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Using some potential theory tools and the Schauder fixed point theorem, we prove the existence of
positive continuous solutions with a precise global behavior for the competitive semilinear elliptic
system Δu = p(x)uαvr , Δv = q(x)usvβ in an exterior domain D of R

2, subject to some Dirichlet
conditions, where α ≥ 1, β ≥ 1, r ≥ 0, s ≥ 0 and the potentials p, q are nonnegative and satisfy some
hypotheses related to the Kato class K(D).

1. Introduction

The study of nonlinear elliptic systems has a strong motivation, and important research
efforts have been made recently for these systems aiming to apply the results of existence and
asymptotic behavior of positive solutions in applied fields. Coupled nonlinear Shrödinger
systems arise in the description of several physical phenomena such as the propagation of
pulses in birefringent optical fibers and Kerr-like photorefractive media, see [1, 2]. Stationary
elliptic systems arise also in other physical models like non-Newtonian fluids: pseudoplastic
fluids and dilatant fluids [3, 4], non-Newtonian filtration [5], and the turbulent flow of a
gas in porous medium [6, 7]. They also describe other various nonlinear phenomena such
as chemical reactions, pattern formation, population evolution where, for example, u and
v represent the concentrations of two species in the process. As a consequence, positive
solutions of such are of interest.

For some recent results on the qualitative analysis and the applications of positive
solutions of nonlinear elliptic systems in both bounded and unbounded domains we refer to
[8–15] and the references therein.
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In these works various existence results of positive bounded solutions or positive
blowing-up ones (called also large solutions) have been established, and a precise global
behavior is given. We note also that several methods have been used to treat these nonlinear
systems such as sub- and super-solutions method, variational method, and topological
methods.

In this paper, we consider an unbounded domain D in R
2 with a nonempty compact

boundary ∂D consisting of finitely many Jordan curves and noncontaining zero. We fix two
nontrivial nonnegative continuous functions ϕ and ψ on ∂D and some nonnegative constants,
a, b, c, d such that a + c > 0 and b + d > 0, and we will deal with the existence of a positive
continuous solution (in the sense of distributions) to the system:

Δu = p(x)uαvr, in D

Δv = q(x)usvβ, in D

u/∂D = aϕ, v/∂D = bψ

lim
|x|→∞

u(x)
ln|x| = c, lim

|x|→∞
v(x)
ln|x| = d,

(1.1)

where α ≥ 1, β ≥ 1, r ≥ 0, s ≥ 0 and p, q are two nonnegative functions satisfying some
hypotheses related to the Kato class K(D) defined and studied in [16, 17] by means of the
Green function G(x, y) of the Dirichlet Laplacian in D.

Our method is based on some potential theory tools which we apply to give an
existence result for equations by an approximation argument, then we use the result for
equations to prove, by means of the Schauder fixed point theorem, the existence result for
the system (1.1).

As far as we know, there are no results that contain existence of positive solutions to
the elliptic system (1.1) in the case where α > 0 and β > 0 and the weights p(x) and q(x) are
singular functions.

The study of (1.1) is motivated by the existence results obtained in [18] to the following
system

Δu = λp(x)g(v), in D

Δv = μq(x)f(u), in D

u/∂D = aϕ, v/∂D = bψ,

lim
|x|→∞

u(x)
ln(|x|) = c, lim

|x|→∞
v(x)
ln(|x|) = d,

(1.2)

where λ, μ are nonnegative constants, the functions f, g : [0,∞) → [0,∞) are nondecreasing
and continuous.

More precisely, it was shown in [18] that if the functions p̃ := pf(θ) and q̃ := qg(ω)
belong to the Kato classK(D), then there exist λ0 > 0 and μ0 > 0 such that for each λ ∈ [0, λ0)
and μ ∈ [0, μ0), the system (1.2) has a positive continuous solution (u, v) having the global
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asymptotic behavior of the unique solution of the associated homogeneous system, where we
have denoted by

ω := aHDϕ + ch, θ := bHDψ + dh, (1.3)

and the functions HDϕ and h are the harmonic functions defined, respectively, by (1.4) and
(1.5) below.

The system of two equations in (1.1) has been treated in exterior domains of R
n, n ≥

3 in [19], and existence of positive bounded continuous solutions is established. The main
difficulty in the present work is the case of the domain D ⊂ R

2. More precisely, the function
h defined by (1.5) behaves as ln(|x|) at infinity for n = 2, unlike the case n ≥ 3 where this
function is bounded at infinity.

Throughout this paper, we denote by HDϕ the unique bounded continuous solution
of the Dirichlet problem

Δw = 0 in D,

w/∂D = ϕ,

lim
|x|→+∞

w(x)
h(x)

= 0,

(1.4)

where ϕ is a nonnegative continuous function on ∂D.
The function h is defined on D by

h(x) = 2π lim
|y|→+∞

GD

(

x, y
)

. (1.5)

First, we recall the following result about this function h.

Proposition 1.1 (see [16]). The function h defined by (1.5) is harmonic and positive in D and
satisfies

lim
x→ z∈∂D

h(x) = 0, lim
|x|→+∞

h(x)
ln|x| = 1. (1.6)

Taking into account these notations, we use some potential theory tools and an
approximating sequence in order to prove the following first result concerning the existence
of a unique positive continuous solution to the boundary value problem:

Δu = p(x)uγ , in D

u/∂D = aϕ

lim
x→∞

u(x)
ln|x| = c,

(1.7)

where γ ≥ 1, ϕ is a nontrivial nonnegative continuous function on ∂D and a, c are two
nonnegative constants with a + c > 0. More precisely we establish the following.
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Theorem 1.2. Let p be a nonnegative function such that the function p̃ = γpωγ−1 belongs to the Kato
class K(D). Then problem (1.7) has a unique positive continuous solution satisfying for each x ∈ D

c0ω(x) ≤ u(x) ≤ ω(x), (1.8)

where ω is defined in (1.3) and the constant c0 ∈ (0, 1].

Next we exploit this result to prove the existence of a positive continuous solution
(u, v) to the system (1.1). For this aim we denote by

ω0 := a + ch, (1.9)

θ0 := b + dh, (1.10)

and we need to assume the following hypothesis on the functions p and q.

(H) p and q are nonnegative measurable functions in D such that

x −→ p(x)θr0(x)ω
α−1
0 (x), x −→ q(x)ωs

0(x)θ
β−1
0 (x) (1.11)

are in K(D).

Using the Schauder fixed point, we prove the following main result.

Theorem 1.3. Under the hypothesis (H), the problem (1.1) has a positive continuous solution (u, v)
satisfying for each x in D

c1ω(x) ≤ u(x) ≤ ω(x),
c2θ(x) ≤ v(x) ≤ θ(x),

(1.12)

where ω, θ are defined by (1.3) and c1, c2 ∈ (0, 1].

In order to state these results and for the sake of completeness, we give in the sequel
some notations, and we recall some properties of the Kato class K(D) studied in [16, 17].

Let us denote by B(D) the set of Borel measurable functions inD and by B+(D) the set
of nonnegative ones. We denote also by C0(D) the set of continuous functions in D having
limit zero at ∂D, by C(D ∪ {∞}) = {f ∈ C(D) : lim|x|→∞f(x) exists} and by C0(D) = {f ∈
C(D) : lim|x|→∞f(x) = 0}. We note that C(D ∪ {∞}) is a Banach space endowed with the
uniform norm ‖f‖∞ = supx∈D|f(x)|.

First we recall that if ϕ is a nonnegative continuous function on ∂D, then from [20,
page 427] the functionHDϕ ∈ C(D ∪ {∞}) and satisfies limx→∞HDϕ(x) = C > 0.

For any f in B+(D), we denote by Vf the Green potential of f defined on D by

Vf(x) :=
∫

D

G
(

x, y
)

f
(

y
)

dy, (1.13)
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and we recall that if f ∈ L1
loc(D) and Vf ∈ L1

loc(D), then we have in the distributional sense
(see [21, page 52])

Δ
(

Vf
)

= −f in D. (1.14)

Furthermore, we recall that for f ∈ B+(D), the potential Vf is lower semicontinuous in D
and if f = f1 + f2 with f1, f2 ∈ B+(D) and Vf ∈ C+(D), then Vfi ∈ C+(D) for i ∈ {1, 2}.

Let (Xt, t > 0) be the Brownian motion in R
2 and Px be a probability measure on the

Brownian continuous paths starting at x. For any function q ∈ B+(D), we define the kernel Vq
by

Vqf(x) = Ex
(∫ τD

0
e−

∫ t
0 q(Xs)dsf(Xt)dt

)

, (1.15)

where Ex is the expectation on Px and τD = inf{t > 0 : Xt /∈ D}.
If q is a nonnegative function in D such that Vq < ∞, the kernel Vq satisfies the

following resolvent equation (see [21, 22])

V = Vq + Vq
(

qV
)

= Vq + V
(

qVq
)

. (1.16)

So for each u ∈ B(D) such that V (q|u|) <∞, we have

(

I − Vq
(

q.
))(

I + V
(

q.
))

u =
(

I + V
(

q.
))(

I − Vq
(

q.
))

u = u, (1.17)

and for each u ∈ B+(D), we have

0 ≤ Vq(u) ≤ V (u). (1.18)

Now we recall the definition of the Kato class which contains in particular a wider class of
singular functions near the boundary of the domain D.

Definition 1.4 (see [16]). A Borel measurable function s in D belongs to the Kato class K(D)
if

lim
α→ 0

sup
x∈D

∫

D∩B(x,α)

ρ
(

y
)

ρ(x)
G
(

x, y
)∣

∣s
(

y
)∣

∣dy = 0,

lim
M→∞

sup
x∈D

∫

D∩{|y|≥M}

ρ
(

y
)

ρ(x)
G
(

x, y
)∣

∣s
(

y
)∣

∣dy = 0,

(1.19)

where ρ(x) = min(1, δ(x)) and δ(x) denotes the Euclidian distance from x to the boundary
∂D of D.

This Kato class is rich enough as it can be seen in the following example.
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Example 1.5 (see [16]). Let q(x) = 1/(1 + |x|)μ−λ(δ(x))λ for x ∈ D. Then

q ∈ K(D) if and only if λ < 2 < μ· (1.20)

Remark 1.6. Let p > 1 and λ, μ ∈ R such that λ < 2 − (2/p) < μ. Then using the Hölder
inequality and the same arguments as in the proof of the precedent example it follows that
for each f ∈ Lp(D), the function defined in D by f(x)/(1 + |x|)μ−λ(δ(x))λ belongs to K(D).

Next, we recall some properties of K(D).

Proposition 1.7 (see [16, 17]). Let q be a nonnegative function in K(D). Then one has

(i) αq := supx,y∈D
∫

D(G(x, z)G(z, y)/G(x, y))q(z)dz <∞.

(ii) The function x → (δ(x)/(1 + |x|))q(x) is in L1(D). In particular q ∈ L1
loc
(D).

(iii) Vq ∈ C0(D).

(iv) For any nonnegative superharmonic function v in D and all x ∈ D, one has

∫

D

G
(

x, y
)

v
(

y
)

q
(

y
)

dy ≤ αqv(x)· (1.21)

The following compactness results will be used and they are proved, respectively, in
[17] and [16].

Proposition 1.8 (see [17, Lemma 3.1]). Let h0 be a positive harmonic function in D, which is
continuous and bounded in D and let q be a nonnegative function belonging to K(D). Then the
family of functions:

Fq =
{∫

D

GD

(·, y)h0
(

y
)

p
(

y
)

dy :
∣

∣p
∣

∣ ≤ q
}

(1.22)

is uniformly bounded and equicontinuous on D ∪ {∞}. Consequently, it is relatively compact in
C(D ∪ {∞}).

Proposition 1.9 (see [16, Lemma 4.3]). Let h be the function defined by (1.5) and let q be a
nonnegative function in K(D). Then the family of functions:

Fq =
{

1
h(·)

∫

D

G
(·, y)h(y)p(y)dy; ∣∣p∣∣ ≤ q

}

(1.23)

is uniformly bounded and equicontinuous on D ∪ {∞}, and consequently it is relatively compact in
C0(D).
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As a consequence of these Propositions, we obtain the following.

Corollary 1.10. Let q be a nonnegative function in K(D). Then the family of functions:

{

x −→ 1
ω0(x)

∫

D

G
(

x, y
)

ω0
(

y
)

p
(

y
)

dy;
∣

∣p
∣

∣ ≤ q
}

(1.24)

is relatively compact in C(D ∪ {∞}).

Proof. Since

ω0
(

y
)

ω0(x)
=
a + ch

(

y
)

a + ch(x)
≤ max

(

1,
h
(

y
)

h(x)

)

≤ 1 +
h
(

y
)

h(x)
, (1.25)

then the result follows from Propositions 1.8 and 1.9.

The following result will play an important role in the proofs of Theorems 1.2 and 1.3.

Proposition 1.11 (see [17, Proposition 2.9]). Let v be a nonnegative superharmonic function inD
and q be a nonnegative function in K(D). Then for each x ∈ D such that 0 < v(x) <∞, one has

exp
(−αq

)

v(x) ≤ v(x) − Vq
(

qv
)

(x) ≤ v(x). (1.26)

2. Proof of Theorem 1.2

First we give two Lemmas that will be used for uniqueness.

Lemma 2.1 (see [23]). Let ζ be a function in B+(D) and ϑ be a nonnegative superharmonic function
in D. Then for all z ∈ B(D) such that V (ζ|z|) <∞ and z + V (ζz) = ϑ, one has 0 ≤ z ≤ ϑ.

Lemma 2.2. Let u be a nonnegative continuous function in D ∪ {∞}. Then

u is a solution of (1.7) if and only if u = ω − V (

puγ
)

in D. (2.1)

Proof. Let u be a nonnegative continuous solution of (1.7). First, we will prove that u(x) ≤
ω(x) in D. SinceHDϕ is bounded, then limx→∞((u(x) − aHDϕ(x))/h(x)) = limx→∞((u(x) −
aHDϕ(x))/ ln |x|) = c. Consequently, for ε > 0 there existsM > 0 such that

u(x) − aHDϕ(x) ≤ (c + ε)h(x) for |x| ≥M. (2.2)

This implies that the function vε = ω + εh − u satisfies

Δvε = −p(x) uγ ≤ 0 in D

vε = 0 on ∂D

lim inf
x→∞

vε(x) ≥ 0.

(2.3)
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Hence by [20, page 465], we get u(x) ≤ ω(x) + εh(x) in D. Since ε is arbitrary, this implies
that u(x) ≤ ω(x) for each x ∈ D. Now, since p̃ = γpωγ−1 ∈ K(D), then puγ−1 ∈ K(D). Hence it
follows from Propositions 1.8 and 1.9 that V (aHDpu

γ−1) and V (chpuγ−1) belong to C(D)with
boundary value zero, which implies that V (pωuγ−1) belongs to C(D) with boundary value
zero. So, V (puγ) belongs to C(D)with boundary value zero. Consequently, using Corollary 7
page 294 in [20], we deduce that the function u−ω+V (puγ) is a classical harmonic inD with
boundary value zero and satisfying lim|x|→∞((u(x) −ω(x) + V (puγ)(x))/ ln |x|) = 0. Thus by
[20, page 419], we have u −ω +V (puγ) = 0 inD. So u = ω −V (puγ) and this proves necessity.

Now, we prove sufficiency. Let u be a nonnegative continuous function inD satisfying
the integral equation u = ω − V (puγ). Since p is nonnegative and p̃ = γpωγ−1 ∈ K(D), then
u ≤ ω and puγ−1 ∈ K(D). This implies, by using Propositions 1.8 and 1.9 that V (aHDϕpu

γ−1)
and V (chpuγ−1) are in C(D)with boundary value zero. Consequently, V (puγ) is in C(D)with
boundary value zero. Hence, Δu = Δω −Δ(V (puγ)) = puγ (in the sense of distributions) and
u is a solution of (1.7).

Now we prove Theorem 1.2

Proof of Theorem 1.2. First we show that problem (1.7) has at most one continuous solution.
Let u, v be two continuous solutions of (1.7). Then, by Lemma 2.2 we have u = ω − V (p uγ)
and v = ω−V (pvγ) inD. Put z = v−u and ζ(x) = (vγ(x)−uγ(x))/(v(x)−u(x)) if u(x)/=v(x)
and ζ(x) = 0 whenever u(x) = v(x). Then we have ζ ≥ 0 and z + V (pζz) = 0 in D. Using
Lemma 2.1, we deduce that z = 0 and so u = v.

Next, we prove the existence of a positive continuous solution to (1.7). We recall that
ω = aHDϕ + ch and p̃ = γpωγ−1 ∈ K(D). Put c0 = e−αp̃ where the constant αp̃ is defined in
Proposition 1.7. We define the nonempty closed bounded convex set Λ by

Λ = {u ∈ B+(D) : c0 ω ≤ u ≤ ω}. (2.4)

Let T be the operator defined on Λ by

Tu := ω − Vp̃
(

p̃ω
)

+ Vp̃
(

p̃u − puγ). (2.5)

We will prove that T maps Λ to itself. Indeed, for each u ∈ Λ, we have

Tu = ω − Vp̃
(

p̃ω
)

+ Vp̃
(

p̃u − puγ)

≤ ω − Vp̃
(

puγ
)

≤ ω.
(2.6)

On the other hand, since the function p̃u − puγ ≥ 0, we deduce by Proposition 1.11 that Tu ≥
ω − Vp̃(p̃ω) ≥ c0ω. Hence, TΛ ⊂ Λ.
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Next, we prove that T is nondecreasing on Λ. Let u1, u2 ∈ Λ such that u1 ≤ u2. Since
for each y ∈ D, the function t → p̃(y) t−p(y)tγ is nondecreasing on [0, ω(y)]we deduce that

Tu2 − Tu1 = Vp̃
(

p̃u2 − puγ2
)

− Vp̃
(

p̃u1 − puγ1
)

= Vp̃
[(

p̃u2 − puγ2
)

−
(

p̃u1 − puγ1
)]

≥ 0.

(2.7)

Now, we consider the sequence (uk)k defined by u0 = ω−Vp̃(p̃ω) and uk+1 = Tuk. Clearly u0 ∈
Λ and u1 = Tu0 ≥ u0. Thus, using the fact that Λ is invariant under T and the monotonicity of
T , we deduce that

c0ω ≤ u0 ≤ u1 ≤ · · · ≤ uk ≤ ω. (2.8)

Hence, the sequence (uk)k converges to a measurable function u ∈ Λ. Therefore, by applying
the monotone convergence theorem, we deduce that u satisfies the following equation:

u = ω − Vp̃
(

p̃ω
)

+ Vp̃
(

p̃u − puγ) (2.9)

or equivalently

u − Vp̃
(

p̃u
)

= ω − Vp̃
(

p̃ω
) − Vp̃

(

puγ
)

. (2.10)

Applying the operator (I + V (p̃.)) on both sides of (2.10), we deduce by using (1.16) and
(1.17) that

u = ω − V (

puγ
)

. (2.11)

Now, let us verify that u is a solution of the problem (1.7). Since p̃ = γpωγ−1 ∈ K(D), then by
Proposition 1.7, we have p̃ ∈ L1

loc(D).
Now, using the following inequality:

puγ ≤ pωγ ≤ p̃ω (2.12)

and the continuity of ω in D, we obtain that puγ ∈ L1
loc(D). Using Proposition 1.7 and (2.12),

we obtain for each x ∈ D

V
(

puγ
)

(x) ≤
∫

D

G
(

x, y
)

p̃
(

y
)

ω
(

y
)

dy ≤ αp̃ω(x), (2.13)

which gives V (puγ) ∈ L1
loc(D). Thus, by applying Δ on both sides of (2.11), we deduce that u

is a solution of

Δu = puγ (in the sense of distributions). (2.14)
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Using (2.12), we obtain that puγ and p̃ω are in B+(D). So V (puγ) and V (p̃ω − puγ) are two
lower semicontinuous functions. On the other hand, by Proposition 1.8 we have V (p̃aHDϕ) ∈
C(D) and by Proposition 1.9 the function (1/h)V (p̃h) ∈ C0(D). So V (p̃ω) ∈ C(D). Thus
V (p̃ω − puγ) = V (p̃ω) − V (puγ) is also an upper semicontinuous function. Consequently,
V (p̃ω − puγ) ∈ C(D). Thus V (puγ) = V (p̃ω) − V (p̃ω − puγ) ∈ C(D). Therefore u ∈ C(D).
Now, using Propositions 1.1 and 1.9, we deduce that limx→ ∂DV (p̃h)(x) = 0. In addition,
since HDϕ is bounded in D, we deduce from Proposition 1.7 limx→ ∂DV (p̃)(x) = 0. So that
limx→ ∂DV (p̃ω)(x) = 0. This in turn implies that limx→ ∂DV (puγ) = 0. Which together with
(2.11) imply that u/∂D = aϕ. On the other hand, we have

1
h
V
(

puγ
) ≤ a∥∥ϕ∥∥∞

1
h
V
(

p̃
)

+
c

h
V
(

p̃h
)

. (2.15)

Using Propositions 1.9, 1.8, and 1.1, we deduce that (1/ ln |x|)V (puγ)(x) tends to zero as |x| →
∞ and consequently lim|x|→∞(u(x)/ ln |x|) = c. This implies that u is a positive continuous
solution of (1.7). This completes the proof of Theorem 1.2.

Remark 2.3. Let p̃0 = γmax(1, ‖ϕ‖∞)pωγ−1
0 , where ω0 is given by (1.9). Then we have 0 ≤ p̃ ≤

p̃0. So if we assume that p̃0 ∈ K(D), then p̃ ∈ K(D) and αp̃ ≤ αp̃0 . Moreover, the solution u of
(1.7) satisfies also the inequality:

e−αp̃0 ω ≤ u ≤ ω in D. (2.16)

Next we give the proof of Theorem 1.3.

3. Proof of Theorem 1.3

We recall that ω0 = a + ch, θ0 = b + dhω = aHDϕ + ch and θ = bHDψ + dh. Define m =
max(1, ‖ϕ‖∞, ‖ψ‖∞), ˜f = αmr+α−1 pθr0ω

α−1
0 and g̃ = βms+β−1 qωs

0θ
β−1
0 . Put c1 = e−α ˜f and c2 =

e−αg̃ , where the nonnegative constants α
˜f and αg̃ are defined in Proposition 1.7.

In order to use a fixed point theorem, we consider the nonempty closed convex set Γ
defined by

Γ =
{

(

λ, χ
) ∈

(

C
(

D ∪ {∞}
))2

: 0 ≤ λ ≤ (1 − c1) ω
ω0

, 0 ≤ χ ≤ (1 − c2) θ
θ0

}

. (3.1)

For (λ, χ) ∈ Γ, we consider the following system:

Δy = p
(

θ − θ0χ
)r
yα, in D

Δz = q(x)(ω −ω0 λ)
szβ, in D

y/∂D = aϕ, z/∂D = bψ,

lim
x→∞

y(x)
ln|x| = c, lim

x→∞
z(x)
ln|x| = d.

(3.2)
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Then by Theorem 1.2, the system 21 has a unique positive continuous solution (y, z) satisfy-
ing the integral equations

y(x) = ω(x) − V (

p
(

θ − θ0χ
)r
yα

)

(x), (3.3)

z(x) = θ(x) − V
(

q(ω −ω0λ)
szβ

)

(x). (3.4)

Moreover, we have the following global inequalities:

c1ω ≤ y ≤ ω, c2θ ≤ z ≤ θ, in D, (3.5)

p
(

θ − θ0χ
)r
yα ≤ pωαθr ≤ m

α
ω0 ˜f, (3.6)

q(ω −ω0λ)
szβ ≤ qθβωs ≤ m

β
θ0g̃. (3.7)

Let T be the operator defined on Γ by T(λ, χ) = ((ω − y)/ω0, (θ − z)/θ0).
Since y, z satisfy (3.3) and (3.4) we deduce from (3.5), (3.6), hypothesis (H) and

Corollary 1.10 that the family of functions:

TΓ =
{(

1
ω0

V
(

pyα
(

θ − θ0χ
)r)

,
1
θ0
V
(

qzβ(ω −ω0λ)
s
)

)

;
(

λ, χ
) ∈ Γ

}

(3.8)

is relatively compact in (C(D ∪ {∞}))2. This together with (3.5) imply that TΓ ⊂ Γ.
Next, we will prove the continuity of T with respect to the norm ‖ · ‖ defined on Γ by

‖(λ, χ)‖ = ‖λ‖∞ + ‖χ‖∞. Let (λk, χk)k be a sequence in Γ that converges to (λ, χ) ∈ Γ with
respect to ‖ · ‖. Put (yk, zk) = T(λk, χk) and (y, z) = T(λ, χ). Then we have

∥

∥

(

yk, zk
) − (

y, z
)∥

∥ =
∥

∥

∥

∥

yk − y
ω0

∥

∥

∥

∥

∞
+
∥

∥

∥

∥

zk − z
ω0

∥

∥

∥

∥

∞
. (3.9)

Using (3.3), we obtain

yk − y = V
(

pyα
(

θ − θ0χ
)r) − V (

pyαk
(

θ − θ0χk
)r)

= V
(

p
[

yα
((

θ − θ0χ
)r − (

θ − θ0χk
)r)) + V

(

p
(

yα − yαk
)(

θ − θ0χk
)r)

.
(3.10)

Now using the fact that

tα − ηα = (

t − η)
[

α

∫1

0

(

η + ξ
(

t − η))α−1dξ
]

for t ≥ 0, η ≥ 0, (3.11)

we deduce that

(

yk − y
)

+ V
(

pk
(

yk − y
))

= V
(

pyα
((

θ − θ0χ
)r − (

θ − θ0χk
)r))

, (3.12)
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where pk(x) = αp(x)(θ(x) − θ0(x)χk(x))r
∫1
0 [ξyk(x) + (1 − ξ)y(x)]α−1dξ.

Clearly, we have

pk(x) ≤ αp(x)
(

θ(x) − θ0(x)χk(x)
)r
ωα−1(x)

≤ αp(x)θr(x)ωα−1(x)

≤ mr+α−1αp(x) θr0(x) ω
α−1
0 (x) = mr+α−1

˜f.

(3.13)

Now, since ˜f ∈ K(D) then pk ∈ K(D) and Vpk < ∞. Moreover, we obtain from (3.6) and
Proposition 1.7(iv) that

V
(

pk
∣

∣yk − y
∣

∣

) ≤ V (

pyαk
(

θ − θ0χk
)r) + V

(

pyα
(

θ − θ0χk
)r)

≤ 2m
α
ω0α ˜f .

(3.14)

So we can apply (I − Vpk(pk.)) to (3.12) to obtain from (1.16) and (1.17) that

yk − y = Vpk
(

pyα
((

θ − θ0χ
)r − (

θ − θ0χk
)r))

. (3.15)

On the other hand, we have

pyα
∣

∣

(

θ − θ0χ
)r − (

θ − θ0χk
)r∣
∣ ≤ pyα((θ − θ0χ

)r +
(

θ − θ0χk
)r)

≤ 2pyαθr

≤ 2m
α
ω0 ˜f.

(3.16)

So from hypothesis (H), Proposition 1.7(iv) and the dominated convergence theorem, we
deduce that for each x ∈ D, we have

lim
k→∞

V
(

pyα
((

θ − θ0χ
)r − (

θ − θ0χk
)r))(x) = 0. (3.17)

This together with (1.18) and (3.15) implies that for each x ∈ D, (yk(x))k converges to y(x)
as k → ∞. Similarly we prove that for each x ∈ D, (zk(x))k converges to z(x) as k → ∞.
Consequently, as TΓ is relatively compact in C(D ∪ {∞}), we deduce that the pointwise
convergence implies the uniform convergence. Namely, ‖(yk − y)/ω0‖∞ + ‖(zk − z)/θ0‖∞
converges to 0 as k → ∞.

From the Schauder fixed point theorem there exists (λ, χ) ∈ Γ such that T(λ, χ) = (λ, χ)
or equivalently ((ω−y)/ω0, (θ−z)/θ0) = (λ, χ). Put u = ω−ω0λ and v = θ−θ0χ. Then (u, v) is
a positive continuous solution of the system (1.1) in the sense of distributions satisfying for
each x ∈ D

c1ω(x) ≤ u(x) ≤ ω(x), c2θ(x) ≤ v(x) ≤ θ(x). (3.18)

This completes the proof.
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