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Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise asymptotically almost negatively associated (AANA,
in short) random variables. The complete convergence for weighted sums of arrays of rowwise
AANA random variables is studied, which complements and improves the corresponding result
of Baek et al. (2008). As applications, the Baum and Katz type result for arrays of rowwise
AANA random variables and the Marcinkiewicz-Zygmund type strong law of large numbers for
sequences of AANA random variables are obtained.

1. Introduction

The concept of complete convergence was introduced by Hsu and Robbins [1] as follows.
A sequence of random variables {Un, n ≥ 1} is said to converge completely to a constant C if∑∞

n=1 P(|Un − C| > ε) < ∞, for all ε > 0. In view of the Borel-Cantelli lemma, this implies
that Un → C almost surely (a.s.). The converse is true if the {Un, n ≥ 1} are independent.
Hsu and Robbins [1] proved that the sequence of arithmetic means of independent and
identically distributed (i.i.d.) random variables converges completely to the expected value
if the variance of the summands is finite. Erdös [2] proved the converse. The result of Hsu-
Robbins-Erdös is a fundamental theorem in probability theory and has been generalized and
extended in several directions by many authors. One of the most important generalizations
is Baum and Katz [3] for the strong law of large numbers.

Recently, Baek et al. [4] discussed the complete convergence of weighted sums for
arrays of rowwise negatively associated random variables and obtained the following result.
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Theorem 1.1. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise negatively associated random variables
with EXni = 0 and P(|Xni| > x) ≤ CP(|X| > x) for all i ≥ 1, n ≥ 1 and x ≥ 0. Suppose that β ≥ −1,
and that {ani, i ≥ 1, n ≥ 1} be an array of constants such that

sup
i≥1

|ani| = O
(
n−r) for some r > 0,

∞∑
i=1

|ani| = O(nα) for some α ∈ [0, r).
(1.1)

(i) If 1 + α + β > 0 and there exists some δ > 0 such that α/r + 1 < δ ≤ 2 and
s = max(1 + ((1 + α + β)/r), δ), then under E|X|s < ∞, we have

∞∑
n=1

nβP

(∣∣∣∣∣
∞∑
i=1

aniXni

∣∣∣∣∣ > ε

)
< ∞ ∀ε > 0. (1.2)

(ii) If 1 + α + β = 0, then under E(|X| log(1 + |X|)) < ∞, (1.2) remains true.

The main purpose of this paper is to generalize and improve the above results for
arrays of rowwise negatively associated random variables to the case of asymptotically
almost negatively associated random variables. In addition, we will also consider the case
1 + α + β < 0, which complements the result of Baek et al. [4] and Wu [5].

Definition 1.2. A finite collection of random variables X1, X2, . . . , Xn is said to be negatively
associated (NA, in short) if for every pair of disjoint subsets A1, A2 of {1, 2, . . . , n},

Cov
{
f(Xi : i ∈ A1), g

(
Xj : j ∈ A2

)} ≤ 0, (1.3)

whenever f and g are coordinatewise nondecreasing such that this covariance exists. An
infinite sequence {Xn, n ≥ 1} is NA if every finite subcollection is NA.

An array of random variables {Xni, i ≥ 1, n ≥ 1} is called rowwise NA random
variables if for every n ≥ 1, {Xni, i ≥ 1} is a sequence of NA random variables.

The concept of negative association was introduced by Block et al. [6] and carefully
studied by Joag-Dev and Proschan [7]. By inspecting the proof of maximal inequality for the
NA random variables in Matula [8], one also can allow negative correlations provided they
are small. Primarily motivated by this, Chandra and Ghosal [9, 10] introduced the following
dependence.

Definition 1.3. A sequence {Xn, n ≥ 1} of random variables is called asymptotically almost
negatively associated (AANA, in short) if there exists a nonnegative sequence q(n) → 0 as
n → ∞ such that

Cov
(
f(Xn), g(Xn+1, Xn+2, . . . , Xn+k)

) ≤ q(n)
[
Var

(
f(Xn)

)
Var

(
g(Xn+1, Xn+2, . . . , Xn+k)

)]1/2
,

(1.4)

for all n, k ≥ 1 and for all coordinatewise nondecreasing continuous functions f and g, when-
ever the variances exist.
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An array of random variables {Xni, i ≥ 1, n ≥ 1} is called rowwise AANA random
variables if for every n ≥ 1, {Xni, i ≥ 1} is a sequence of AANA random variables.

The family of AANA sequence contains NA (in particular, independent) sequences
(with q(n) = 0, n ≥ 1) and some more sequences of random variables which are not much
deviated from being negatively associated. An example of an AANA sequence which is not
NA was constructed by Chandra and Ghosal [9].

Since the concept of AANA sequence was introduced by Chandra and Ghosal [9],
many applications have been found. See for example, Chandra and Ghosal [9] derived
the Kolmogorov type inequality and the strong law of large numbers of Marcinkiewicz-
Zygmund, Chandra and Ghosal [10] obtained the almost sure convergence of weighted
averages, Ko et al. [11] studied the Hájek-Rényi type inequality, Wang et al. [12] established
the law of the iterated logarithm for product sums, Yuan and An [13] established some
Rosenthal type inequalities for maximum partial sums of AANA sequence, and Wang et
al. [14] obtained some strong growth rate and the integrability of supremum for the partial
sums of AANA random variables, and so forth. Our aim is to further study the complete
convergence of weighted sums for arrays of rowwise AANA random variables.

Throughout this paper, let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise AANA random
variables with the mixing coefficients {q(i), i ≥ 1} in each row. For p > 1, let q .= p/(p − 1)
be the dual number of p. The symbol C denotes a positive constant which is not necessarily
the same one in each appearance and �x	 denotes the integer part of x. For a finite set A, the
symbol �A denotes the number of elements in the set A. Let I(A) be the indicator function of
the set A. an = O(bn) stands for an ≤ Cbn. Denote logx = lnmax(x, e), X+ = max(X, 0) and
X− = max(−X, 0).

The paper is organized as follows. Three important lemmas are provided in Section 2.
The main results and their proofs are presented in Section 3. We will provide some sufficient
conditions for complete convergence for arrays of rowwise AANA random variables which
are stochastically dominated by a random variable X.

2. Preliminaries

Firstly, we will give the definition of stochastic domination.

Definition 2.1. A sequence {Xn, n ≥ 1} of random variables is said to be stochastically domi-
nated by a random variable X if there exists a positive constant C such that

P(|Xn| > x) ≤ CP(|X| > x), (2.1)

for all x ≥ 0 and n ≥ 1.
An array {Xni, i ≥ 1, n ≥ 1} of rowwise random variables is said to be stochastically

dominated by a random variable X if there exists a positive constant C such that

P(|Xni| > x) ≤ CP(|X| > x), (2.2)

for all x ≥ 0, i ≥ 1 and n ≥ 1.

The proofs of the main results of the paper are based on the following three lemmas.
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Lemma 2.2 (cf. Yuan and An [13, Lemma 2.1]). Let {Xn, n ≥ 1} be a sequence of AANA
random variables with mixing coefficients {q(n), n ≥ 1}, let f1, f2, . . . be all nondecreasing (or all
nonincreasing) and continuous functions, then {fn(Xn), n ≥ 1} is still a sequence of AANA random
variables with mixing coefficients {q(n), n ≥ 1}.

Lemma 2.3 (cf. Yuan and An [13, Theorem 2.1]). Let p > 1 and {Xn, n ≥ 1} be a sequence of zero
mean random variables with mixing coefficients {q(n), n ≥ 1}.

If
∑∞

n=1 q
2(n) < ∞, then there exists a positive constant Cp depending only on p such that for

all n ≥ 1 and 1 < p ≤ 2,

E

⎛
⎝max

1≤j≤n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣
p
⎞
⎠ ≤ Cp

n∑
i=1

E|Xi|p. (2.3)

If
∑∞

n=1 q
q/p(n) < ∞ for some p ∈ (3 · 2k−1, 4 · 2k−1], where integer number k ≥ 1, then there

exists a positive constant Dp depending only on p such that for all n ≥ 1,

E

⎛
⎝max

1≤j≤n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣
p
⎞
⎠ ≤ Dp

⎧⎨
⎩

n∑
i=1

E|Xi|p +
(

n∑
i=1

EX2
i

)p/2
⎫⎬
⎭. (2.4)

Lemma 2.4. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise random variables which is stochastically
dominated by a random variable X. For any α > 0 and b > 0, the following two statements hold:

E|Xni|αI(|Xni| ≤ b) ≤ C1
[
E|X|αI(|X| ≤ b) + bαP(|X| > b)

]
,

E|Xni|αI(|Xni| > b) ≤ C2E|X|αI(|X| > b),
(2.5)

where C1 and C2 are positive constants.

3. Main Results

In this section, we will study the complete convergence for weighted sums of arrays of
rowwise AANA random variables. As applications, the Baum and Katz type result for arrays
of rowwise AANA random variables and the Marcinkiewicz-Zygmund type strong law of
large numbers for sequences of AANA random variables are obtained. Let {Xni, i ≥ 1, n ≥ 1}
be an array of rowwise AANA random variables with the mixing coefficients {q(i), i ≥ 1} in
each row and {ani, i ≥ 1, n ≥ 1} be an array of real numbers. Let {Xi, i ≥ 1} be a sequence of
AANA random variables with the mixing coefficients {q(i), i ≥ 1}. Our main results are as
follows.

Theorem 3.1. Suppose that β ≥ −1. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise AANA random
variables, which is stochastically dominated by a random variable X, and {ani, i ≥ 1, n ≥ 1} be an
array of constants such that

sup
i≥1

|ani| = O
(
n−r) for some r > 0, (3.1)

∞∑
i=1

|ani|θ = O(nα) for some 0 < θ < 2 and some α such that θ +
α

r
< 2. (3.2)
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(i) Assume that
∑∞

n=1 q
2(n) < ∞ when 1 < θ < 2. If 1 + α + β < 0 and E|X|θ < ∞, then

∞∑
n=1

nβP

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

aniXni

∣∣∣∣∣ > ε

)
< ∞ ∀ε > 0 (3.3)

and (1.2) holds.
(ii) If 1 + α + β > 0, β > −1 and

E|X|s < ∞, where s = θ +
1 + α + β

r
, (3.4)

and assume further that EXni = 0 and
∑∞

n=1 q
q/p(n) < ∞ for some p ∈ (3 · 2k−1, 4 · 2k−1] and

p > max

(
2,

2
(
1 + β

)
r(2 − θ) − α

, s

)
, (3.5)

when s ≥ 1, where integer number k ≥ 1, then (1.2) and (3.3) hold.
(iii) If 1 + α + β = 0 and

E|X|θ log|X| < ∞, (3.6)

and assume further that EXni = 0 and
∑∞

n=1 q
2(n) < ∞ when 1 ≤ θ < 2, then (1.2) and (3.3) hold.

Proof. The proof of (1.2) is similar to that of (3.3), so we only prove (3.3). Without loss of
generality, we assume that ani > 0 for all i ≥ 1 and n ≥ 1 (Otherwise, we use a+

ni and a−
ni instead

of ani, resp., and note that ani = a+
ni −a−

ni). From the conditions (3.1) and (3.2), we assume that

sup
i≥1

ani = n−r ,
∞∑
i=1

aθ
ni = nα, n ≥ 1. (3.7)

(i) If 1 + α + β < 0, then the result can be easily proved by the following:

∞∑
n=1

nβP

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

aniXni

∣∣∣∣∣ > ε

)
≤ C

∞∑
n=1

nβE

⎛
⎝max

1≤j≤n

∣∣∣∣∣
j∑
i=1

aniXni

∣∣∣∣∣
θ
⎞
⎠

≤ C
∞∑
n=1

nβ
n∑
i=1

E|aniXni|θ

≤ C
∞∑
n=1

nα+βE|X|θ < ∞.

(3.8)

In the following, we will prove the result when 1 + α + β ≥ 0. Denote

X′
ni = −I(aniXni < −1) + aniXniI(|aniXni| ≤ 1) + I(aniXni > 1), i ≥ 1, n ≥ 1. (3.9)
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Thus, {X′
ni, i ≥ 1, n ≥ 1} is still an array of rowwise AANA random variables with the mixing

coefficients {q(i), i ≥ 1} in each row by Lemma 2.2. It is easy to check that for any ε > 0,

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

aniXni

∣∣∣∣∣ > ε

)
⊂

n⋃
i=1

(|aniXni| > 1)
⋃(

max
1≤j≤n

∣∣∣∣∣
j∑
i=1

X′
ni

∣∣∣∣∣ > ε

)
, (3.10)

which implies that

∞∑
n=1

nβP

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

aniXni

∣∣∣∣∣ > ε

)
≤

∞∑
n=1

nβ
n∑
i=1

P(|aniXni| > 1)

+
∞∑
n=1

nβP

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

X′
ni

∣∣∣∣∣ > ε

)

.= I + J.

(3.11)

Hence, in order to prove (3.3), it suffices to prove that I < ∞ and J < ∞.
(ii) If 1 + α + β > 0, then by Markov’s inequality, (3.7) and E|X|s < ∞, we can get that

∞∑
n=1

nβ
n∑
i=1

P(|aniXni| > 1) ≤ C
∞∑
n=1

nβ
n∑
i=1

P(|aniX| > 1)

≤ C
∞∑
n=1

nβ
n∑
i=1

aθ
niE|X|θI

(
|X| > 1

ani

)

≤ C
∞∑
n=1

nα+βE|X|θI(|X| > nr)

≤ C
∞∑
n=1

nα+β
∞∑
k=n

E|X|θI(kr ≤ |X| < (k + 1)r
)

= C
∞∑
k=1

k∑
n=1

nα+βE|X|θI(kr ≤ |X| < (k + 1)r
)

≤ C
∞∑
k=1

k1+α+βE|X|θI(kr ≤ |X| < (k + 1)r
)

≤ C
∞∑
k=1

E|X|θ+(1+α+β)/rI(kr ≤ |X| < (k + 1)r
)

≤ CE|X|θ+(1+α+β)/r < ∞,

(3.12)

which implies that I < ∞.
Next, we will prove that J < ∞ for s ≥ 1 and s < 1, respectively.
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Case 1 (s ≥ 1). Firstly, we will show that

max
1≤j≤n

∣∣∣∣∣
j∑
i=1

EX′
ni

∣∣∣∣∣ −→ 0, as n −→ ∞. (3.13)

Actually, by the conditions EXni = 0, Lemma 2.4, (3.7), and E|X|s < ∞, we have that

max
1≤j≤n

∣∣∣∣∣
j∑
i=1

EX′
ni

∣∣∣∣∣ ≤ max
1≤j≤n

∣∣∣∣∣
j∑
i=1

EaniXniI(|aniXni| ≤ 1)

∣∣∣∣∣ +
n∑
i=1

P(|aniXni| > 1)

= max
1≤j≤n

∣∣∣∣∣
j∑
i=1

EaniXniI(|aniXni| > 1)

∣∣∣∣∣ +
n∑
i=1

P(|aniXni| > 1)

≤ C
n∑
i=1

E|aniXni|sI(|aniXni| > 1) ≤ C
n∑
i=1

as
niE|X|sI

(
|X| > 1

ani

)

≤ C

(
sup
i≥1

ani

)s−θ n∑
i=1

aθ
niE|X|sI(|X| > nr)

≤ C
(
n−r)s−θnαE|X|sI(|X| > nr)

= Cn−(1+β)E|X|sI(|X| > nr) −→ 0, as n −→ ∞,

(3.14)

which implies (3.13). Hence, to prove J < ∞, we only need to show that for all ε > 0,

J∗ .=
∞∑
n=1

nβP

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

(
X′

ni − EX′
ni

)∣∣∣∣∣ > ε

2

)
< ∞. (3.15)

ByMarkov’s inequality, Lemma 2.3,Cr ’s inequality, and Jensen’s inequality, we have for p ≥ 2
that

J∗ ≤ C
∞∑
n=1

nβE

⎛
⎝max

1≤j≤n

∣∣∣∣∣
j∑
i=1

(
X′

ni − EX′
ni

)∣∣∣∣∣
p
⎞
⎠

≤ C
∞∑
n=1

nβ

⎡
⎣(

n∑
i=1

E
∣∣X′

ni

∣∣2)p/2

+
n∑
i=1

E
∣∣X′

ni

∣∣p
⎤
⎦

.= J1 + J2.

(3.16)

Take

p > max

(
2,

2
(
1 + β

)
r(2 − θ) − α

, θ +
1 + α + β

r

)
, (3.17)
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which implies that β − [r(2 − θ) − α]p/2 < −1 and α + β − r(p − θ) < −1. By Cr ’s inequality and
Lemma 2.4, we can get

J1
.= C

∞∑
n=1

nβ

(
n∑
i=1

E
∣∣X′

ni

∣∣2)p/2

≤ C
∞∑
n=1

nβ

[
n∑
i=1

P(|aniX| > 1) +
n∑
i=1

E|aniX|2I(|aniX| ≤ 1)

]p/2

.

(3.18)

If 1 ≤ s < 2, then by Markov’s inequality, E|X|s < ∞, and (3.7), we have

J1 ≤ C
∞∑
n=1

nβ

(
n∑
i=1

as
niE|X|s

)p/2

≤ C
∞∑
n=1

nβ

⎡
⎣(

sup
i≥1

ani

)s−θ n∑
i=1

aθ
ni

⎤
⎦

p/2

≤ C
∞∑
n=1

nβ
[
n−r(s−θ) · nα

]p/2

= C
∞∑
n=1

nβ−(((1+β)p)/2) < ∞ (
since 1 + β > 0

)
.

(3.19)

If s ≥ 2, then by Markov’s inequality, E|X|s < ∞, and (3.7) again, we have

J1 ≤ C
∞∑
n=1

nβ

(
n∑
i=1

a2
niE|X|2

)p/2

≤ C
∞∑
n=1

nβ

⎡
⎣(

sup
i≥1

ani

)2−θ n∑
i=1

aθ
ni

⎤
⎦

p/2

≤ C
∞∑
n=1

nβ
[
n−r(2−θ) · nα

]p/2
= C

∞∑
n=1

nβ−[r(2−θ)−α]p/2 < ∞.

(3.20)

From (3.18)–(3.20), we have proved that J1 < ∞.
By Lemma 2.4 again and the definition of stochastic domination, we can see that

J2
.= C

∞∑
n=1

nβ
n∑
i=1

E
∣∣X′

ni

∣∣p

≤ C
∞∑
n=1

nβ
n∑
i=1

[
E|aniXni|pI(|aniXni| ≤ 1) + P(|aniXni| > 1)

]

≤ C
∞∑
n=1

nβ
n∑
i=1

P(|aniX| > 1) + C
∞∑
n=1

nβ
n∑
i=1

E|aniX|pI(|aniX| ≤ 1)

.= J3 + J4.

(3.21)



Abstract and Applied Analysis 9

J3 < ∞ has been proved by (3.12). In the following, we will show that J4 < ∞. Denote

Inj =
{
i :

(
nj

)r ≤ 1/ani <
[
n
(
j + 1

)]r}
, n ≥ 1, j ≥ 1. (3.22)

It is easily seen that Ink
⋂
Inj = ∅ for k /= j and

⋃∞
j=1 Inj = N for all n ≥ 1. Hence,

J4
.= C

∞∑
n=1

nβ
n∑
i=1

E|aniX|pI(|aniX| ≤ 1) ≤ C
∞∑
n=1

nβ
∞∑
j=1

∑
i∈Inj

E|aniX|pI(|aniX| ≤ 1)

≤ C
∞∑
n=1

nβ
∞∑
j=1

(
�Inj

)(
nj

)−rp
E|X|pI(|X| ≤ [

n
(
j + 1

)]r)

≤ C
∞∑
n=1

nβ
∞∑
j=1

(
�Inj

)(
nj

)−rpn(j+1)∑
k=0

E|X|pI
(
k ≤ |X|1/r < k + 1

)

= C
∞∑
n=1

nβ
∞∑
j=1

(
�Inj

)(
nj

)−rp 2n∑
k=0

E|X|pI
(
k ≤ |X|1/r < k + 1

)

+ C
∞∑
n=1

nβ
∞∑
j=1

(
�Inj

)(
nj

)−rp n(j+1)∑
k=2n+1

E|X|pI
(
k ≤ |X|1/r < k + 1

)
.= J5 + J6.

(3.23)

It is easily seen that for all m ≥ 1, we have that

nα =
∞∑
i=1

aθ
ni =

∞∑
j=1

∑
i∈Inj

aθ
ni ≥

∞∑
j=1

(
�Inj

)[
n
(
j + 1

)]−rθ

≥
∞∑
j=m

(
�Inj

)[
n
(
j + 1

)]−rθ ≥
∞∑
j=m

(
�Inj

)[
n
(
j + 1

)]−rθ[n(m + 1)
n
(
j + 1

)
]r(p−θ)

=
∞∑
j=m

(
�Inj

)[
n
(
j + 1

)]−rp[n(m + 1)]r(p−θ),

(3.24)

which implies that for all m ≥ 1,

∞∑
j=m

(
�Inj

)(
nj

)−rp ≤ Cnα · n−r(p−θ) ·m−r(p−θ) = Cnα−r(p−θ) ·m−r(p−θ). (3.25)

Therefore,

J5
.= C

∞∑
n=1

nβ
∞∑
j=1

(
�Inj

)(
nj

)−rp 2n∑
k=0

E|X|pI
(
k ≤ |X|1/r < k + 1

)

≤ C
∞∑
n=1

nβ · nα−r(p−θ)
2n∑
k=0

E|X|pI
(
k ≤ |X|1/r < k + 1

)
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≤ C
2∑

k=0

∞∑
n=1

nα+β−r(p−θ)E|X|pI
(
k ≤ |X|1/r < k + 1

)

+ C
∞∑
k=2

∞∑
n=�k/2	

nα+β−r(p−θ)E|X|pI
(
k ≤ |X|1/r < k + 1

)

≤ C + C
∞∑
k=2

k1+α+β−r(p−θ)E|X|pI
(
k ≤ |X|1/r < k + 1

)

≤ C + C
∞∑
k=2

E|X|p+((1+α+β)/r)−(p−θ)I
(
k ≤ |X|1/r < k + 1

)

≤ C + CE|X|θ+((1+α+β)/r) < ∞,

(3.26)

J6
.= C

∞∑
n=1

nβ
∞∑
j=1

(
�Inj

)(
nj

)−rp n(j+1)∑
k=2n+1

E|X|pI
(
k ≤ |X|1/r < k + 1

)

≤ C
∞∑
n=1

nβ
∞∑

k=2n+1

∑
j≥(k/n)−1

(
�Inj

)(
nj

)−rp
E|X|pI

(
k ≤ |X|1/r < k + 1

)

≤ C
∞∑
n=1

nβ
∞∑

k=2n+1

nα−r(p−θ)
(
k

n

)−r(p−θ)
E|X|pI

(
k ≤ |X|1/r < k + 1

)

≤ C
∞∑
k=2

�k/2	∑
n=1

nα+β · k−r(p−θ)E|X|pI
(
k ≤ |X|1/r < k + 1

)

≤ C
∞∑
k=2

k1+α+β−r(p−θ)E|X|pI
(
k ≤ |X|1/r < k + 1

)

≤ C
∞∑
k=2

E|X|p+((1+α+β)/r)−(p−θ)I
(
k ≤ |X|1/r < k + 1

)

≤ CE|X|θ+((1+α+β)/r) < ∞.

(3.27)

Thus, the inequality (3.15) follows from (3.16)–(3.21), (3.23), (3.26), and (3.27). The desired
result (3.3) follows from (3.11), (3.12), and (3.15), immediately.
Case 2 (s < 1). We take p > 0 such that θ + (1 + α + β)/r = s < p < 1, which implies that
α + β − r(p − θ) < −1. By Markov’s inequality and Cr ’s inequality, we have

J
.=

∞∑
n=1

nβP

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

X′
ni

∣∣∣∣∣ > ε

)
≤ C

∞∑
n=1

nβE

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

X′
ni

∣∣∣∣∣
)p

≤ C
∞∑
n=1

nβ
n∑
i=1

E
∣∣X′

ni

∣∣p.
(3.28)

The rest proof is similar to the process of J2 < ∞ in Case 1, so we omit the details.
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(iii) If 1 + α + β = 0, then by Markov’s inequality, (3.6), and similar to the process of
(3.12), we can get that

I
.=

∞∑
n=1

nβ
n∑
i=1

P(|aniXni| > 1)

≤ C
∞∑
k=1

k∑
n=1

n−1E|X|θI(kr ≤ |X| < (k + 1)r
)

≤ C
∞∑
k=1

log kE|X|θI(kr ≤ |X| < (k + 1)r
)

≤ C
∞∑
k=1

E|X|θ log|X|I(kr ≤ |X| < (k + 1)r
)

≤ CE|X|θ log|X| < ∞.

(3.29)

Hence, to prove (3.3), we only need to show J < ∞. We will still consider the Cases s ≥ 1 and
s < 1. Here, s = θ.
Case 1 (s ≥ 1). Since 1 + α + β = 0, 1 + β = −α ≥ 0 and s = θ, it follows that (3.14) still holds.
Thus, it suffices to show that J∗ < ∞.

By Markov’s inequality, Cr ’s inequality, Lemma 2.3, Lemma 2.4, and (3.29), we have

J∗ .=
∞∑
n=1

nβP

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

(
X′

ni − EX′
ni

)∣∣∣∣∣ > ε

2

)

≤ C
∞∑
n=1

nβE

⎛
⎝max

1≤j≤n

∣∣∣∣∣
j∑
i=1

(
X′

ni − EX′
ni

)∣∣∣∣∣
2⎞⎠ ≤ C

∞∑
n=1

nβ
n∑
i=1

E
∣∣X′

ni

∣∣2

≤ C
∞∑
n=1

nβ
n∑
i=1

P(|aniX| > 1) + C
∞∑
n=1

nβ
n∑
i=1

E|aniX|2I(|aniX| ≤ 1)

≤ C + J∗5 + J∗6 .

(3.30)

Here, J∗5 and J∗6 are J5 and J6 when p = 2 in (ii), respectively. Notice that α + β = −1 and
α + β − r(2 − θ) < −1, similar to the proof of J5 < ∞, we have

J∗5 ≤ C + CE|X|θ < ∞, (3.31)

and similar to the proof of J6 < ∞, we have

J∗6 ≤ C
∞∑
k=2

�k/2	∑
n=1

n−1 · k−r(2−θ)E|X|2I
(
k ≤ |X|1/r < k + 1

)

≤ C
∞∑
k=2

log k · k−r(2−θ)E|X|2I
(
k ≤ |X|1/r < k + 1

)

≤ CE|X|θ log|X| < ∞.

(3.32)

Thus, J∗ < ∞ follows from (3.30)–(3.32), immediately.
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Case 2 (s < 1). The process of the proof is similar to that of Case 2 in (ii). We only need to show
that J5 < ∞ and J6 < ∞. Actually, similar to the proof of (3.26), we have

J5 ≤ C + CE|X|θ < ∞, (3.33)

and similar to the proof of (3.27), we have

J6 ≤ CE|X|θ log|X| < ∞. (3.34)

This completes the proof of the theorem.

Remark 3.2. It is easily seen that the conditions (3.2), (3.4), and (3.6) in Theorem 3.1 are
more general than the corresponding ones in Theorem 1.1. So Theorem 3.1 generalizes and
improves the corresponding results of Theorem 3.1 in Baek et al. [4]. In addition, we not only
consider the cases 1 + α + β > 0 and 1 + α + β = 0, we also consider the case 1 + α + β < 0. This
complements the corresponding result of Baek et al. [4] and Wu [5].

By Theorems 3.1, we can extend the results of Baum and Katz [3] for independent
and identically distributed random variables to the case of arrays of rowwise AANA random
variables as follows.

Corollary 3.3. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise AANA random variables which is
stochastically dominated by a random variable X and EXni = 0 for all i ≥ 1, n ≥ 1.

(i) Let γ > 1 and 1 ≤ t < 2. If E|X|γt < ∞ and
∑∞

n=1 q
q/p(n) < ∞ for some p ∈ (3·2k−1, 4·2k−1]

and

p > max

(
2,

2t
(
γ − 1

)
2 − t

, γt

)
, (3.35)

where integer number k ≥ 1, then for all ε > 0,

∞∑
n=1

nγ−2P

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

Xni

∣∣∣∣∣ > εn1/t

)
< ∞. (3.36)

(ii) If E|X| log |X| < ∞ and
∑∞

n=1 q
2(n) < ∞, then for all ε > 0,

∞∑
n=1

1
n
P

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

Xni

∣∣∣∣∣ > εn

)
< ∞. (3.37)

Proof. (i) Let ani = 0 if i > n and ani = n−1/t if i ≤ n. Hence, conditions (3.1) and (3.2) hold for
θ = 1, r = 1/t and α = 1 − 1/t < r. β .= p − 2 > −1. It is easy to check that

1 + α + β = p − 1
t
> 0, 1 +

1 + α + β

r
= pt

.= s. (3.38)

Therefore, the desired result (3.36) follows from Theorem 3.1(ii), immediately.
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(ii) Let ani = 0 if i > n and ani = n−1 if i ≤ n. Hence, conditions (3.1) and (3.2) hold
for r = −1, θ = 1 and α = 0. Therefore, the desired result (3.37) follows from Theorem 3.1(iii),
immediately. This completes the proof of the corollary.

Similar to the proofs of Theorem 3.1 and Corollary 3.3, we can get the Baum and Katz
type result for sequences of AANA random variables as follows.

Theorem 3.4. Let {Xn, n ≥ 1} be a sequence of AANA random variables which is stochastically
dominated by a random variable X and EXn = 0 for n ≥ 1.

(i) Let γ > 1 and 1 ≤ t < 2. If E|X|γt < ∞ and
∑∞

n=1 q
q/p(n) < ∞ for some p ∈ (3·2k−1, 4·2k−1]

and

p > max

(
2,

2t
(
γ − 1

)
2 − t

, γt

)
, (3.39)

where integer number k ≥ 1, then for all ε > 0,

∞∑
n=1

nγ−2P

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣ > εn1/t

)
< ∞. (3.40)

(ii) If E|X| log |X| < ∞ and
∑∞

n=1 q
2(n) < ∞, then for all ε > 0,

∞∑
n=1

1
n
P

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣ > εn

)
< ∞. (3.41)

By Theorem 3.4, we can get the Marcinkiewicz-Zygmund type strong law of large
numbers for AANA random variables as follows.

Corollary 3.5. Let {Xn, n ≥ 1} be a sequence of AANA random variables which is stochastically
dominated by a random variable X and EXn = 0 for n ≥ 1.

(i) Let γ > 1 and 1 ≤ t < 2. If E|X|γt < ∞ and
∑∞

n=1 q
q/p(n) < ∞ for some p ∈ (3·2k−1, 4·2k−1]

and

p > max

(
2,

2t
(
γ − 1

)
2 − t

, γt

)
, (3.42)

where integer number k ≥ 1, then

n−1/t
n∑
i=1

Xi −→ 0 a.s. n −→ ∞. (3.43)

(ii) If E|X| log |X| < ∞ and
∑∞

n=1 q
2(n) < ∞, then

1
n

n∑
i=1

Xi −→ 0 a.s. n −→ ∞. (3.44)
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Proof. (i) By (3.40), we can get that for all ε > 0,

∞ >
∞∑
n=1

nγ−2P

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣ > εn1/t

)

=
∞∑
k=0

2k+1−1∑
n=2k

nγ−2P

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣ > εn1/t

)

≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
k=0

(
2k

)γ−2
2kP

(
max
1≤j≤2k

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣ > ε2(k+1)/t
)
, if γ ≥ 2,

∞∑
k=0

(2k+1)
γ−2

2kP

(
max
1≤j≤2k

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣ > ε2(k+1)/t
)
, if 1 < γ < 2,

≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
k=0

P

(
max
1≤j≤2k

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣ > ε2(k+1)/t
)
, if γ ≥ 2,

1
2

∞∑
k=0

P

(
max
1≤j≤2k

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣ > ε2(k+1)/t
)
, if 1 < γ < 2.

(3.45)

By Borel-Cantelli Lemma, we obtain that

max1≤j≤2k
∣∣∣∑j

i=1 Xi

∣∣∣
2(k+1)/t

−→ 0 a.s. k −→ ∞. (3.46)

For all positive integers n, there exists a positive integer k0 such that 2k0−1 ≤ n < 2k0 . We have
by (3.46) that

∣∣∑n
i=1 Xi

∣∣
n1/t

≤ max
2k0−1≤n<2k0

∣∣∑n
i=1 Xi

∣∣
n1/t

≤
22/tmax1≤j≤2k0

∣∣∣∑j

i=1 Xi

∣∣∣
2k0+1/t

−→ 0 a.s. k0 −→ ∞, (3.47)

which implies (3.43).
(ii) Similar to the proof of (i), we can get (ii), immediately. The details are omitted.

This completes the proof of the corollary.
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careful reading of the manuscript and valuable suggestions which helped in significantly
improving an earlier version of this paper. This work was supported by the National Natural
Science Foundation of China (11171001 and 11126176), Natural Science Foundation of Anhui
Province (1208085QA03), Provincial Natural Science Research Project of Anhui Colleges
(KJ2010A005), the Academic Innovation Team of Anhui University (KJTD001B), Doctoral
Research Start-up Funds Projects of Anhui University, and the Talents Youth Fund of Anhui
Province Universities (2011SQRL012ZD).



Abstract and Applied Analysis 15

References

[1] P. L. Hsu and H. Robbins, “Complete convergence and the law of large numbers,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 33, no. 2, pp. 25–31, 1947.

[2] P. Erdös, “On a theorem of Hsu and Robbins,” Annals of Mathematical Statistics, vol. 20, pp. 286–291,
1949.

[3] L. E. Baum andM. Katz, “Convergence rates in the law of large numbers,” Transactions of the American
Mathematical Society, vol. 120, no. 1, pp. 108–123, 1965.

[4] J.-I. Baek, I.-B. Choi, and S.-L. Niu, “On the complete convergence of weighted sums for arrays of
negatively associated variables,” Journal of the Korean Statistical Society, vol. 37, no. 1, pp. 73–80, 2008.

[5] Q. Y. Wu, “A complete convergence theorem for weighted sums of arrays of rowwise negatively
dependent random variables,” Journal of Inequalities and Applications, vol. 2012, no. 50, 2012.

[6] H. W. Block, T. H. Savits, and M. Shaked, “Some concepts of negative dependence,” The Annals of
Probability, vol. 10, no. 3, pp. 765–772, 1982.

[7] K. Joag-Dev and F. Proschan, “Negative association of random variables, with applications,” Annals
of Statistics, vol. 11, no. 1, pp. 286–295, 1983.

[8] P. Matuła, “A note on the almost sure convergence of sums of negatively dependent random
variables,” Statistics & Probability Letters, vol. 15, no. 3, pp. 209–213, 1992.

[9] T. K. Chandra and S. Ghosal, “Extensions of the strong law of large numbers of Marcinkiewicz and
Zygmund for dependent variables,” Acta Mathematica Hungarica, vol. 71, no. 4, pp. 327–336, 1996.

[10] T. K. Chandra and S. Ghosal, “The strong law of large numbers for weighted averages under
dependence assumptions,” Journal of Theoretical Probability, vol. 9, no. 3, pp. 797–809, 1996.
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