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We consider the distributed containment control of multiagent systems with multiple stationary
leaders and noisy measurements. A stochastic approximation type and consensus-like algorithm
is proposed to solve the containment control problem. We provide conditions under which all
the followers can converge both almost surely and in mean square to the stationary convex hull
spanned by the leaders. Simulation results are provided to illustrate the theoretical results.

1. Introduction

In recent years, there has been an increasing interest in the coordination control of
multiagent systems. This is partly due to broad applications of multiagent systems in
many areas including consensus, formation control, flocking, distributed sensor networks,
and attitude alignment of clusters of satellites [1]. As a critical issue for coordination
control, consensus means that the group of agents reach a state of agreement through local
communication. Up to now, a variety of consensus algorithms have been developed to
deal with measurement delays [1–3], noisy measurements [4–6], dynamic topologies [7–9],
random network topologies [10, 11], and finite-time convergence [12, 13].

Existing consensus algorithms mainly focus on leaderless coordination for a group of
agents. However, in many applications envisioned, there might exist one or even multiple
leaders in the agent network. The role of the leaders is to guide the group of agents, and the
existence of the leaders is useful to increase the coordination effectiveness for an agent group.
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In the case of single leader, the control goal is to let all the follower-agents converge to the
state of the leader, which is commonly called a leader-following consensus problem. Such
a problem has been studied extensively. Leader-following consensus with a constant leader
was addressed, respectively, in [14, 15] for a group of first-order and second-order follower
agent under dynamic topologies. A neighbor-based local controller together with a neighbor-
based state-estimation rule was proposed in [16] to track an active leader whose velocity
cannot be measured. Consensus with a time-varying reference state was studied in [17], and
further studied in [18] accounting for bounded control effort. Leader-following consensus
with time delays was reported in [19, 20]. In the presence of multiple leaders, the follower
agents are to be driven to a given target location spanned by the leaders, which is called
a containment control problem. In [21], hybrid control schemes were proposed to drive a
collection of follower agents to a target area spanned by multiple stationary/moving leaders
under fixed network topology. In [22], containment control with multiple stationary leaders
and switching communication topologies was studied by means of LaSalle’s Invariance
Principle for switched systems. Containment control with multiple stationary/dynamic
leaders was investigated in [23] for both fixed and switching topologies. The paper [24]
considered the containment control problem for multiagent systems with general linear
dynamic under fixed topology. However, it was assumed in these references concerning
containment control that each agent can obtain the accurate information from its neighbors.
This assumption is often impractical since information exchange within networks typically
involves quantization, wireless channels, and/or sensing [25]. Therefore, it is important
and meaningful to consider the containment control problem with noisy measurements. It
is worthy to note that containment control of multiagent system with noisy measurements
receives less attention.

In this paper, we are interested in the containment control problem for a group of
agents with multiple stationary leaders and noisy measurements. By employing a stochastic
approximation type and consensus-like algorithm, we show that all the follower-agents
converge both almost surely and in mean square to the convex hull spanned by the
stationary leaders as long as the communication topology contains a united spanning tree.
The convergence analysis is given with the help ofM-matrix theory and stochastic Lyapunov
function.

The following notations will be used throughout this paper. For a given matrix A, AT

denotes its transpose; ‖A‖ denotes its 2-norm; λmax(A) and λmin(A) denote its maximum
and minimum eigenvalues, respectively. A matrix A is said to be positive stable if all of
its eigenvalues have positive real parts. For a given random variable ξ, E[ξ] denotes its
mathematical expectation.

2. Preliminaries

Let G = (V,E, A) be a weighted digraph, where V = {1, . . . ,N} is the set of nodes, E ⊆ V × V
is the set of edges, and A = [aij] ∈ R

N×N is a weighted adjacency matrix with nonnegative
elements. An edge of G is denoted by (i, j), representing that the jth agent can directly receive
information from the ith agent. The element aij associated with the edge is positive, that is,
aij > 0 if and only if (j, i) ∈ E. The set of neighbors of node i is denoted by Ni = {j ∈ V |
(j, i) ∈ E}. A path in G is a sequence i0, i1, . . . , im of distinct nodes such that (ij−1, ij) ∈ E for
j = 1, . . . , m. A digraph G contains a spanning tree if there exists at least one node having a
directed path to all other nodes.
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The Laplacian matrix associated with G is defined by

lij =

⎧
⎪⎨

⎪⎩

n∑

k=1,k /= i

aik, j = i

−aij , j /= i.

(2.1)

The definition of L clearly implies that Lmust have a zero eigenvalue corresponding to
a eigenvector 1, where 1 is an all-one column vector with appropriate dimension. Moreover,
zero is a simple eigenvalue of L if and only if G contains a spanning tree [8].

In the present paper, we consider a multiagent system consisting of n follower agents
and k leader agents (just called followers and leaders for simplicity, resp.). Denote the
follower set and leader set by VF = {1, . . . , n} and VL = {n + 1, . . . , n + k}, respectively.
Then the communication topology between the n + k agents can be described by a digraph
G = (V,E(G)) with V = VF ∪ VL, and the communication topology between the n followers
can be described by a digraph G = (VF,E(G)). We say that G contains a united spanning tree
if, for any one of the n followers, there exists at least one leader that has a path to the follower.

Next, we shall recall some notations in convex analysis. A set K ⊂ R
m is said to be

convex if (1 − γ)x + γy ∈ K whenever x ∈ K,y ∈ K and 0 < γ < 1. For any set S ⊂ R
m,

the intersection of all convex sets containing S is called the convex hull of S, denoted by
co(S). The convex hull of a finite set of points x1, . . . , xn ∈ R

m is a polytope, denoted by
co{x1, . . . , xn}. For x ∈ R

m and S ⊂ R
m, define ‖x − S‖ = infy∈S‖x − y‖.

2.1. Models

For agent i, denote its state at time t by xi(t) ∈ R, where t ∈ Z
+ = {0, 1, 2, . . .}. We assume

that the k leaders are static, that is, xi(t) = xi, for all i ∈ VL. For convenience, we denote the
convex hull formed by the leaders’ states by co(VL).

Due to the existence of noise or disturbance, each follower can only receive noisy
measurements of the states of its neighbors.We denote the resultingmeasurement by follower
i of the jth agent’s state by

yij(t) = xj(t) +wij(t), i ∈ VF, j ∈ Ni, t ∈ Z
+, (2.2)

where wij(t) is the additive noise. The underlying probability space is (Ω,F, P). For each
t ∈ Z

+, the set of noises {wij(t), j ∈ Ni /=φ} is listed into a vector wt in which the position
of wij(t) depends only on (i, j) and does not change with t. Similar to [25], we introduce the
following assumption on the measurement noises.

(A1) The sequence {wt, t ∈ Z
+} satisfies that (i) E[wt|Ft−1] = 0 for t ≥ 0, where Ft denote

the σ-algebras σ(x(0),wk, k = 0, . . . , t) with F−1 = {φ,Ω}, and (ii) supt≥0E‖wt‖2 <
∞.

Definition 2.1. The followers are said to converge to the static convex hull co(VL) almost
surely (a.s.) if limt→∞‖xi(t) − co(VL)‖ = 0 a.s., for all i ∈ VF .

Definition 2.2. The followers are said to converge in mean square to the static convex hull
co(VL) if limt→∞E‖xi(t) − co(VL)‖2 = 0, for all i ∈ VF .
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Each follower updates its state by the rule

xi(t + 1) = xi(t) + a(t)
n+k∑

j=1

aij

(
yij(t) − xi(t)

)
, i ∈ VF, (2.3)

where a(t) > 0 is the step size. Here, the introduction of the step size is to attenuate the
noises, which is often used in classical stochastic approximation theory [26]. We introduce
the following assumption on the step size sequence:

(A2)
∑∞

t=0 a(t) = ∞,
∑∞

t=0 a
2(t) < ∞.

Let w(t) = (w1(t), . . . , wn(t))
T with wi(t) =

∑n+k
j=1 aijwij(t) and

B =

⎡

⎢
⎣

a1,n+1 + · · · + a1,n+k
. . .

an,n+1 + · · · + an,n+k

⎤

⎥
⎦, B̃ =

⎡

⎣
a1,n+1 · · · a1,n+k

· · · · · · · · ·
an,n+1 · · · an,n+k

⎤

⎦. (2.4)

Then (2.3) can be rewritten in the vector form

xF(t + 1) = xF(t) − a(t)(L + B)xF(t) + a(t)B̃xL + a(t)w(t), (2.5)

where L is the Laplacian matrix associated with G, xF(t) = (x1(t), . . . , xn(t))
T , xL =

(xn+1, . . . , xn+k)
T .

3. Main Results

We begin by introducing some definitions and lemmas concerning M matrix, which will be
used to obtain our main result.

Definition 3.1 (See [27]). Let Zn = {A = [aij] ∈ R
n×n|aij ≤ 0, i /= j}. Then a matrixA is called an

Mmatrix if A ∈ Zn and A is positive stable.

Lemma 3.2 (See [27]). Assuming that A ∈ Zn, A is an M matrix if and only if A is nonsingular
and A−1 is a nonnegative matrix.

Definition 3.3 (See [28]). A matrix A = [aij] ∈ R
n×n is a weakly chained diagonally dominant

(w.c.d.d.) matrix if A is diagonally dominant, that is,

|aii| ≥
n∑

i=1,j /= i

∣
∣aij

∣
∣, i = 1, 2, . . . , n,

J(A) =

⎧
⎨

⎩
i | |aii| >

n∑

i=1,j /= i

∣
∣aij

∣
∣

⎫
⎬

⎭
/=φ,

(3.1)

where φ is the empty set and for each i /∈ J(A), there is a sequence of nonzero elements of A
of the form ai,i1 , ai1,i2 , . . . , air ,j with j ∈ J(A).
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Lemma 3.4 (See [29]). Let A ∈ Zn and A be a w.c.d.d. matrix, then A is an M matrix.

For simplicity, denote thatH = L + B, where L is the Laplacian matrix associated with
G. The following lemmas are given for H.

Lemma 3.5. H is positive stable if G contains a united spanning tree.

Proof. Denote that I = {j ∈ VF |(i, j) ∈ E(G), i ∈ VL}. That is, I denotes the set of nodes whose
neighbors include one of the leaders. Then I/=φ, and, for each i ∈ VF, i /∈ I, there is a path
ji1 · · · ir iwith j ∈ I sinceG contains a united spanning tree. In other words, there is a sequence
of nonzero elements of the form hi,ir , . . . , hi1,j with j ∈ I. Noting that hii ≥

∑
j /= i |hij |, for all i ∈

VF and hii >
∑

j /= i |hij |, for all i ∈ I, we know thatH is a w.c.d.d. matrix. Invoking Lemma 3.4,
H is an M matrix by noting that H ∈ Zn; that is, H is positive stable.

Lemma 3.6. If G contains a united spanning tree, thenH−1B̃ is a stochastic matrix.

Proof. By Lemmas 3.2 and 3.5,H−1 is a nonnegative matrix. Note thatH1 = B1 = B̃1 by noting
that L1 = 0. It follows that H−1B̃1 = 1, which implies the conclusion.

We also need the following lemmas to derive our main results.

Lemma 3.7 (See [30]). Let {u(k), k = 0, 1, . . .}, {α(k), k = 0, 1, . . .} and {q(k), k = 0, 1, . . .} be real
sequence, satisfying that 0 < q(k) ≤ 1, α(k) ≥ 0, k = 0, 1, . . . ,

∑∞
k=0 q(k) = ∞,α(k)/q(k) → 0, k →

∞, and

u(k + 1) ≤ (
1 − q(k)

)
u(k) + α(k). (3.2)

Then limsupk→∞u(k) ≤ 0. In particular, if u(k) ≥ 0, k = 0, 1, . . ., then u(k) → 0 as k → ∞.

Lemma 3.8 (See [30]). Consider a sequence of nonnegative random variables {V (t)}t≥0 with
E{V (0)} < ∞. Let

E{V (t + 1) | V (t), . . . , V (1), V (0)} ≤ (1 − c1(t))V (t) + c2(t), (3.3)

where

0 ≤ c1(t) ≤ 1, c2(t) ≥ 0, ∀t,
∞∑

t=0

c2(t) < ∞,
∞∑

t=0

c1(t) = ∞,

lim
t→∞

c2(t)
c1(t)

= 0.

(3.4)

Then, V (k) almost surely converges to zero, that is,

lim
t→∞

V (t) = 0 a.s. (3.5)

Now, we can present our main results.
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Theorem 3.9. Assume that (A1) and (A2) hold. All the followers converge almost surely to co(VL)
if G contains a united spanning tree.

Proof. Let δ(t) = xF(t) −H−1B̃xL. Then from (2.5), we have

δ(t + 1) = (I − a(t)H)δ(t) + a(t)w(t). (3.6)

From Lemma 3.5 and Lyapunov theorem, there is a positive definite matrix P such that

PH +HTP = I. (3.7)

Choose a Lyapunov function

V (t) = δT (t)Pδ(t). (3.8)

From (3.6), we have

V (t + 1) = δT (t)
[
P − a(t)I + a2(t)HTPH

]
δ(t)

+ 2a(t)wT (t)P(I − a(t)H)δ(t) + a2(t)wT (t)Pw(t)

≤
[

1 − a(t)
1

λmax(P)
+ a2(t)

λmax
(
HTPH

)

λmin(P)

]

V (t)

+ 2a(t)wT (t)P(I − a(t)H)δ(t) + a2(t)wT (t)Pw(t).

(3.9)

Taking the expectation of the above, given {V (s) : s ≤ t}, yields

E{V (t + 1) | V (s) : s ≤ t} ≤
[

1 − a(t)
1

λmax(P)
+ a2(t)

λmax
(
HTPH

)

λmin(P)

]

V (t) + C1a
2(t), (3.10)

for some constant C1 > 0, where we have used the fact that E[wT(t)P(I − a(t)H)δ(t)] = 0 by
noting (A1).

By (A2), there exists a t0 > 0 such that a(t) ≤ min{λmin(P)/2λmax(P)λmax(HTPH),
λmax(P)} for all t ≥ t0. Thus, we have

E{V (t + 1) | V (s) : s ≤ t} ≤
[

1 − a(t)
1

2λmax(P)

]

V (t) + C1a
2(t), ∀t ≥ t0. (3.11)

Again by (A2), it is clear that the conditions in Lemma 3.8 hold. Therefore,

lim
t→∞

V (t) = 0 a.s. (3.12)

On the other hand, it follows from Lemma 3.6 that H−1B̃xL ∈ co(VL). This together
with (3.12) implies the conclusion.
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Figure 1: The communication topology G.

Theorem 3.10. Assume that (A1) and (A2) hold. All the followers converge in mean square to co(VL)
if G contains a united spanning tree.

Proof. Following the notations in the proof of Theorem 3.9, taking the expectation of (3.9), we
have

E[V (t + 1)] ≤
[

1 − a(t)
1

λmax(P)
+ a2(t)

λmax
(
HTPH

)

λmin(P)

]

E[V (t)] + C1a
2(t), (3.13)

for some constant C1 > 0. By a similar argument to the proof of (3.11), we can obtain that

E[V (t + 1)] ≤
[

1 − a(t)
1

2λmax(P)

]

E[V (t)] + C1a
2(t), ∀t ≥ t0. (3.14)

By applying Lemma 3.7, we have

lim
t→∞

E[V (t)] = 0. (3.15)

It follows that limt→∞E‖δ(t)‖2 = 0, that is, limt→∞E‖xF(t) −H−1B̃xL‖2 = 0 which implies the
conclusion by noting that H−1B̃xL ∈ co(VL).

Remark 3.11. In the case of single leader, by Theorems 3.9 and 3.10, it is easy to show that the
states of the followers converge both almost surely and in mean square to that of the leader if
the node representing the leader has a path to all other nodes.

4. Simulations

In this section, an example is provided to illustrate the theoretical results. Consider a
multiagent system consisting of five followers (labeled by 1, . . . , 5) and two leaders (labeled
by 6, 7), and the communication topology is given as in Figure 1. For simplicity, we assume
that G has 0-1 weights. The variance of the i.i.d zero mean Gaussian measurement noises is
σ2 = 0.01, and the step size a(k) = 1/(k+1), k ≥ 0. It is clear that G contains a united spanning
tree, and Assumptions (A1) and (A2) hold. The state trajectories of the agents are shown in
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Figure 2: The state trajectories of the agents. The solid and dotted lines denote, respectively, the trajectories
of the followers and the leaders.

Figure 2. It can be seen that the states of the followers converge to the convex hull spanned
by the leaders.

5. Conclusion

In this paper, a containment control problem for a multiagent systemwithmultiple stationary
leaders and noisy measurements is investigated. A stochastic approximation type and
consensus-like algorithm are proposed to solve the containment control problem. It is shown
that the states of the followers converge both almost surely and in mean square to the convex
hull spanned by the multiple stationary leaders as long as the communication topology
contains a united spanning tree.
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