ) has the forms

v(ξ) = a0 + a1sn(kξ | m) + b1ns(kξ | m), (3.12)

v(ξ) = a0 + a1sn(kξ | m) + b1ns(kξ | m) + a2sn2(kξ | m) + b2ns2(kξ | m). (3.13)

In the case when m = 1, this gives the tanh-coth method since sn(kξ | 1) = tanh(kξ) and
ns(kξ | 1) = coth(kξ).

Another possible ansatz suggested from (2.10) is

v(ξ) = a0 +
n∑

j=1
snj−1(kξ)

[
ajsn(kξ | m) + bjsn(kξ | m)cs(kξ | m)ds(kξ | m)

]
. (3.14)

If n = 1, 2, this ansatz reads

v(ξ) = a0 + a1sn(kξ | m) + b1sn(kξ | m) + cs(kξ | m) + ds(kξ | m), (3.15)

v(ξ) = a0 + a1sn(kξ | m) + b1sn(kξ | m)cs(kξ | m)ds(kξ | m)

+ a2sn2(kξ | m) + b2sn2(kξ | m)cs(kξ | m)ds(kξ | m).
(3.16)

Wemay consider similar ansatz by replacing sn by dn and ns by nd, respectively. We will call
this the dn-nd method. Thus, two possible ansatz for this method are

v(ξ) = a0 + a1dn(kξ | m) + b1nd(kξ | m),

v(ξ) = a0 + a1dn(kξ | m) + b1nd(kξ | m) + a2dn2(kξ | m) + b2nd
2(kξ | m).

(3.17)

An other useful ansatz to handle other equations of the form (2.3) is

v(ξ) = a0 + a1cn(kξ | m) + b1nc(kξ | m). (3.18)
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We will call this the cn-nc method.
We also may try the following ansatz:

v(ξ) =
a0 + a1cn(kξ | m)
1 + b1cn(kξ | m)

. (3.19)

For example, this ansatz may be successfully applied to the cubic-quintic Duffing equation,
which is defined by

v′′(ξ) + pv(ξ) + qv3(ξ) + rv5(ξ) = 0. (3.20)

4. Examples

In this section we solve various important models related to nonlinear science by themethods
described in previous sections.

4.1. Duffing Equation v′′(ξ) + pv(ξ) + qv3(ξ) = 0

Let us consider the equation

v′′(ξ) + pv(ξ) + qv3(ξ) = 0, (4.1)

where p and q are nonzero constants. This equation is very important since some relevant
physical models described by a nonlinear PDEs may be studied once this equation is solved.
Two of them are related to cubic nonlinear the Schrodinger equation and the Klein-Gordon-
Zakharov equations.

To find solutions we multiply (4.1) by v′(ξ) and we integrate it w.r.t. ξ. The resulting
equation is

(
dv

dξ

)2

=
q

2
v4(ξ) − pv2(ξ) − 2C, (4.2)

whereC is the constant of integration. This equation has form (3.2) and we already know that
there exists an exact solution to it for any p and q. Instead, we may apply directly the sn-ns
method (resp., the dn-nd method) to it. Balancing gives n = 1. We seek solutions in the form

v(ξ) = a0 + a1sn(kξ | m) + b1ns(kξ | m). (4.3)
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Inserting (4.3) into (4.1), we obtain a polynomial equation w.r.t. the variable ζ = sn(kξ | m).
Equating to zero the coefficients of ζj(j = 0, 1, 2, . . .) yields the following algebraic system:

3a0a
2
1q = 0,

a1

(
a2
1q + 2k2m2

)
= 0,

a1b1
(
3a1b1q + 3a2

0q − k2m2 − k2 + p
)
= 0,

a0

(
6a1b1q + a2

0q + p
)
= 0,

b1
(
b21q + 2k2

)
= 0.

(4.4)

Solving system (4.4) gives solutions as follows:

(i) a0 = 0, a1 =
√−2pm/

√
(m2 + 6m + 1)q, b1 =

√−2p/
√
(m2 + 6m + 1)q, k =

√
p/

√
m2 + 6m + 1,

v(ξ) = ±
√−2p

√
(m2 + 6m + 1)q

(
m sn
( √

p√
m2 + 6m + 1

ξ | m
)
+ ns
( √

p√
m2 + 6m + 1

ξ | m
))

,

(4.5)

(i) a0 = 0, a1 =
√−2pm/

√
(m2 − 6m + 1)q, b1 = −√−2p/

√
(m2 − 6m + 1)q, k =

√
p/

√
m2 − 6m + 1,

v(ξ) = ±
√−2p

√
(m2 − 6m + 1)q

(
m sn
( √

p

m2 − 6m + 1
ξ | m
)
− ns
( √

p√
m2 − 6m + 1

ξ | m
))

, (4.6)

(ii) a0 = 0, a1 = m
√−2p/

√
q(m2 + 1), b1 = 0, k = √

p/
√
m2 + 1,

v(ξ) = ±m
√

− 2p
q(m2 + 1)

sn

(√
p

m2 + 1
ξ | m
)

, (4.7)

(iii) a0 = 0, a1 = 0, b1 =
√−2p/

√
q(m2 + 1), k = √

p/
√
m2 + 1,

v(ξ) = ±
√−2p

√
q(m2 + 1)

ns
( √

p√
m2 + 1

ξ | m
)
. (4.8)
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Letting m → 1, we obtain trigonometric and hyperbolic solutions:

v(ξ) =

√

− p

2q
tanh
( √

p

2
√
2
ξ

)
+

√

− p

2q
coth
( √

p

2
√
2
ξ

)
,

v(ξ) = −
√

− p

2q
tan
(√

p

2
ξ

)
−
√

− p

2q
cot
(√

p

2
ξ

)
=

√

−2p
q
csc
(√

pξ

)
,

v(ξ) = ±
√

−p
q
coth

(√
p

2
ξ

)

,

(4.9)

v(ξ) = ±
√

−p
q
tanh

(√
p

2
ξ

)

. (4.10)

4.2. Cubic Nonlinear Schrodinger Equation

This equation reads

iut + uxx + μ|u|2u = 0, (4.11)

where u = u(x, t) is a complex-valued function of two real variables x and t and μ is a
nonzero real parameter and i =

√−1. The physical model of the cubic nonlinear Schrodinger
equation (shortly, NLS equation) (4.11) and its generalized variants occur in various areas
of physics such as nonlinear optics, water waves, plasma physics, quantum mechanics,
superconductivity, and the Bose-Einstein condensate theory. It also has applications in optics
since it models many nonlinearity effects in a fiber, including but not limited to self-phase
modulation, four-wave mixing, second harmonic generation, stimulated Raman scattering,
and so forth. For water waves, the NLS equation (4.11) describes the evolution of the
envelope of modulated nonlinear wave groups. All these physical phenomena can be better
understood with the help of exact solutions for a given μ. When μ > 0, the equation is said
to be attractive. If μ < 0 we say that it is repulsive. Recently, Ma and Chen [5] obtained some
solutions to (4.11).

We seek solutions to (4.11) in the form

u(x, t) = v(ξ) exp
(
i
(
αx + γt

))
, ξ = x − 2αt + ξ0, (4.12)

where α and γ are some real constants to be determined. Inserting (4.12) into (4.11) and
simplifying, we obtain

v′′(ξ) −
(
γ + α2

)
v(ξ) + μv3(ξ) = 0. (4.13)
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This last equation has the form (4.1)with

p = −
(
γ + α2

)
, q = μ. (4.14)

Thus, making use of solutions (4.5)–(4.10) for the choices given by (4.14) we obtain exact
solutions to the Schrodinger equation (4.11) in the form (4.12).

4.3. Quadratic Duffing Equation v′′(ξ) = pv2(ξ) + qv(ξ) + r

Let us consider the following second-order and second-degree nonlinear ODE:

v′′(ξ) = pv2(ξ) + qv(ξ) + r, (4.15)

where p, q, and r are constants and p /= 0. Solutions to this equationmay be used to study some
important physical models whose associated PDEs may be solved after making the traveling
wave transformation (2.2). As we will show in next subsections some examples of nonlinear
partial differential equations where this equation arises are the following.

(i) KdV equation: ut + 6uux + uxxx = 0.

(ii) Gardner equation (also called combined KdV-mKdV equation): ut +αuux +βu2ux +
γuxxx = 0, βγ /= 0,

(iii) Boussinesq equation: utt + αuuxx + αu2
x + βuxxxx = 0,

(iv) symmetric regular long wave equation: utt + uxx + uuxt + uxut + uxxtt = 0,

(v) generalized shallow water wave equation: uxxtt + αuxuxt + βutuxx − uxt − uxx = 0,

(vi) Klein-Gordon equation with quadratic nonlinearity: utt − α2uxx + βu − γu2 = 0.

Balancing gives n = 2. We seek solutions to (4.15) in the form (3.13), that is,

v(ξ) = a0 + a1sn(kξ | m) + b1 ns(kξ | m) + a2sn2(kξ | m) + b2ns2(kξ | m). (4.16)
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Inserting this ansatz into (4.15) gives the following algebraic system:

a1

(
k2m2 − a2p

)
= 0,

a2

(
6k2m2 − a2p

)
= 0,

4a2k
2m2 + 4a2k

2 + a2
1p + 2a0a2p + a2q = 0,

2a2b1p + a1k
2m2 + a1k

2 + 2a0a1p + a1q = 0,

b1
(
k2 − b2p

)
= 0,

b2
(
6k2 − b2p

)
= 0,

2a0b2p + 4b2k2m2 + 4b2k2 + b21p + b2q = 0,

2a0b1p + 2a1b2p + b1k
2m2 + b1k

2 + b1q = 0,

2a1b1p + 2a2b2p − 2a2k
2 + a2

0p + a0q − 2b2k2m2 + r = 0.

(4.17)

Solving this system, we obtain the following solutions:

(i) k = (1/2) 4
√
(q2 − 4pr)/(m4 −m2 + 1), a0 = q/2p − (1/2p)(m2 +

1)
√
(q2 − 4pr)/(m4 −m2 + 1), a1 = 0, a2 = (3m2/2p)

√
(q2 − 4pr)/(m4 −m2 + 1), b1 =

0, b2 = 0,

v(ξ) = a0 +
3m2

2p

√
q2 − 4pr

m4 −m2 + 1
sn2

⎛

⎝1
2

4

√
q2 − 4pr

m4 −m2 + 1
ξ | m
⎞

⎠, (4.18)

(ii) k = (1/2) 4
√
(q2 − 4pr)/(m4 −m2 + 1), a0 = −q/2p − (1/2p)(m2 +

1)
√
(q2 − 4pr)/(m4 −m2 + 1), a1 = 0, a2 = 0, b1 = 0, b2 =

(3/2p)
√
(q2 − 4pr)/(m4 −m2 + 1),

v(ξ) = a0 +
3
2p

√
q2 − 4pr

m4 −m2 + 1
ns2
⎛

⎝1
2

4

√
q2 − 4pr

m4 −m2 + 1
ξ | m
⎞

⎠, (4.19)



12 Abstract and Applied Analysis

(iii) k = (1/2) 4
√
(q2 − 4pr)/(m4 + 14m2 + 1), a0 = −q/2p − (1/2p)(m2 +

1)
√
(q2 − 4pr)/(m4 −m2 + 1), a1 = 0, a2 = (3m2/2p)

√
(q2 − 4pr)/(m4 + 14m2 + 1),

b1=0,b2 = (3/2p)
√
(q2 − 4pr)/(m4 + 14m2 + 1),

v(ξ) = a0 +
3
2p

√
q2 − 4pr

m4 + 14m2 + 1

⎛

⎝3m2sn2

⎛

⎝1
2

4

√
q2 − 4pr

m4 + 14m2 + 1
ξ | m
⎞

⎠

+ns2
⎛

⎝1
2

4

√
q2 − 4pr

m4 + 14m2 + 1
ξ | m
⎞

⎠

⎞

⎠,

(4.20)

(iv) k = (
√−1/2) 4

√
(q2 − 4pr)/(m4 −m2 + 1), a0 = (1/2p)[(m2 +

1)
√
(q2 − 4pr)/(m4 −m2 + 1) − q], a1 = 0, a2 = 0, b1 = 0, b2 =

(−3/2p)
√
(q2 − 4pr)/(m4 −m2 + 1),

v(ξ) = a0 − 3
2p

√
q2 − 4pr

m4 −m2 + 1
ns2
⎛

⎝
√−1
2

4

√
q2 − 4pr

m4 −m2 + 1
ξ | m
⎞

⎠, (4.21)

(v) k = (
√−1/2) 4

√
(q2 − 4pr)/(m4 −m2 + 1), a0 = q/2p − (1/2p)(m2 +

1)
√
(q2 − 4pr)/(m4 −m2 + 1),a1 = 0, a2=−(3m2/2p)

√
(q2 − 4pr)/(m4 −m2 + 1), b1 =

0, b2 = 0,

v(ξ) = a0 − 3m2

2p

√
q2 − 4pr

m4 −m2 + 1
sn2

⎛

⎝
√−1
2

4

√
q2 − 4pr

m4 −m2 + 1
ξ | m
⎞

⎠, (4.22)

(vi) k = (
√−1/2) 4

√
(q2 − 4pr)/(m4 + 14m2 + 1), a0 = q/2p − (1/2p)(m2 +

1)
√
(q2 − 4pr)/(m4 + 14m2 + 1),a1=0,a2=−(3m2/2p)

√
(q2 − 4pr)/(m4 + 14m2 + 1),

b1 = 0, b2 = −(3/2p)
√
(q2 − 4pr)/(m4 + 14m2 + 1),

v(ξ) = a0 − 3
2p

√
q2 − 4pr

m4 + 14m2 + 1

⎛

⎝3m2sn2

⎛

⎝
√−1
2

4

√
q2 − 4pr

m4 + 14m2 + 1
ξ | m
⎞

⎠

+ns2
⎛

⎝
√−1
2

4

√
q2 − 4pr

m4 + 14m2 + 1
ξ | m
⎞

⎠

⎞

⎠,

(4.23)

Letting m → 1, we obtain trigonometric and hyperbolic solutions:
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v(ξ) = a0 +
3
2p

√
q2 − 4pr tanh2

(
1
2

4
√
q2 − 4prξ

)
.

v(ξ) = a0 +
3
2p

√
q2 − 4pr coth2

(
1
2

4
√
q2 − 4prξ

)
.

v(ξ) = a0 +
3
4p

√
q2 − 4pr

(
3tanh2

(
1
4

4
√
q2 − 4prξ

)
+ coth2

(
1
4

4
√
q2 − 4prξ

))
.

(4.24)

Now, let us seek solutions in the ansatz form (3.16), that is,

v(ξ) = a0 + a1sn(kξ | m) + b1ns(kξ | m)cn(kξ | m)dn(kξ | m)

+ a2sn2(kξ | m) + b2cn(kξ | m)dn(kξ | m).
(4.25)

Inserting this ansatz into (4.15) and solving the resulting algebraic system yields the
following solutions to (4.15):

(i) k =
√−1 4
√
(q2 − 4pr)/(m4 + 14m2 + 1), a0 = −q/2p + (1/2p)(m2 +

1)
√
(q2 − 4pr)/(m4 + 14m2 + 1), a1=0, a2 = −(3m2/p)

√
(q2 − 4pr)/(m4 + 14m2 + 1),

b1 = 0, b2 = ±(3m/p)
√
(q2 − 4pr)/(m4 + 14m2 + 1),

v(ξ) = − q

2p
+

1
2p

(
m2 + 1

)
√

q2 − 4pr
m4 + 14m2 + 1

− 3m2

p

√
q2 − 4pr

m4 + 14m2 + 1
sn2

⎛

⎝
√
−1 4

√
q2 − 4pr

m4 + 14m2 + 1
ξ | m
⎞

⎠

± 3m
p

√
q2 − 4pr

m4 + 14m2 + 1
cn

⎛

⎝
√
−1 4

√
q2 − 4pr

m4 + 14m2 + 1
ξ | m
⎞

⎠

× dn

⎛

⎝
√
−1 4

√
q2 − 4pr

m4 + 14m2 + 1
ξ | m
⎞

⎠,

(4.26)
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(ii) k = 4
√
(q2 − 4pr)/(m4 + 14m2 + 1), a0 = −q/2p − (1/2p)(m2 +

1)
√
(q2 − 4pr)/(m4 + 14m2 + 1),a1 = 0,a2 = (3m2/p)

√
(q2 − 4pr)/(m4 + 14m2 + 1),

b1 = 0, b2 = ±(3m2/p)
√
(q2 − 4pr)/(m4 + 14m2 + 1),

v(ξ) = − q

2p
− 1
2p

(
m2 + 1

)
√

q2 − 4pr
m4 + 14m2 + 1

− 3m2

p

√
q2 − 4pr

m4 + 14m2 + 1
sn2

⎛

⎝ 4

√
q2 − 4pr

m4 + 14m2 + 1
ξ | m
⎞

⎠

± 3m
p

√
q2 − 4pr

m4 + 14m2 + 1
cn

⎛

⎝ 4

√
q2 − 4pr

m4 + 14m2 + 1
ξ | m
⎞

⎠dn

⎛

⎝ 4

√
q2 − 4pr

m4 + 14m2 + 1
ξ | m
⎞

⎠.

(4.27)

We may obtain other solutions by making use of the dn-nd method.

4.4. KdV Equation

This is the equation

ut + 6uux + uxxx = 0. (4.28)

If u = v(ξ), ξ = x + λt + ξ0, this equation takes the form

λv′(ξ) + 6v(ξ)v′(ξ) + v′′′(ξ) = 0. (4.29)

Integrating this equation w.r.t. ξ yields

v′′(ξ) = −3v2(ξ) + λv(ξ) + C, (4.30)

where C is the constant of integration. Equation (4.30) has the form (4.15)with

p = −3, q = λ, r = C. (4.31)

Exact solutions to KdV equation may be derived from (4.18)–(4.25) and (4.31).
The KdV equation may also be solved by the Weierstrass elliptic functions method.

4.5. Gardner Equation

This equation reads

ut + αuux + βu2ux + γuxxx = 0, βγ /= 0. (4.32)
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This equation reduces to mKdV equation if we apply the similarity transformations

t̃ = γt, x̃ = x +
α2

4β
t, ũ =

√√
√
√
∣
∣β
∣
∣
∣
∣γ
∣
∣

(
u +

α

2β

)
(4.33)

to the Gardner equation (4.32). We obtain the mKdV equation

ũt̃ + εũ2
x̃ũ + γũx̃x̃x̃ = 0, (4.34)

where ε = sign(βγ) = ±1.
This means that if ũ = ũ(t̃, x̃) is a solution to the mKdV equation, then the function

defined by

u = u(t, x) =

√√√
√
∣∣γ
∣∣
∣∣β
∣∣ ũ

(

γt, x +
α2

4β
t

)

− α

2β
(4.35)

is a solution to Gardner equation (4.32). For solutions to MkdV equation, see [6].

4.6. Boussinesq Equation

This equation reads

utt + αuuxx + αu2
x + βuxxxx = 0, αβ /= 0. (4.36)

After the traveling wave transformation u = v(ξ), ξ = x + λt + ξ0 and integrating twice w.r.t ξ,
we obtain the following ODE:

v′′(ξ) = − α

2β
v2(ξ) − λ2

β
v(ξ) − Dξ + C

β
, (4.37)

where C and D are the constants of integration. Setting D = 0, we obtain an equation of the
form (4.15) with

p = − α

2β
, q = −λ

2

β
, r = −C

β
. (4.38)

As we can see, exact solutions to the Boussinesq equation are calculated from (4.18)–(4.25)
and (4.38).
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4.7. Symmetric Regular Long Wave Equation

This equation is defined by

utt + uxx + uuxt + uxut + uxxtt = 0. (4.39)

Let u = v(ξ), ξ = x + λt + ξ0. Applying this transformation and integrating twice w.r.t. ξ, we
obtain the ODE

v′′(ξ) = − 1
2λ

v2(ξ) − λ2 + 1
λ2

v(ξ) − Dξ + C

λ2
, (4.40)

where C and D are the constants of integration. Setting D = 0, we obtain an equation of the
form (4.15) with

p = − 1
2λ

, q = −λ
2 + 1
λ2

, r = − C

λ2
. (4.41)

Thus, exact solutions to symmetric regular long wave equation are easily found from (4.18)–
(4.25) taking into account (4.41).

4.8. Generalized Shallow Water Wave Equation

This equation is given by

uxxtt + αuxuxt + βutuxx − uxt − uxx = 0. (4.42)

Let

u = u(x, t) = V (ξ), V (ξ) =
∫
v(ξ)dζ, ξ = x + λt. (4.43)

Substituting (4.43) into (4.42) and integrating once w.r.t. ξ, we obtain

v′′(ξ) = −α + β

2λ
v2(ξ) +

λ + 1
λ2

v(ξ) +
C

λ2
, (4.44)

where C is the constant of integration. Equation (4.15) has the form (4.15)with

p = −α + β

2λ
, q =

λ + 1
λ2

, r =
C

λ2
. (4.45)

It is evident that we may find exact solutions to generalized shallow water wave equation
(4.42) from (4.18)–(4.25) for the choices given by (4.45).
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4.9. Klein-Gordon Equation with Quadratic Nonlinearity

The general Klein-Gordon equation has the form

utt − α2uxx + βu + f(u) = 0. (4.46)

In the case when f(u) = −γu2 we obtain the so-called Klein-Gordon equation with quadratic
nonlinearity:

utt − α2uxx + βu − γu2 = 0. (4.47)

Let u = v(ξ), ξ = x + λt + ξ0. After this traveling wave transformation, (4.47) reduces to

v′′(ξ) = − γ

α2 − λ2
v2(ξ) +

β

α2 − λ2
v(ξ), α2

/=λ2, (4.48)

which is an equation of the form (4.15) with

p = − γ

α2 − λ2
, q =

β

α2 − λ2
, r = 0. (4.49)

Again, exact solutions to (4.47) are obtained from (4.18)–(4.25) taking into account (4.49).

4.10. Fitzhugh-Nagumo-Huxley Equation

This equation reads

ut − uxx + u(1 − u)(α − u) = 0, α = const. (4.50)

This equation is an important model in the study of neuron axon [7]. Let

u = u(x, t) = v(ξ), ξ = x + λt + ξ0. (4.51)

The corresponding ODE is

v′′(ξ) − λv′(ξ) − v(ξ)(v(ξ) − 1)(v(ξ) − α) = 0. (4.52)

Application of the sn-ns method gives only trivial solutions since we get λ = 0. Instead, we
may use other methods. If we apply the tanh-coth method or the exp method, we obtain
nontrivial solutions. Indeed, balancing gives n = 1. Following the tanh-coth method, we try
the ansatz

v(ξ) = a0 + a1 tanh(kξ) + b1 coth(kξ). (4.53)
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Inserting (4.53) into (4.50) and solving the corresponding algebraic system gives the
following solutions to (4.50):

u(x, t) =
1
2

(
1 + tanh

[
1

2
√
2

(
x − 2α − 1√

2
t + ξ0

)])
,

u(x, t) =
1
2

(
1 + coth

[
1

2
√
2

(
x − 2α − 1√

2
t + ξ0

)])
,

u(x, t) =
1
4

(
2 + tanh

[
1

4
√
2

(
x − 2α − 1√

2
t + ξ0

)]
+ coth

[
1

4
√
2

(
x − 2α − 1√

2
t + ξ0

)])
,

u(x, t) =
α

2

(
1 + tanh

[
α

2
√
2

(
x − 2 − α√

2
t + ξ0

)])
,

u(x, t) =
α

2

(
1 + coth

[
α

2
√
2

(
x − 2 − α√

2
t + ξ0

)])
,

u(x, t) =
α

4

(
2 + tanh

[
α

4
√
2

(
x − 2α − 1√

2
t + ξ0

)]
+ coth

[
α

4
√
2

(
x − 2α − 1√

2
t + ξ0

)])
.

(4.54)

4.11. Double Sine-Gordon Equation

Our last example deals with the double sine-Gordon equation. This equation in a normalized
form reads

utt − uxx + sin(u) − 1
2
sin(2u) = 0. (4.55)

This equation is an important model in the study of the DNA molecule [8].
The application of the tanh-coth method gives only the trivial solution u = 0. If we

apply the sn-ns method, we obtain nontrivial solutions. Indeed, let

u = 2 arctan(v), v = v(ξ), ξ = x + λt + ξ0. (4.56)

Inserting ansatz (4.56) into (4.55) gives the ODE

2v3(ξ) − 2
(
λ2 − 1

)
v(ξ)
(
v′(ξ)
)2 +
(
λ2 − 1

)
v′′(ξ) +

(
λ2 − 1

)
v2(ξ)v′′(ξ) = 0. (4.57)

Let

v(ξ) = a0 + a1sn(kξ | m) + b1ns(kξ | m). (4.58)

Substituting (4.58) into (4.57) and solving the corresponding algebraic system gives the
following solutions to (4.55):
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(i)a0 = 0, a1 = (
√
2/2)

√
m2 + 1

√−1, b1 = 0, λ =
√
k2(m2 − 1)2 − 2(m2 + 1)/k(m2 − 1),

v(ξ) =
√
2
2

√
m2 + 1

√
−1sn

⎛

⎜
⎝k

⎛

⎜
⎝x +

√
k2(m2 − 1)2 − 2(m2 + 1)

k(m2 − 1)
t + ξ0

⎞

⎟
⎠ | m

⎞

⎟
⎠, (4.59)

(ii)a0 = 0, a1 = 0, b1 = (
√
2/2m)

√
m2 + 1

√−1, λ =
√
k2(m2 − 1)2 − 2(m2 + 1)/k(m2−1),

v(ξ) =
√
2

2m

√
m2 + 1

√
−1ns

⎛

⎜
⎝k

⎛

⎜
⎝x +

√
k2(m2 − 1)2 − 2(m2 + 1)

k(m2 − 1)
t + ξ0

⎞

⎟
⎠ | m

⎞

⎟
⎠, (4.60)

(iii)a0 = 0, a1 =
√
m(m2 − 6m + 1)/2

√
2(m − 1), b1 = −

√
m(m2 − 6m + 1)/2

√
2m(m −

1), λ = −
√
k2(m + 1)4 − 2(m2 − 6m + 1)/k(m + 1)2,

v(ξ) =

√
m(m2 − 6m + 1)

2
√
2(m − 1)

sn(kξ | m) −
√
m(m2 − 6m + 1)

2
√
2m(m − 1)

ns(kξ | m),

ξ = x −

√
k2(m + 1)4 − 2(m2 − 6m + 1)

k(m + 1)2
t + ξ0.

(4.61)

5. Comparison with Other Methods to Solve Nonlinear PDEs

There are some other powerful and systematical approaches for solving nonlinear partial
differential equations, such as the expansion along the integrable ODE [9, 10], the
transformed rational function method [11], and the multiple expfunction method [12]. Even
about linear DEs, there is some recent study on solution representations [13] and the linear
superposition principle has been applied to bilinear equations [14].

5.1. Multiple Exp Function Method

Let us consider the following equation:

ut + uxxxxx + 30uuxxx + 30uxuxx + 180u2ux = 0. (5.1)

Equation (5.1) is also called the Sawada-Kotera equation [15]. In a recent work [16], the
authors obtained multisoliton solutions to (5.1) by using Hirota’s bilinear approach.

Introducing the potential w, defined by

u = wx, (5.2)
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(5.1) may be written in the form

wtx +wxxxxxx + 30wxwxxxx + 30wxxwxxx + 180w2
xwxx = 0. (5.3)

Integrating (5.3) once w.r.t x and taking the constant of integration equal to zero, the
following partial differential equation is obtained:

wt + 60w3
x + 30wxwxxx +wxxxxx = 0. (5.4)

We will call (5.4) the potential Caudrey-Dodd-Gibbon equation associated with (5.1).
In view of the multiple exp method one-soliton solutions to (5.4) have the form

w(x, t) =
a0 + a1exp

(
η
)

1 + b1exp
(
η
) , η = η(x, t) = kx −ωt, (5.5)

where a0, a1, and b1 are some constants to be determined. Inserting ansatz (5.5) into (5.4) and
simplifying, we obtain the following polynomial equation in the variable ζ = exp(η):

k5 −ω + 2
(
−15a0b1k

4 + 15a1k
4 − 13b1k5 − 2b1ω

)
ζ

+ 6
(
20a0b

2
1k

4 − 20a1b1k
4 + 10a2

0b
2
1k

3 − 20a0a1b1k
3 + 10a2

1k
3 + 11b21k

5 − b21ω
)

+ 2b21
(
−15a0b1k

4 + 15a1k
4 − 13b1k5 − 2b1ω

)
ζ3 + b41

(
k5 −ω

)
ζ4 = 0.

ζ2 (5.6)

Equating the coefficients of different powers of ζ to zero gives an algebraic system. Solving it
with either Mathematica 8 or Maple 15, we obtain

w = k5, a1 = b1(a0 + k). (5.7)

Thus, the following is a one-soliton solution (or one wave solution in Ma’s terminology) to
(5.4):

w(x, t) =
a0 + b1(a0 + k)exp

(
η
)

1 + b1exp
(
η
) , η = kx − k5t. (5.8)

In view of (5.2) one-soliton solution to Caudrey-Dodd-Gibbon equation (5.1) is

u(x, t) =
b1k

2 exp
(
kx − k5t

)

(
1 + b1exp(kx − k5t)

)2 . (5.9)

Observe that solution (5.9) is the same solution obtained in [16] by using Hirota’s bilinear
method. We conclude that Hirota’s method and multiple exp method give the same result
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for one-soliton solutions. Let us examine two-soliton solutions. In view of Ma’s method the
two-soliton solutions to (5.4) are of the form

w(x, t) =
k1η1 + k2η2 + R(k1 + k2)η1η2

Δ + η1 + η2 + Rη1η2
, Δ ∈ {0, 1},

η1 = exp(k1x −ω1t), η2 = exp(k2x −ω2t).

(5.10)

Let Δ = 1. Inserting ansatz (5.10) into (5.4) and simplifying, we obtain the following
polynomial equation w.r.t the variables ζ1 = exp(η1) and ζ2 = exp(η2):

c21c2k2R
(
k5
2 −ω2

)
ζ21ζ2 + c1c

2
2k1R
(
k5
1 −ω1

)
ζ1ζ

2
2

+
(
c1c2(k1 + k2)

(
k5
1 + 5k2k4

1 + 10k2
2k

3
1 + 10k3

2k
2
1 + 5k4

2k1 + k5
2 −ω1 −ω2

)
R

+c1c2(k1 − k2)
(
k5
1 − 5k2k4

1 + 10k2
2k

3
1 − 10k3

2k
2
1 + 5k4

2k1 − k5
2 −ω1 +ω2

))
ζ1ζ2

+ c1k1
(
k5
1 −ω1

)
ζ1 + c2k2

(
k5
2 −ω2

)
ζ2 = 0.

(5.11)

Equating the coefficients of ζ21ζ2, ζ1ζ
2
2, ζ1ζ2, ζ1, and ζ2 to zero gives a system of algebraic

equations. Solving it, we obtain the following nontrivial solution:

w1 = k5
1 , w2 = k5

2 , R =
(k1 − k2)

2(k2
1 − k1k2 + k2

2

)

(k1 + k2)
2(k2

1 + k1k2 + k2
2

) . (5.12)

We see that solution (5.12) coincides with solutions obtained in [16]. The same is valid if we
set Δ = 0. We conclude that Ma’s method does not give any new solutions compared with
Hirota’s method.

5.2. The Transformed Rational Function Method

Given a nonlinear ODE in the unknown u = u(x, t), u = u(x, y, t) or u = u(x, y, z, t) . we
search for traveling wave solutions determined by

u(r)(ξ) = v
(
η
)
,

v
(
η
)
=

p
(
η
)

q
(
η
) =

pmη
m + pm−1ηm−1 + · · · + p0

qnηn + qn−1ηn−1 + · · · + q0
,

(5.13)

where m and n are two natural numbers and pi (0 ≤ i ≤ m), qj (0 ≤ j ≤ n) are normally
constants but could be functions of the independent variables and η is a solution to equation

Aη′′ + Bη′ + Cη2 +Dη + E = 0, (5.14)
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with A, B, C, D, and E being some constants. Observe that equations

η′ = η2,

η′ = α + η2 (Riccati equation
)
,

(5.15)

v′′(ξ) = pv2(ξ) + qv(ξ) + r
(
quadratic Duffing equation (4.15)

)
(5.16)

are particular cases of (5.14). This methodwas applied in [11] to solve the (3+1)- dimensional
Jimbo-Miwa equation

uxxxy + 3uyuxx + 3uxuxy + 2uyt − 3uxz = 0, (5.17)

which converts into the nonlinear ODE

a3bu(4) + 6a2bu′u′′ − (2bω + 3ac)u′′ = 0 (5.18)

after the traveling wave transformation

u
(
x, y, z, t

)
= u(ξ), ξ = ax + by + cz −ωt. (5.19)

If we integrate (5.14) once w.r.t x, then the following equation follows:

v′′(ξ) = − 3
a
v2(ξ) +

2bω + 3ac
a3b

v(ξ), where u(ξ) =
∫
v(ξ)dξ. (5.20)

Observe that (5.20) is a quadratic Duffing equation (5.16)with p = −3/a, q = (2bω+3ac)/a3b,
and r = 0.

Solutions to this equation are given by (4.18)–(4.27). These solutions were not reported
in [11]. On the other hand, it is clear from (4.24) that the sn-ns method covers the solutions
obtained in [11].

6. Conclusions

We successfully obtained exact solutions for some important physical models by techniques
based on projective equations. Mainly, we have used the sn-ns method. In our opinion, this
is the most appropriate of all methods we have studied since it provides elliptic function
solutions as well as trigonometric and hyperbolic solutions. However, in the cases when the
sn-ns method does not work (this occurs for the Fitzhugh-Nagumo-Huxley equation), we
may try other methods, such as the tanh-coth method. On the other hand, there are some
equations for which the tanh-coth method gives only trivial solutions (this is the case of the
double sine-Gordon equation).

We think that some of the results we obtained are new in the open literature. Other
results concerning exact solutions of nonlinear PDEs may be found in [6, 15, 17–52].
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[18] A. H. Salas and C. A. Gómez S, “Exact solutions for a third-order KdV equation with variable
coefficients and forcing term,”Mathematical Problems in Engineering, Article ID 737928, 13 pages, 2009.
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