
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 264137, 23 pages
doi:10.1155/2012/264137

Research Article
Convergence Analysis of Regular Dynamic
Loop-Like Subdivision Scheme

Xiangjun Zhao, Xiaoyang Liu, and Mei Lu

School of Computer Science and Technology, Jiangsu Normal University, Xuzhou 221116, China

Correspondence should be addressed to Xiangjun Zhao, xjzhao@jsnu.edu.cn and
Xiaoyang Liu, liuxiaoyang1979@gmail.com

Received 26 October 2012; Accepted 2 December 2012

Academic Editor: Xiaodi Li

Copyright q 2012 Xiangjun Zhao et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper is concerned with the regular dynamic loop-like subdivision scheme based on the
extension of Box-Splinemethod. The purpose of the addressed problem is to prove the convergence
of the subdivision scheme and verify the C0 and C1 continuity by calculating the eigenvalues
of the 2-neighbor subdivision matrix. Compared with the loop subdivision scheme in previous
references, the designed scheme can generate exact revolving surfaces and hold a stronger
modeling capability because the subdivision matrix can update regularly with the iteration
procedure. Finally, some examples are given to illustrate the effectiveness of the proposed method.

1. Introduction

It is well known that the subdivision method is a powerful tool in the fields of free-form
surface modeling and tensor product surfaces for a long time. Starting from an arbitrary
initial control mesh, subdivision schemes can produce a sequence of finer and finer meshes
converging to a originally described surface. If the sequence of control nets converges in a
certain sense, such procedure can be used to generate surfaces. The subdivision operations
are efficient and could be well applied to arbitrary topology polygon meshes. In addition,
there exist adequate theoretical tools for analyzing its convergence and continuity. Therefore,
the subdivision method has become a standard technique in both academic and industrial
communities.

In recent decades, there has been a tremendous progress in scheme construction [1–
3]. Since the introduction of Catmull-Clark subdivision surfaces [4] at the end of the 1970s,
many subdivision schemes have been proposed for various applications [5–8]. A unified
framework with various essential and basic refinement operations has also been constructed
in [9]. Recently, a subdivision method for triangle meshes has become an important research



2 Abstract and Applied Analysis

issue, because such meshes are well supported by software and hardware graphics systems
and can be easily derived by most other representations. It is well known that the loop
scheme originally proposed by Charles [8, 10] is a simple face-split approximation scheme
for triangle meshes. Based on the triangular splines, the scheme produces surfaces which
are always C2 continuous everywhere except at the extraordinary vertices where they are
only C1 continuity. Boundary rules produce a cubic spline curve along the boundary, which
only depends on control points on the boundary. An interior vertex with valence 6 and a
boundary vertex with valence 4 are called as a regular vertex, while the others are irregular
or extraordinary ones. The masks for the Loop scheme is shown in Figure 1. The scheme
works as follows.

(i) Vertex updating rule: for every original vertex, a new vertex is calculated by using
the suitable coefficients for 1-neighbor control points as shown in Figures 1(a), 1(c),
and 1(d).

(ii) Edge splitting rule: for every edge in the original mesh, a new vertex is calculated
by using the masks as shown in Figure 1(b).

(iii) Face splitting rule: every triangle in the original mesh produces six new vertices,
three from original vertices and the others from original edges. These six vertices
are constructed into four new triangles.

The common feature of these methods lies in their parameters which are fixed in
each step of subdivision operation, which is called as stationary subdivision. Unfortunately,
since the shape of a stationary subdivision surface is totally determined by control
meshes, it is not convenient to add further control except mesh modification. Hence, some
nonstationary subdivision schemes should be introduced; for example, the authors in [11]
extended the Doo-Sabin scheme to the nonstationary case and [12] proposed a nonstationary
butterfly interpolatory subdivision scheme. However, the previous subdivision scheme
cannot accurately represent some ordinary surfaces in engineering, such as cylinder, cone, or
other revolving surfaces. In order to find a subdivision uniform method to represent quadric
surfaces, revolve surfaces, and traditional subdivision ones, [13] proposed a method called
semistationary subdivision, which can remedy the shortage of the traditional ones well. But,
the above method can only be applied to the quadrilateral mesh and needs the further study
for the triangle mesh. So, it is an urgent issue to find a subdivisionmethod for triangle meshes
to represent quadric surface, revolving surface, and traditional subdivision surface uniformly.

On the other hand, the convergence is an important topic when studying subdivision
surfaces. Doo and Sabin [5] first performed the convergence analysis by investigating the
eigenstructure of subdivision matrices based on a discrete Fourier transformation. Ball and
Storry [14] further exploited an approach based on the matrix eigenstructure for a tangential
continuity analysis. However, their results could not guarantee that subdivision surfaces
were regular at extraordinary vertices because it did not take the properties of basis functions
into account [15]. For this, Reif [9] explored a method to deal with the continuity issue
by establishing a characteristic map, which could be used to ensure the C1 continuity
for subdivision schemes. Under the above framework, Peters and Reif [16] established a
strict theoretical analysis about both the Doo-Sabin scheme and the Catmull-Clark one,
while Umlauf [17] thoroughly examined the continuity of the Loop subdivision scheme.
The approach described in [18] is an extension of Reif’s work for subdivision schemes
without a closed parametric form. In [19], Zorin proposed another method based on Z-
polynomials when considering the C1 continuity of arbitrary subdivisions and developed a
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Figure 1:Masks for loop schemewith a = 1/8, b = 3/8, c = 1−nd, d = (1/n)(5/8−(3/8+(1/4) cos(2π/n))2),
and e = 6.

numerical algorithm for theC1 continuity verification. However, because the regular dynamic
subdivision matrix is not fixed, it is impossible to use the classic criterion for subdivision
convergence.

Motivated by the above discussion, we will investigate the subdivision method for
triangle mesh which can represent a revolving surface exactly. Firstly, a new subdivision
scheme based on Box-Splines is proposed, and the subdivision matrix is constructed.
Secondly, the characteristic spectrum of global subdivision matrix is analyzed, and the
detailed analysis for C0 and C1 continuity is given. Finally, several illustrative examples are
provided to demonstrate the effectiveness of the proposed approach.

The main contribution of this paper is summarized as follows. (1)A novel subdivision
scheme with a stronger modeling ability is proposed based on the new extended Box-Splines.
(2) The C0 and C1 continuity is strictly proved by calculating the characteristic spectrum of
the global subdivision matrix. (3) An anisotropy subdivision scheme and a special control
net pattern are constructed, and then the revolving surface is generated exactly.

2. Regular Dynamic Loop-Like Subdivision Scheme

In this section, we will introduce the regular dynamic loop-like subdivision scheme. Similar
to the loop scheme, after one step of subdivision, the number of irregular vertices is fixed. If
the mesh is further subdivided, irregular vertices will be isolated. In other words, each face
contains at most one irregular vertex. In the following, we will assume that the sufficient
subdivision steps have finished to generate the local subdivision structure just as shown
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in Figure 2. The vertex marked as 0 is an irregular vertex with valence n. Its neighbors are
separated by incident edges into n subregions, which are called as segments and marked in
counterclockwise order. In each segment, from center to outside, the control vertices are also
numbered in counterclockwise order. After k times subdivision, the vertex sequence around
the irregular vertex is denoted as

V(k) �
[
V(k)

0 ;V(k)
1 ; . . . ;V(k)

n−1
]T
, (2.1)

where V(k)
j � [v(k)

j,0 , v
(k)
j,1 , . . . , v

(k)
j,m−1]

T is the vertex subsequence in segment j.
For L-level neighbors,m = (L+1)L/2+1. In order to analyze the first order continuity,

we consider the 2-level vertex neighbors of the irregular vertex, that is,m = 4. Here, we define
v
(k)
0 � v

(k)
0,0 = v

(k)
1,0 = · · · = v

(k)
n−1,0.

Similar to the loop subdivision schemes [8], two successive vertex sequences hold the
following relationship:

V(k) = S(k)V(k−1), (2.2)

where S(k) is a 4n × 4n matrix related to the subdivision level index k. Obeying the former
segmented control vertices coding rules, the subdivisionmatrix S(k) is made up of n×nmatrix
blocks S(k)

j,j ′ which size is 4 × 4. Thus, we have

V(k)
j =

n−1∑
j ′=0

S(k)
j,j ′V

(k−1)
j ′ . (2.3)

The subdivision matrix has the following properties.

(1) The sum of elements of each row is equal to 1.

(2) The matrix is cyclic symmetry, that is,

S(k)
j � S(k)

j,0 = S(k)
j+j ′,j ′ j, j ′ ∈ Zn. (2.4)

Based on the property (2), (2.2) can be rewritten as

V(k)
j =

n−1∑
j ′=0

S(k)
j+j ′V

(k−1)
j ′ , (2.5)
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Figure 2: The subdivision stencil for continuity analysis.

where

S(k)
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 − nβ

(k)
n

)

n
β
(k)
n 0 0

b(k) b(k) 0 0

β
(k)
6 1 − 6β(k)6 β

(k)
6 β

(k)
6

a(k) b(k) 0 a(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S(k)
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 − nβ

(k)
n

)

n
β
(k)
n 0 0

0 a(k) 0 0

0 β
(k)
6 0 0

0 b(k) 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S(k)
l

=

⎡
⎢⎢⎢⎢⎢⎢⎣

(
1 − nβ

(k)
n

)

n
β
(k)
n 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, l = 2, . . . , n − 2,
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Sk
n−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 − nβ

(k)
n

)

n
β
(k)
n 0 0

0 a(k) 0 0

0 β
(k)
6 0 β

(k)
6

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.6)

Based on the C-Box-Splines [20–22], the generation function of a regular dynamic
loop-like subdivision [13] and each parameter of the above formula could be obtained as
follows:

a =
f

4f + 4f2
, b =

f + 2f2

4f + 4f2
, c = 2 + 8f3,

d =

(
10 − (3/2 + cos(2π/n))2

)

n
, βn =

d

c + nd
,

(2.7)

where the kernel function is chosen as

f(k) = cos
(
2−kα0

)
(k ∈ Z

+). (2.8)

Of course, the kernel function could be some others with the same or faster convergence rate.
It is known that the characteristic spectrum of S(k) is needed when studying the

convergence of the subdivision scheme [9]. Next, we will analyze the characteristic spectrum
of S(k) in detail.

For the block circulant matrix

S =

⎡
⎢⎢⎢⎣

S0 S1 · · · Sn−1
Sn−1 S0 · · · Sn−2
...

...
. . .

...
S1 S2 · · · S0

⎤
⎥⎥⎥⎦, (2.9)

where Sl = (sij)m×m (l = 0, 1, . . . , n − 1), we denote S � bcirc(S0,S1, . . . ,Sn−1), ωn = e2π
√−1/n,

Wij = �
−ij
n Im×m (i, j ∈ {0, 1, . . . , n − 1}), and W = (Wij)n×n for simplicity.

Let

S̃ = W−1SW, (2.10)

which is indeed a similarity transformation of matrix S.
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Denote

S̃ = diag
(
S̃0, S̃1, . . . , S̃n−1

)
, (2.11)

where S̃l = (1/n)
∑n−1

i=0 SiWil.
Then, we have the following Lemma.

Lemma 2.1. The matrices S̃ and S have the same eigenvalues.

The above lemma is easy to be verified (see [23] for details) and we omit its proof here.

Theorem 2.2. The eigenvalues of the subdivision matrix

S(k) = bcirc
(
S(k)
0 ,S(k)

1 , . . . ,S(k)
n−1

)
(2.12)

are δi,0, β
(k)
6 , a(k), and b(k) + a(k)(�i(1−δi,0)

n +�
−i(1−δi,0)
n ) − nβ

(k)
n δi,0, where i = 1, . . . , n − 1, and δi,j is

the Kronecker delta.

Proof. Let

S̃(k) = W−1S(k)W = diag
(
S̃(k)
0 , S̃(k)

1 , . . . , S̃(k)
n−1

)
. (2.13)

By (2.11), we have

S̃(k)
0 = S(k)

0 + S(k)
1 + (n − 3)S(k)

l + S(k)
n−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − nβ
(k)
n nβ

(k)
n 0 0

b(k) b(k) + 2a(k) 0 0

β
(k)
6 1 − 4β(k)n β

(k)
6 2β(k)6

a(k) 2b(k) 0 a(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S̃(k)
i = S(k)

0 +�−i
n S(k)

1 −
(
1 +�i

n +�−i
n

)
S(k)
l

+�i
nS

(k)
n−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

b(k) b(k) + a(k)(�i
n +�−i

n

)
0 0

β
(k)
6 1 − 6β(k)6 +

(
�i

n +�−i
n

)
β
(k)
6 β

(k)
6

(
1 +�i

n

)
β
(k)
6

a(k) b(k) + b(k)�−i
n 0 a(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.14)

Hence, the eigenvalues of the submatrix S̃(k)
0 are 1, b(k)−2a(k)−nβ(k)n , β(k)6 , and a(k). The

eigenvalues of the submatrix S̃(k)
i are 0, b(k) + a(k)(�i

n +�−i
n ), β(k)6 , and a(k).
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Then, we can obtain the eigenvalues of S(k) as follows:

δi,0, β
(k)
6 , a(k), b(k) + a(k)

(
�

i(1−δi,0)
n +�

−i(1−δi,0)
n

)
− nβ

(k)
n δi,0. (2.15)

3. Analysis on Convergence of the Subdivision Scheme

In this section, we mainly focus on the convergence of the subdivision case around irregular
vertices. At the regular vertices, the generated surfaces have similar properties as the C-Box-
Splines in [22], which is C2 continuity. In the following, the convergence of the subdivision
scheme will be firstly discussed, and then the continuity of the subdivision surfaces.

3.1. Convergence of the Subdivision Scheme

In this subsection, we will analyze the convergence of regular dynamic loop-like subdivision
scheme. The subdivision process can be expressed as

V(k) = S(k)V(k−1) = S(k)S(k−1)V(k−2) = · · · =
k∏
i=1

S(i)V(0). (3.1)

Let

M(k) �
k∏
i=1

S(i). (3.2)

By induction, we can conclude that the sum of each row of M(k) is equal to 1.
Define T(m) = S(m) − S, S = limm→∞S(m), and sum(m)

i =
∑4n

l=1 |(S(m) − S)i,l|, by (2.7), we
have

sum(m)
i ∈ lim

k→∞

{
2
∣∣∣β(m)

n − β
(k)
n

∣∣∣, 2
∣∣∣b(m) − b(k)

∣∣∣, 9
∣∣∣β(m)

6 − β
(k)
6

∣∣∣, 2
∣∣∣a(m) − a(k)

∣∣∣ +
∣∣∣b(m) − b(k)

∣∣∣,
∣∣∣a(m) − a(k)

∣∣∣,
∣∣∣β(m)

6 − β
(k)
6

∣∣∣,
∣∣∣b(m) − b(k)

∣∣∣, 2
∣∣∣β(m)

6 − β
(k)
6

∣∣∣
}
,

(3.3)

where i is the row number of the matrix.
When f = cos(2−kα0), we have

max
{
sum(m)

i

}
� C

1
4m

, (3.4)

where C is a constant number.

Theorem 3.1. If subdivision step k → ∞ and the kernel function f(k) converges to 1 with a
geometric series rate, then a regular dynamic loop-like subdivision scheme is convergent.
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Proof. Under an identical transformation toM(m), we get

M(m) = Sm +
m−1∑
j=1

Sm−jT(j)M(j−1) + T(m)M(m−1). (3.5)

For the k dimensional column vector x, the Smx is convergent. Next, we only need to prove
that T(m)M(m−1)x and

∑m−1
j=1 Sm−jT(j)M(j−1)x are convergent.

First of all, let ‖x‖ � max1�i�k‖xi‖, where xi is the ith component of x. Since all
elements of the matrix S(j) are nonnegative and the sum of the row element is always equal
to 1, we have

∣∣∣
(
S(j)x

)
i

∣∣∣ � ‖x‖, i = 1, . . . , k,

∥∥∥S(j)x
∥∥∥ � ‖x‖.

(3.6)

Thus, we have

∥∥∥M(m−1)x
∥∥∥ =

∥∥∥∥∥∥
m−1∏
j=1

S(j)x

∥∥∥∥∥∥
� ‖x‖. (3.7)

By (3.4), we get

∥∥∥T(m)M(m−1)x
∥∥∥ � C

1
4m

∥∥∥M(m−1)x
∥∥∥ � C1

1
4m

‖x‖, (3.8)

where C1 is a constant.
Secondly, let

ym =
m−1∑
j=1

Sm−jT(j)M(j−1)x. (3.9)

We claim that {‖y1‖, ‖y2‖, . . .} is Cauchy sequence and prove it as follows.
Form, l � 1, one has

‖ym+l − ym‖ �
m−1∑
j=1

∥∥∥Sm+l−jT(j)M(j−1)x − Sm−jT(j)M(j−1)x
∥∥∥

+
m+l−1∑
j=m

∥∥∥Sm+l−jT(j)M(j−1)x
∥∥∥.

(3.10)
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Denote v(j) = T(j)M(j−1)x, we have v(j) = v1β1+v2β2+ · · ·+v4nβ4n for some βi ∈ R, where
v1, . . . ,v4n are the eigenvectors of S. Then,

∥∥∥Sm+l−jv(j) − Sm−jv(j)
∥∥∥ =

∥∥∥λm−j
2

(
λl2 − 1

)
v2β2 + · · · + λ

m−j
n

(
λl4n − 1

)
v4nβ4n

∥∥∥

� λ
m−j
2 (4n − 1) max

2�l�4n

∥∥vlβl
∥∥.

(3.11)

Using the standard results in a numerical analysis, we get

max
2�l�4n

∥∥vlβl
∥∥ � ‖T‖

∥∥∥T−1
∥∥∥
∥∥∥v(j)

∥∥∥, (3.12)

where ‖T‖ and ‖T−1‖ are row sum norms of T and T−1, respectively. T is the transformation,
which transforms the basis {e1, . . . , e4n} of R

4n to the basis {vt1, . . . ,vt4n} of R
4n.

Then, by (3.4), (3.8), and (3.11), we have

∥∥∥Sm+l−jv(j) − Sm−jv(j)
∥∥∥ = (k − 1)C2λ

m−j
2

(
1
4

)j

‖T‖
∥∥∥T−1

∥∥∥‖x‖, (3.13)

where C2 is a constant.
Similarly, we have

∥∥∥Sm+l−jT(j)M(j−1)x
∥∥∥ � C3δ

j

1‖x‖, (3.14)

where C3 also is a constant.
By Theorem 2.2 and (2.7), one obtains

3
8

� λ2 � 5
8
. (3.15)

Substituting (2.4), (3.8), and (3.14) into (3.10), we obtain

‖ym+l − ym‖ � ‖x‖
⎧
⎨
⎩C′

2(k − 1)
m−1∑
j=1

{
λ
m−j
2

1
4j

}
+ C′

3

m+l−1∑
j=m

1
4j

⎫
⎬
⎭. (3.16)

From 4λ2 > 1, then both
∑∞

j=1(1/(4λ2)
j) and

∑∞
j=1(1/4

j) are convergent.
Then we get

lim
m→∞

‖ym+l − ym‖ = 0, (3.17)

that is to say, {‖y1‖, ‖y2‖, . . .} is a Cauchy sequence, that is,
∑m−1

j=1 Sm−jT(j)M(j−1)x is
convergent. Hence, the subdivision scheme is convergent.
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3.2. Continuity of the Subdivision Surface

3.2.1. Subdivision Matrix Analysis

Firstly, we need to prove the following lemma.

Lemma 3.2. Let

Ξ̃
(k)

=
∏

k=nt,nt−1,...,n1

[
1 − a(k) a(k)

b(k) 1 − b(k)

]
. (3.18)

Their eigenvalues are

∏
k=nt,nt−1,...,n1

(
1 − a(k) − b(k)

)
. (3.19)

Proof. Since

[
1 − a(k) a(k)

b(k) 1 − b(k)

]
= I + b(k)

[−c(k) c(k)

1 −1
]
, (3.20)

where c(k) = a(k)/b(k), and

A(k) = b(k)
[−c(k) c(k)

1 −1
]
, (3.21)

then

Ξ̃
(k)

= I +A(nt) +A(nt−1) + · · · +A(n1) +A(nt)A(nt−1)

+ · · · +A(n2)A(n1) + · · · +
∏

k=nt,nt−1,...,n1

A(k).
(3.22)

From

A(k2)A(k1) = bk2bk1
[
c(k2)

(
c(k1) + 1

) −c(k2)(c(k1) + 1
)

−(c(k1) + 1
)

c(k1) + 1

]

= −b(k1)
(
c(k1) + 1

)
A(k2),

(3.23)
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we have

Ξ̃
(k)

= I +
∑

1�k1�t

A(nk1 ) +
∑

1�k2�t
1�k1�t1
k1<k2

∏
j=nk2 ,nk1

A(j) + · · · +
∑

1�ki�t
···

1�k1�t
k1<···<ki

∏
j=nki

,...,nk1

A(j)

+ · · · +
∑

1�kt�t
···

1�k1�t
k1<···<kt

∏
j=nkt ,...,nk1

A(j)

= I +
t∑

i=1

∑
1�ki�t

···
1�k1�t

k1<···<ki−1<ki

⎛
⎝A(nki

)
∏

j=nki−1 ,...,nk1

b(j)
(
−c(j) − 1

)
⎞
⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 +
t∑

i=1

∑
1�ki�t

···
1�k1�t

k1<···<ki−1<ki

((
−a(nki

)
) ∏
j=nki−1 ,...,nk1

(−a(j) − b(j)
)) t∑

i=1

∑
1�ki�t

···
1�k1�t

k1<···<ki−1<ki

((
−a(nki

)
) ∏
j=nki−1 ,...,nk1

(−a(j) − b(j)
))

t∑
i=1

∑
1�ki�t

···
1�k1�t

k1<···<ki−1<ki

((
−b(nki

)
) ∏
j=nki−1 ,...,nk1

(−a(j) − b(j)
))

1 +
t∑

i=1

∑
1�ki�t

···
1�k1�t

k1<···<ki−1<ki

((
−b(nki

)
) ∏
j=nki−1 ,...,nk1

(−a(j) − b(j)
))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.24)

Furthermore, their eigenvalues could be obtained as follows:

λ0 = 1,

λ1 = 1 +
t∑

i=1

∑
1�ki�t···
1�k1�t

k1<···<ki−1<ki

(
−a(nki

)
) ∏
j=nki−1 ,...,nk1

(
−a(j) − b(j)

)

+
t∑

i=1

∑
1�ki�t···
1�k1�t

k1<···<ki−1<ki

(
−b(nki

)
) ∏
j=nki−1 ,...,nk1

(
−a(j) − b(j)

)

= 1 +
t∑

i=1

∑
1�ki�t···
1�k1�t

k1<···<ki−1<ki

∏
j=nki

,...,nk1

(
−a(j) − b(j)

)

=
∏

k=nt,nt−1,...,n1

(
1 − a(k) − b(k)

)
.

(3.25)

Theorem 3.3. The eigenvalues of M(k) are 1, 0,
∏k

j=1(b
(j) + a(j)(�i

n +�−i
n )),

∏k
j=1(1 − nβ

(j)
n − b(j)),

∏k
j=1β

(j)
6 , and

∏k
j=1a

(j), and the last two eigenvalues are the repeated ones.
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Proof. Since S(k) is a block circulant matrix, so isM(k). Let

M̃ = W−1MW, (3.26)

we know M̃ is a block circulant matrix, and

M̃ = bcirc

⎛
⎝

k∏
j=1

S̃(j)
0 ,

k∏
j=1

S̃(j)
1 , . . . ,

k∏
j=1

S̃(j)
n−1

⎞
⎠. (3.27)

Denote

M̃(k) � diag
(
M̃(k)

0 , M̃(k)
1 , . . . , M̃(k)

n−1
)
, (3.28)

we have

M̃(k)
i �

k∏
j=1

S̃(j)
i =

⎡
⎢⎣
M̃(k)

i,0 0

M̃(k)
i,2 M̃(k)

i,1

⎤
⎥⎦, (3.29)

and the eigenvectors of M̃(k)
i only relate to S̃(k)

i,0 , S̃
(k)
i,1 . The following two cases need to be

discussed separately.
(1) If i = 0, then

M̃(k)
0,0 =

k∏
j=1

⎡
⎣1 − nβ

(j)
n nβ

(j)
n

b(j) 1 − b(j)

⎤
⎦,

M̃(k)
0,1 =

⎡
⎢⎢⎢⎣

k∏
j=1

β
(j)
6 x

0
k∏
j=1

a(j)

⎤
⎥⎥⎥⎦.

(3.30)

By Lemma 3.2, we can get the eigenvalues of M̃(k)
0,0 :

λ0 = 1, λ1 =
k∏
j=1

(
1 − nβ

(j)
n − b(j)

)
. (3.31)

The eigenvalues of M̃(k)
0,1 are

λ2 =
k∏
j=1

β
(j)
6 , λ3 =

k∏
j=1

a(j). (3.32)



14 Abstract and Applied Analysis

(2) If i /= 0, then

M̃(k)
i,0 =

⎡
⎢⎣
0 0

x
k∏
j=1

(
b(j) + a(j)(�i

n +�−i
n

))
⎤
⎥⎦,

M̃(k)
i,1 =

⎡
⎢⎢⎢⎣

k∏
j=1

β
(j)
6 y

0
k∏
j=1

a(j)

⎤
⎥⎥⎥⎦,

(3.33)

where x, y are real numbers. Their eigenvalues are

λ0 =
k∏
j=1

(
b(j) + a(j)

(
�i

n +�−i
n

))
, λ1 = 0, λ2 =

k∏
j=1

β
(j)
6 , λ3 =

k∏
j=1

a(j), (3.34)

respectively.

Theorem 3.4. If the eigenvalues of matrixM(k) are ordered from the greatest to the least, then one has

λ0 = 1 > λ1 = λ2 > λ3 � · · · � λ4n−1 = 0, (3.35)

lim
k→∞

λi = 0, i /= 0. (3.36)

Proof. Since each row sum ofM(k) is equal to 1, then (1, 1, . . . , 1)T must be one of eigenvectors
corresponding to the eigenvalue 1.

(1)We prove the (3.35) firstly.
Let

λ1 =
k∏
j=1

(
b(j) + 2a(j) cos

2π
n

)
, λ2 =

k∏
j=1

(
b(j) + 2a(j) cos

2(n − 1)π
n

)
. (3.37)

It is easy to derive that

λ1 = λ2 =
k∏
j=1

(
b(j) + 2a(j) cos

2π
n

)
. (3.38)
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In order to prove that the absolute value of λ1 is the maximum value among all
eigenvalues except for λ0, we need to prove

|λ1| �
k∏
j=1

(
b(j) + 2a(j) cos

(
2πi
n

))
, i = 1, . . . , n − 1, (3.39)

|λ1| >
∣∣∣∣∣∣

k∏
j=1

(
1 − nβ

(j)
n − b(j)

)
∣∣∣∣∣∣
, (3.40)

and then

|λ1| �
k∏
j=1

β
(j)
6 �

k∏
j=1

a(j) � 0. (3.41)

(a) For the inequality (3.39), if n = 3, the group has eigenvalues λ1 and λ2, then the
inequality is obvious to be obtained. If n/= 3, since

cos
(
2π(n − i)

n

)
= cos

(
2πi
n

)
, (3.42)

and according to the monotonicity of the function cos(2πi/n), we have that

λ1 = λ2 =
k∏
j=1

(
b(j) + 2a(j) cos

(
2π
n

))
(3.43)

is the maximum value in the group.
(b) For the inequality (3.40), we only need to prove

∣∣∣∣b(j) + 2a(j) cos
(
2π
n

)∣∣∣∣ >
∣∣∣1 − nβ

(j)
n − b(j)

∣∣∣, (3.44)

where

nβ
(j)
n =

nd

2 + 8f3
j + nd

=
10 − (3/2 + cos(2π/n))2

2 + 8f3
j +

(
10 − (3/2 + cos(2π/n))2

) . (3.45)

When n = 3, we have

1 − nβ
(j)
n − b(j) =

16f5
j + 24f4

j − 14f2
j − 3fj

4fj
(
11 + 8f3

j

)(
1 + fj

) ,

b(j) + 2a(j) cos
(
2π
n

)
= b(j) − a(j) =

4f2
j

8fj + 8f2
j

.

(3.46)
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Then,

(
b(j) − a(j)

)
−
(
1 − nβ

(j)
n − b(j)

)
=

3fj
(
1 + 12fj − 8f3

j

)

4fj
(
11 + f3

j

)(
1 + fj

) . (3.47)

Since 1/2 < fj � 1, the above formula is positive; that is, when n = 3, inequality (3.40) holds.
When n > 3, since

10 − (3/2 + 1)2

2 + 8f3
j +

(
10 − (3/2 + 1)2

) � nβ
(j)
n � 10 − (3/2 + 0)2

2 + 8f3
j +

(
10 − (3/2 + 0)2

) , (3.48)

that is

15
23 + 32f3

j

� nβ
(j)
n � 31

39 + 32f3
j

, (3.49)

then we have

1 − nβ
(j)
n − b(j) � 1 − 15

23 + 32f3
j

−
2fj + 4f2

j

8fj + 8f2
j

=
9fj − 14f2

j + 96f4
j + 64f5

j

4fj
(
23 + 32f3

j

)(
1 + fj

) ,

b(j) + 2a(j) cos
(
2π
n

)
� b(j) + 2a(j) × 0 =

2fj + 4f2
j

8fj + 8f2
j

,

b(j) −
(
1 − nβ

(j)
n − b(j)

)
=

fj
(
7 + 30fj − 32f3

j

)

2fj
(
23 + 32f3

j

)(
1 + fj

) .

(3.50)

By 1/2 < fj � 1 again, the conclusion could be obtained naturally.
To Sum up, we have

|λ1| >
∣∣∣∣∣∣

k∏
j=1

(
1 − nβ

(j)
n − b(j)

)
∣∣∣∣∣∣
. (3.51)

(c) For the inequality (3.41), we have

λ1 =
k∏
j=1

(
b(j) + 2a(j) cos

(
2πi
n

))
�

k∏
j=1

(
b(j) − a(j)

)
. (3.52)
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Since

(
bj − aj

) − β6 =

(
2fj + 4f2

j

8fj + 8f2
j

− 2fj
8fj + 8f2

j

)
− 1
8 + 8f3

j

=
4f4

j + 3fj − 1

8
(
1 + fj

)(
1 + f3

j

) , (3.53)

and 1/2 < f � 1, we have

λ1 >
k∏
j=1

β
(j)
6 . (3.54)

From

(
bj − aj

) − aj =
4f2

j − 2fj

8fj + 8f2
j

=
2fj − 1
4 + 4fj

, (3.55)

we have

λ1 >
k∏
j=1

a(j) > 0. (3.56)

Then, the eigenvalues of M(k) hold the properties (2). That is to say, λ0 = 1, λ1 = λ2 =∏k
j=1(b

(j) + 2a(j) cos(2πi/n)), and 1 = |λ0| > |λ1| = |λ2| > |λ3| � · · · � |λ4n−1| = 0.
(2)We verify (3.36).
Since

∣∣∣∣b(j) + 2a(j) cos
(
2π
n

)∣∣∣∣ �
∣∣∣b(j) + 2a(j)

∣∣∣ = ς < 1, (3.57)

we have

lim
k→∞

∣∣∣∣∣∣
k∏
j=1

(
b(j) + 2a(j) cos

(
2πi
n

))∣∣∣∣∣∣
� lim

k→∞

k∏
j=1

ς = lim
k→∞

ςk = 0, (3.58)

and 1 = |λ0| > |λ1| = |λ2| > |λ3| � · · · � |λ4n−1| = 0; thus we have limk→∞λi = 0, i /= 0.
Now, the proof of Theorem 3.4 is completed.

3.2.2. G0 Continuity

Theorem 3.5. If the kernel function fj has the convergence rate as Theorem 3.3, then the subdivision
surface is continuous.
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Proof. Let

M(k)di = λidi, V(0) =
4n−1∑
i=0

ai ⊗ di, (3.59)

where i = 1, 2, . . . , 4n − 1, ⊗ denotes direct a product, and ai is an undetermined triple
coefficient.

Since

V(k) = M(k)V(0) = λ
(k)
0

(
a0 ⊗ d0 +

4n−1∑
i=1

(
λ
(k)
i

λ
(k)
0

)
ai ⊗ di

)
, (3.60)

where λ
(k)
0 = 1, d(k)

0 = [1, 1, . . . , 1]T , and limk→∞λi → 0 (i /= 0). By Theorems 3.3 and 3.4, we
have, when k → ∞, M(k)V(0) is convergent and ai is unique.

Let

vl =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0

· · ·
· · ·
· · ·︸︷︷︸
l−3

0 1 0 · · · 0
0 1 0 · · · 0
0 1 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

,

vt =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0

· · ·
· · ·
· · ·︸︷︷︸
t−3

0 1 0 · · · 0
0 1 0 · · · 0
0 1 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

.

(3.61)

Given any two points whose coordinates are lth, tth, component of V(k), denoted as
V(k)

l
,V(k)

t , we have

lim
k→∞

∥∥∥V(k)
l −V(k)

t

∥∥∥ =
∥∥∥vl

(
M(∞)V(0)

)
− vt

(
M(∞)V(0)

)∥∥∥

= (vl − vt)

∥∥∥∥∥
4n−1∑
i=0

λ
(∞)
i ai ⊗ di

∥∥∥∥∥

= (vl − vt)
∥∥∥λ(∞)

0 a0 ⊗ d0

∥∥∥.

(3.62)

By (3.60), we have

lim
k→∞

∥∥∥V(k)
l −V(k)

t

∥∥∥ = 0. (3.63)

That is to say that the subdivision surface is G0 continuity.
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3.2.3. G1 Continuity

Based on the above result, we analyze the continuity of loop-like subdivision surface.

Theorem 3.6. If the kernel function f(k) has the convergence rate as Theorem 3.1, then the
subdivision surface is tangent plane continuity, that is, G1 continuity.

Proof. We will verify that there exists a common tangent plane around vertex V(k)
0 so as to

ensure that the subdivision surface is G1 continuity.
Given any three points whose coordinates are lth, sth, and tth component of V(k),

denoted as V(k)
l ,V(k)

s , and V(k)
t , by Theorem 3.4, we have

lim
k→∞

(
V(k)

l
−V(k)

t

)

= (vl − vt)

(
λ0a0 ⊗ d0 + λ

(∞)
1

(
a1 ⊗ d1 + a2 ⊗ d2 +

4n−1∑
i=3

(
ai ⊗ di

λ
(∞)
i

λ
(∞)
1

)))

= (vl − vt)λ
(∞)
1 (a1 ⊗ d1 + a2 ⊗ d2).

(3.64)

Let

Γlt = lim
k→∞

V(k)
l

−V(k)
t∥∥∥V(k)

l −V(k)
t

∥∥∥
, (3.65)

we have

Γlt =
(vl − vt)(a1 ⊗ d1 + a2 ⊗ d2)
‖(vl − vt)(a1 ⊗ d1 + a2 ⊗ d2)‖ =

c1a1 + c2a2
‖c1a1 + c2a2‖ . (3.66)

Similarly, we have

Γst =
(vs − vt)(a1 ⊗ d1 + a2 ⊗ d2)
‖(vs − vt)(a1 ⊗ d1 + a2 ⊗ d2)‖ =

c3a1 + c4a2
‖c3a1 + c4a2‖ . (3.67)

Then,

lim
k→∞

N(k)
lt×st∥∥∥N(k)
lt×st

∥∥∥
=

Γlt × Γst
‖Γlt × Γst‖ =

(c1a1 + c2a2) × (c3a1 + c4a2)
‖(c1a1 + c2a2) × (c3a1 + c4a2)‖ =

a2 × a1
‖a2 × a1‖ . (3.68)

Hence, when k → ∞, the vertex around the V0 has a common normal vector. That is to say
that the subdivision surface is G1 continuity.
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 3: Visualization of characteristic maps: (a)–(d) control nets from the eigenvectors of M(k) with
valences n = 3, 5, 8, 19, and f(k) = 1 − 1/22k−1; (e)–(h) control nets with valences n = 3, 5, 8, 19, and
f(k) = cos(π/(2kn)); (i)–(p) local regions around the irregular vertex of the characteristic maps after
four subdivision steps.

3.2.4. C1 Continuity

According to [18], besides the eigenvalues of M(k) satisfy (3.35), the characteristic maps
associated with M(k) should be regular and injective for obtaining global C1 continuity.
The characteristic map is defined as the subdivision surface generated by refining an initial
mesh whose topological structure is identical with the subdivision stencil [24], just as shown
in Figure 2. If both λ1 and λ2 are real, the horizontal and longitudinal coordinates of the
ith control point of the initial control mesh come from the corresponding elements of the
eigenvectors of λ1 and λ2, and the vertical coordinate is assumed to be zero, respectively.

The regularity and injectivity of this map can be judged from the triangulation
obtained from the control points by some steps subdivision [25]. Similar to many other
studies, this paper only gives numerical evidence to verify the regularity and injectivity of the
characteristic map of the loop-like subdivision scheme. The characteristic maps with valences
n = 3–50 are verified and they all hold a good shape. The obtained results are presented in
Figure 3.

4. Experiments

In this section, we show several examples of subdivision surface generated by our schemes.
Figure 4 depicts three examples. Figures 4(a), 4(c), and 4(e) are control meshes, and Figures
4(b), 4(d), and 4(f) are subdivision surfaces. It is well known that the revolving surface is very
important in industrial application. In our schemes, it is easy to create the local revolving part.
As shown in Figure 5, a regular control mesh can be constructed for the revolving part. Set
α0 = 2π/n, a = 2, b = 2 + 4f , and c = 8 + 8f , an exact revolving surface can be obtained by
the subdivision mask as Figure 1 and the compensation mask as Figure 5(b). Certainly, the
sweep line direction of the revolving surface should be set interactively. Figure 6 depicts two
other examples with the revolving part. Figures 6(a) and 6(e) are control meshes, and Figures
6(b), 6(c), 6(d), and 6(f) are subdivision surfaces. Figures 6(b) and 6(c) show the result
surfaces after one and two subdivision step(s), respectively. The subdivision surface with
texture is shown in Figure 6(d). Both the vase in Figure 6(d) and the bolt hole in Figure 6(e)
are revolving parts. Using our scheme, the exact revolving parts can be generated easily.
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(a) (b) (c) (d) (e) (f)

Figure 4: Loop-like subdivision examples.
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Figure 5: Control net pattern and compensation mask for the revolving surface.

The results demonstrate that our technique can be an alternative solution for representing
the revolving shape exactly.

5. Conclusions

This paper has presented a regular dynamic loop-like subdivision scheme that can be
regarded as an extension of the C-Box-Splines. The scheme adopts a regular dynamic
subdivision operator, which is convergent and versatile. The obtained surface isC1 continuity
and could meet the requirement of industrial application. In contrast to the traditional Loop
subdivision method, the subdivision scheme is more flexible and has a stronger modeling
ability. Under reasonable and appropriate adjustments, the method proposed in this paper
could generate a revolving surface exactly.

In the present paper, we only consider the continuity of the isotropic schemes,
and some more general cases should be further investigated. Moreover, only numerical
discussions are presented to demonstrate the C1 continuity in this paper, and some more
sophisticated analyses are necessary for further considering.
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(a) (b) (c) (d) (e) (f)

Figure 6: Modeling examples of the revolving part.
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[21] Y. Lü, G. Wang, and X. Yang, “Uniform trigonometric polynomial B-spline curves,” Science in China.
Series F, vol. 45, no. 5, pp. 335–343, 2002.

[22] X. J. Zhao, Research on mesh surface modeling [Doctor’s thesis], Zhejiang University, 2006.
[23] C. de Boor, K. Höllig, and S. Riemenschneider, Box Splines, vol. 98 of Applied Mathematical Sciences,

Springer, New York, NY, USA, 1993.
[24] G. Li and W. Ma, “Composite

√
2 subdivision surfaces,” Computer Aided Geometric Design, vol. 24, no.

6, pp. 339–360, 2007.
[25] P. Oswald and P. Schröder, “Composite primal/dual
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