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Using variational arguments we prove some existence and nonexistence results for positive
solutions of a class of elliptic boundary-value problems involving the p-Laplacian.

1. Introduction

In a recent paper, Rădulescu and Repovš [1] studied the existence and nonexistence of
positive solutions of the nonlinear elliptic problem

−Δu = λk(x)uq ± h(x)up in Ω,

u|∂Ω = 0, u > 0 in Ω,
(1.1)

where Ω is a smooth bounded domain in R
n, λ > 0 is a parameter, 0 < q < 1 < p, and h, k in

L∞(Ω) such that

ess inf
x∈Ω

k(x) > 0, ess inf
x∈Ω

h(x) > 0. (1.2)

They showed using sub-supersolutions arguments and monotonicity methods that the
problem (1.1)+ has a minimal solution, provided that λ > 0 is small enough. The next result
is concerned with problem (1.1)− and asserts that there is some λ∗ > 0 such that (1.1)− has a
nontrivial solution if λ > λ∗ and no solution exists provided that λ < λ∗.
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In the present paper we consider that the corresponding quasilinear problem

−Δpu = λk(x)uq ± h(x)ur in Ω,

u|∂Ω = 0, u > 0 in Ω,
(1.3)

where Δpu = div(|∇u|p−2∇u), denotes the p-Laplacian operator, 1 < p < ∞, λ > 0, 0 ≤ q <
p − 1 < r < p∗ − 1, with p∗ = Np/(N − p) if p < N, and p∗ = +∞ otherwise, and h, k in L∞(Ω)
such that

ess inf
x∈Ω

k(x) > 0, ess inf
x∈Ω

h(x) > 0. (1.4)

We are concerned with the existence of weak solutions of problems (1.3)+ and (1.3)−, that is,
for functions u ∈ W

1,p
0 (Ω) satisfying ess infKu > 0 over every compact set K ⊂ Ω and

∫
Ω
|∇u|p−2∇u · ∇φdx = λ

∫
Ω
k(x)uqφdx ±

∫
Ω
h(x)urφdx (1.5)

for all φ ∈ C∞
c (Ω). As usual, C∞

c (Ω) denotes the space of all C∞ functions φ : Ω → R with
compact support. Using variational methods, we will prove the following theorems.

Theorem 1.1. Assume 0 ≤ q < p − 1 < r < p∗ − 1. Then there exists a positive number Λ such that
the following properties hold:

(1) for all λ ∈ (0,Λ) problem (1.3)+ has a minimal solution uλ;

(2) Problem (1.3)+ has a solution if λ = Λ;

(3) Problem (1.3)+ does not have any solution if λ > Λ.

Theorem 1.2. Assume 0 ≤ q < p − 1 < r < p∗ − 1. Then there exists a positive number Λ such that
the following properties hold:

(1) If λ > Λ, then problem (1.3)− has at least one solution;

(2) If λ < Λ, then problem (1.3)− does not have any solution.

2. Proof of Theorem 1.1

At first, we give the definition of weak supersolution and subsolution of (1.3)+. By definition
u ∈ W

1,p
0 (Ω) is a weak subsolution to (1.3)+ if u > 0 in Ω and

∫
Ω
|∇u|p−2∇u · ∇φdx ≤ λ

∫
Ω
k(x)uqφdx ±

∫
Ω
h(x)urφdx (2.1)

for all φ ∈ C∞
c (Ω). Similarly u ∈ W

1,p
0 (Ω) is a weak supersolution to (1.3)+ if in the above the

reverse inequalities hold.
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Let us define

Λ def= sup{λ > 0 : (1.3)+has a weak solution} (2.2)

and the energy functional Eλ : W1,p
0 (Ω) → R defined by

Eλ(u) =
1
p

∫
Ω
|∇u|pdx

− λ

q + 1

∫
Ω
k(x)uq+1dx − 1

r + 1

∫
Ω
h(x)uq+1dx

(2.3)

in the Sobolev space W1,p
0 (Ω).

The proof of the theorem is organized in several steps.

Step 1 (existence of minimal solution for 0 < λ < Λ). To show the existence of a solution to
(1.3)+, we construct a subsolution uλ, and a supersolution uλ, such that uλ ≤ uλ.

We introduce the following Dirichlet problem:

−Δpũ = λk(x)ũq in Ω,

ũ|∂Ω = 0, ũ > 0 in Ω.
(2.4)

From [2] we know there exists a unique solution, say ũ, satisfying the problem (2.4). Define
uλ = εũ. Then −Δp(uλ) = λk(x)εp−1ũq and uλ is a subsolution of the problem (1.3)+ if

λk(x)εp−1ũq ≤ λk(x)εqũq + h(x)εrũr . (2.5)

Indeed, for ε small enough we get

λk(x)εp−1ũq ≤ λk(x)εqũq ≤ λk(x)εqũq + h(x)εrũr . (2.6)

(Since q < p − 1 and for ε ∈ (0, 1)). Then εũ is a subsolution of the problem (1.3)+.
On the other hand, let v the solution to the following problem be:

−Δpv = λ + 1 in Ω,

v|∂Ω = 0, v > 0 in Ω.
(2.7)

Then 0 < v < K in Ω. By simplicity of writing we call

F(u) = λk(x)uq + h(x)ur. (2.8)

Define uλ(x) = Tv(x)where T is a constant that will be chosen in such a way that

−Δpuλ ≥ F(TM) ≥ F(uλ), (2.9)
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where M = max{1, ‖v‖∞}. Now −Δpuλ = Tp−1(λ + 1) and

F(uλ) ≡ λk(x)Tqvq + Trvr ≤ λc1T
qMq + c2T

rMr, (2.10)

where c1 = ‖k‖L∞ et c2 = ‖h‖L∞ . Then, it is sufficient to find T such that

(λ + 1) ≥ λc1T
q+1−pMq + c2T

r+1−pMr. (2.11)

We call

ϕ(T) = λATq+1−p + BTr+1−p, (2.12)

with A = c1M
q,B = c2M

r . Then

lim
T → 0+

ϕ(T) = lim
T →∞

ϕ(T) = ∞, (2.13)

because q + 1 − p < 0 < r + 1 − p; then ϕ attains a minimum in [0,∞). Elementary
computations shows that this function attains its minimum for T0 = Cλ1/(r−q) where C =

[AB−1(r − p + 1)(p − q − 1)−1]
1/(r−q)

. For the validity of (2.11) it suffices that

ϕ(T0) ≤ λ + 1, (2.14)

that is,

Dλ(r+1−p)/(r−q) < λ + 1, (2.15)

where D is a constant, depends on p, q, and M. Then there exists λ0 such that for 0 < λ <
λ0, u(x) = T0v is a supersolution of problem (1.3)+. It remains to show that εũ ≤ T0v. In turn,
fix the supersolution, that is, T , for ε small enough, we get

−Δpuλ = λk(x)εp−1ũq ≤ λεp−1 ≤ −Δp(uλ). (2.16)

Consequently, we may apply the weak comparison principle (see Proposition 2.3 in [3]) in
order to conclude that uλ ≤ uλ. Thus, By the classical iteration method (1.3)+ has a solution
between the subsolution and supersolution.

Let us now prove that uλ is a minimal solution of (1.3)+. We use here the weak
comparison principle (see Proposition 2.3 in Cuesta and Takác̆ [3]) and the following
monotone iterative scheme:

−Δpun = λk(x)uq

n−1 + h(x)ur
n−1 in Ω;

un|∂Ω = 0,
(2.17)
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where u0 = uλ, the unique solution to (2.4). Note that u0 is a weak subsolution to (1.3)+. and
u0 ≤ U where U is any weak solution to (1.3)+. Then, from the weak comparison principle,
we get easily that u0 ≤ u1 and {un}∞n=1 is a nondecreasing sequence. Furthermore, un ≤ U

and {un}∞n=1 is uniformly bounded in W
1,p
0 (Ω). Hence, it is easy to prove that {un} converges

weakly in W
1,p
0 (Ω) and pointwise to ûλ, a weak solution to (1.3)+. Let us show that ûλ is

the minimal solution to (1.3)+ for any 0 < λ < Λ. Let vλ a weak solution to (1.3)+ for any
0 < λ < Λ. Then, u0 = uλ ≤ vλ. From the weak comparison principle, un ≤ vλ for any n ≥ 0.
Letting n → ∞, we get ûλ ≤ vλ. This completes the proof of the Step 1.

Step 2 (there exists Λ > 0 such that (1.3)+ has no positive solution for λ > Λ). From the
definition of Λ, problem (1.3)+ does not have any solution if λ > Λ. In what follows we claim
that Λ < ∞. We argue by contradiction: suppose there exists a sequence λn → ∞ such that
(1.3)+ admits a solution un. Denote

m := min
{
ess inf

x∈Ω
k(x), ess inf

x∈Ω
h(x)

}
> 0. (2.18)

There exists λ∗ > 0 such that

m(λtq + tr) ≥ (λ1 + ε)tp−1 ∀t > 0, ε ∈ (0, 1), λ > λ∗, (2.19)

where λ1 is the first Dirichlet eigenvalue of −Δp is positive and is given by

λ1 = min
u/= 0

∫
Ω |∇u|p∫
Ω |u|p (2.20)

(see Lindqvist [4]). Choose λn > λ∗. Clearly un is a supersolution of the problem

−Δpu = (λ1 + ε)up−1 in Ω,

u > 0, u|∂Ω = 0
(2.21)

for all ε ∈ (0, 1). We now use the result in [2] to choose μ < λ1 + ε small enough so that
μφ1(x) < un(x) and μφ1 is a subsolution to problem (2.8). By amonotone interation procedure
we obtain a solution to (2.8) for any ε ∈ (0, 1), contradicting the fact that λ1 is an isolated point
in the spectrum of −Δp in W

1,p
0 (Ω) (see Anane [5]). This proves the claim and completes the

proof of the Step 2.

Step 3 (there exists at least one positive-weak solution for λ = Λ to (1.3)+). Let {λk}k∈N
be

such that λk ↑ Λ as k → ∞. Then, from Step 1, there exists uk = uλk ≥ uλk
to a weak positive

solution to (1.3)+ for λ = λk. Therefore, for any φ ∈ C∞
c (Ω), we have

∫
Ω
|∇uk|p−2∇uk∇φdx = λkk(x)

∫
Ω
(uk)qφdx + h(x)

∫
Ω
ur
kφdx. (2.22)
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Since uk ∈ W
1,p
0 (Ω) and uk ≥ uλk

it is easy to see that (2.22) holds also for φ ∈ W
1,p
0 (Ω).

Moreover, from above

Eλk(uk) ≤ Eλk

(
uλk

)
<

1
p

∫
Ω

∣∣∣∇uλk

∣∣∣pdx − λkk(x)
q + 1

∫
Ω
uλk

q+1dx < 0, (2.23)

it follows that

sup
k

‖uk‖p < ∞. (2.24)

Hence, there exists uΛ ≥ uλk
such that uk ⇀ uΛ in W

1,p
0 (Ω) as k → ∞ and then by

Sobolev imbedding and using the fact that k, h ∈ L∞(Ω):

uk ⇀ u in Lq(Ω) and point wise a.e. as k −→ ∞. (2.25)

From (2.22), (2.24), and (2.25), we get for any φ ∈ W
1,p
0 (Ω)

∫
Ω
|∇uΛ|p−2∇uΛ∇φdx = λ

∫
Ω
k(x)uq

Λφdx +
∫
Ω
h(x)ur

Λφdx (2.26)

which completes the proof of the Step 3 and gives the proof of Theorem 1.1.

3. Proof of Theorem 1.2

At first, we introduce some notation which will be used throughout the proof. The norm in
W

1,p
0 (Ω)will be denoted by

‖u‖p
def=

(∫
Ω
|∇u|pdx

)1/p

. (3.1)

The norm in Lq+1(Ω)will be denoted by

‖u‖q+1
def=

(∫
Ω
|u|q+1dx

)1/q+1

. (3.2)

The norm in Lr+1(Ω)will be denoted by

‖u‖r+1
def=

(∫
Ω
|u|r+1dx

)1/r+1

. (3.3)
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Let us define the energy functional Jλ : W1,p
0 (Ω) → R defined by

Jλ(u) =
1
p

∫
Ω
|∇u|pdx

− λ

q + 1

∫
Ω
k(x)uq+1dx +

1
r + 1

∫
Ω
h(x)ur+1dx

(3.4)

in the Sobolev space W1,p
0 (Ω).

The proof of the theorem is organized in several steps.

Step 1 (coercivity of Jλ:). For any u ∈ W
1,p
0 (Ω) and all λ > 0

Jλ(u) ≥ 1
p
‖u‖p − C1‖u‖q+1q+1 + C2‖u‖r+1r+1, (3.5)

where C1 = λ‖k‖L∞/(q + 1) and C2 = (r + 1)−1ess infx∈Ωh(x) are positive constants. We call

φ(T) = ATq+1−p − BTr+1−p. (3.6)

Then

lim
T → 0+

φ(T) = lim
T →∞

φ(T) = ∞, (3.7)

because q + 1 − p < 0 < r + 1 − p; then ϕ attains a minimum m < 0 in [0,∞).
By elementary computations shows that this function attains its minimum for T =
[A(q + 1 − p)/(Br + 1 − p)]1/(r−q).

Returning to (3.5), we deduce that

Jλ(u) ≥ 1
p
‖u‖p +m. (3.8)

Hence, from (3.8), we get that

Jλ(u) −→ +∞ as ‖u‖ −→ ∞. (3.9)

Let n �→ un be a minimizing sequence of Jλ in W
1,p
0 (Ω), which is bounded in W

1,p
0 (Ω)

by Step 1. Without loss of generality, we may assume that (un)n is nonnegative, converges
weakly to some u in W

1,p
0 (Ω), and converges also pointwise. Moreover, by the weak lower

semicontinuity of the norm ‖ · ‖ and the boundedness of (un)n inW
1,p
0 (Ω)we get

Jλ(u) ≤ lim
n→∞

inf Jλ(un). (3.10)

Hence u is a global minimizer of Jλ inW
1,p
0 (Ω), which completes the proof of the Step 1.
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Step 2 (the weak limit u is a nonnegative weak solution of (1.3)− if λ > 0 is sufficiently large).
Firstly, observe that Jλ(0) = 0. Thus, to prove that the nonnegative solution is nontrivial, it
suffices to prove that there exists λ∗ > 0 such that

inf
u∈W1,p

0 (Ω)
Jλ(u) < 0 ∀λ > λ∗. (3.11)

For this, we consider the constrained minimization problem

λ∗ def= inf
{
1
p

∫
Ω
|∇w|pdx +

1
r + 1

∫
Ω
h(x)|w|r+1dx : w ∈ W

1,p
0 (Ω) and

1
q + 1

×
∫
Ω
k(x)|w|q+1dx = 1

}
.

(3.12)

Let n �→ vn be a minimizing sequence of (3.12) in W
1,p
0 (Ω), which is bounded in

W
1,p
0 (Ω), so that we can assume, without loss of generality, that it converges weakly to some

v ∈ W
1,p
0 (Ω), with

1
q + 1

∫
Ω
k(x)|v|q+1dx = 1, λ∗ =

1
p

∫
Ω
|∇v|pdx +

1
r + 1

∫
Ω
h(x)|v|r+1dx. (3.13)

Thus, Jλ(v) = λ∗ − λ < 0 for any λ > λ∗.
Now put

Λ def= inf{λ > 0 : (1.3)− admits a non trivial weak solution}. (3.14)

From above λ∗ ≥ Λ and that problem (1.3)− has a solution for all λ > λ∗. The proof of the
Step 2 is now completed.

Step 3 (problem (1.3)− has a weak solution for any λ > Λ). By the definition of Λ, there
exists μ ∈ (Λ, λ) such that Jμ has a nontrivial critical point uμ ∈ W

1,p
0 (Ω). Since μ < λ,uμ is

a subsolution of the problem (1.3)−. In order to find a super-solution of the problem (1.3)−
which dominates uμ, we consider the constrained minimization problem

inf
{
Jλ(w);w ∈ W

1,p
0 (Ω) and w ≥ uμ.

}
. (3.15)

Arguments similar to those used in Step 2 show that the above minimization problem has a
solution uλ ≥ uμ which is also a weak solution of problem (1.3)−, provided λ > Λ.

Using similar arguments as in [6]. Thus, from Theorem 2.2 in Pucci and Servadei
[7], based on the Moser iteration, it is clear that u ∈ L∞

loc. Next, again by bootstrap
regularity [Corollary on p. 830] due to DiBenedetto, [8] shows that the weak solution
u ∈ C1,α(Ω) where α ∈ (0, 1). Finally, the nonnegative follows immediately by the strong
maximum principle since u is a C1 nonnegative weak solution of the differential inequality
∇(|∇u|p−2∇u)−h(x)ur ≤ 0 inΩ, with p−1 < r, see, for instance, Section 4.8 of Pucci and Serrin
[9]. Thus, u > 0 in Ω. The proof of the Step 3 is now completed.
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Step 4 (nonexistence for λ > 0 is small). The same monotonicity arguments as in Step 3 show
that (1.3)− does not have any solution if λ < Λ, which completes the proof of the Theorem 1.2.
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