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We present an efficient computational algorithm, namely, the enhanced multistage differential
transform method (E-MsDTM) for solving prey-predator systems. Since the differential transform
method (DTM) is based on the Taylor series, it is difficult to obtain accurate approximate
solutions in large domain. To overcome this difficulty, the multistage differential transform
method (MsDTM) has been introduced and succeeded to have reliable approximate solutions
for many problems. In MsDTM, it is the key to update an initial condition in each subdomain.
The standard MsDTM utilizes the approximate solution directly to assign the new initial value.
Because of local convergence of the Taylor series, the error is accumulated in a large domain. In
E-MsDTM, we propose the new technique to update an initial condition by using integral operator.
To demonstrate efficiency of the proposed method, several numerical tests are performed and
compared with ones obtained by other numerical methods such as MsDTM, multistage variational
iteration method (MVIM), and fourth-order Runge-Kutta method (RK4).

1. Introduction

The analytical approaches such as the differential transform method (DTM) and the homo-
topy perturbation method (HPM) have been succeeded to solve differential equations and
integral equations in many fields [1–10]. The basic concept of the DTM is based on the Taylor
series. Suppose the solution is represented by the Taylor series. DTM provides a recursive
relations for the coefficients of the Taylor series which can be solved easily. However, it is
different from the conventional high-order Taylor series method which requires a complex
symbolic computation. Even if DTM provides a promising algorithm for solving many linear
and nonlinear problems arising in various science and engineering fields, it also has some
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drawbacks. Since DTM is based on the Taylor series which gives a local convergences and
it has only a truncated approximation, it does not exhibits a good approximation in a
large domain. Recently, the multistage DTM (MsDTM) [11–16] is proposed to accelerate the
convergence of the truncated approximation in a large domain as well as to improve the
accuracy of the standard DTM. The MsDTM applies the standard DTM in each subdomain.
In MsDTM, it is a key to improve accuracy as well as convergence how to assign a new initial
condition at each subdomain. In this paper, we demonstrate that the conventional initial
updating in MsDTM accumulates an error for the nonlinear systems. In order to overcome
those difficulties, a modified version of MsDTM, which is called a enhanced MsDTM (E-
MsDTM), is presented. We apply the E-MsDTM to the two prey-predator models. One is a
simple prey-predator model [17] as follows:

d

dt
x(t) = x(t)

(
a − by(t)

)
,

d

dt
y(t) = −y(t)(c − dx(t)),

(1.1)

where x(t) and y(t) represent the populations of prey and predator such as rabbits and foxes,
respectively, at time t and a, b, c, and d are known constants. Another model is a Gauss-
type prey-predator model [18] which describes the population dynamics that incorporate
functional responses. Specially, we study the following Holling-type II (p = 1) and Holling-
type III (p = 2):

d

dt
x(t) = rx(t)

(
1 − x(t)

k

)
− mxp(t)
1 + xp(t)

y(t),

d

dt
y(t) = y(t)

(
μ

mxp(t)
1 + xp(t)

−D

)
,

(1.2)

where x(t) and y(t) are the population size for the prey and the predator, respectively; r, k, μ,
andD are the positive constants representing prey intrinsic growth rate, carrying rate of prey
to predator, and death rate of predator, respectively.

2. Description of Enhanced Multistage Differential Transform Method

Let us describe the basic definition and some properties of the standard DTM. Suppose a
function y(t) is the solution of the following equation:

d

dt
y(t) = f

(
t, y(t)

)
, x(0) = c. (2.1)

Let us define the differential transform Y (k) of y(t) at t = ti as

Y (k) =
1
k!

[
dky(t)
dtk

]

t=ti

. (2.2)
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The differential inverse transform of Y (k) is defined by

y(t) =
∞∑

k=0

Y (k)(t − ti)k. (2.3)

Suppose that y(t) =
∑∞

k=0 Y (k)t
k. Using some fundamental properties for the DTM, we have

the following recursive relation:

(k + 1)Y (k + 1) = F(k), Y (0) = c, (2.4)

where F(k) is the differential transform of f(t, y(t)). One can obtain the Y (k) by solving the
recursive relation (2.4). Then y(t) can be approximated by the finite-term Taylor series. In
other words,

y(t) ≈
n∑

k=0

Y (k)(t − ti)k ≡ sn(t). (2.5)

It is well known that the approximated error is given by

∣∣y(t) − sn(t)
∣∣ ≤ M

(n + 1)!
|t − ti|n+1, (2.6)

where |x(n+1)(t)| ≤ M. Thus, it is easy to see that, for the fixed term n, the error is getting
bigger if |t − ti| is increasing. To reduce the error, the more terms are added. But it requires
cumbersome computational work. Moreover, it is possible that the error blows up even with
many terms if the value t is outside of convergence radius of the function y(t).

To overcome difficulties arising in the standard DTM, the multistage differential
transform method is introduced. The basic idea of the MsDTM is to apply the standard DTM
to each subdomain. To describe the MsDTM we consider the equally spaced nodal points tl;
0 = t0 < t1 < · · · < tN−1 < tN = T and tl+1− tl = T/N. On lth subdomain (tl, tl+1) ≡ Dl, we define
y(t)|Dl ≡ yl(t). The differential transform Yl(k) of yl(t) at t = tl is defined by

Yl(k) =
1
k!

[
dkyl(t)
dtk

]

t=tl

. (2.7)

The differential inverse transform of Yl(k) is defined by

yl(t) =
∞∑

k=0

Yl(k)(t − tl)k. (2.8)

Similarly, yl(t) can be approximated by solving the recursive relation (2.4) on Dl. Then we
have

yl(t) ≈
n∑

k=0

Yl(k)(t − tl)k ≡ sl,n(t). (2.9)
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It is an issue to give the initial condition yl(tl) in each subdomain Dl. Since y(0) = c in (2.1)
is given by the initial condition, we have Y (0) = c. For l > 0, we approximate yl(tl) by
computing sl−1,n(tl) and assign the approximate value as the initial condition in Dl. Then
Yl(0) = sl−1,n(tl). This standardMsDTM has been successful to obtain accurate approximation
for many problems in [11–13]. However, it is easy to see that the approximate solution
obtained by the standard MsDTM may yield an increasing error due to the nonlinearity
because the DTM employs only finite term Taylor series for the given problems. For instance,
let us consider

y′(t) = y(t)m. (2.10)

Applying the DTM gives

( ∞∑

k=0

Y (k)(t − ti)k
)′

=

( ∞∑

k=0

Y (k)(t − ti)k
)m

≡
∞∑

k=0

F(k)(t − ti)k. (2.11)

The basic properties of DTM have the following recursive relation for m = 3:

(k + 1)Y (k + 1) =
k∑

s=0

[
s∑

r=0

Y (r)Y (s − r)

]

Y (k − s) = F(k). (2.12)

One can solve the above recursive relation easily to obtain the differential transforms
Y (k), k = 0, . . . , n. Then we can approximate

y(t) ≈
n∑

k=0

Y (k)(t − ti)k. (2.13)

Since the recursive relation (2.12) is derived by equating the coefficients for (t − ti)
k in (2.11),

the differential transforms Y (k) are determined by solving

(k + 1)Y (k + 1) = F(k), k = 0, 1, . . . , n. (2.14)

However, the right-hand side of (2.11) has the coefficients of (t − ti)
k, k = 0, 1, . . . , 3n so that

as many as 2n coefficients of (t − ti)
k, k = n + 1, . . . , 3n are not considered to approximate

y(t). Thus, it could have a poor approximation y(t). It is supposed to take care of all terms in
obtaining the differential transform Y (k) especially for the nonlinear problem.

In what follows we describe some modifications of MsDTM, which is called the
Enhanced MsDTM. Suppose that yl−1(t) is approximated by the standard MsDTM, that
is, yl−1(t) ≈ sl−1,n(t). Then, the solution yl(t) can be determined by solving the following
problem:

d

dt
yl(t) = f

(
t, yl(t)

)
, yl(tl) = sl−1,n(tl). (2.15)
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Applying the DTM to (2.15) gives the differential transform Yl(k). Then yl(t) is approximated
by

yl(t) ≈
n∑

k=0

Yl(k)(t − ti)k ≡ sl,n(t). (2.16)

In the standardMsDTM, yl(tl+1) ≈ sl,n(tl+1)which gives Yl+1(0). As mentioned before, it could
give inaccurate approximate solution yl+1(t). Here, taking the integral operator to (2.15), the
solution yl(t) can be represented by

yl(t) = yl(tl) +
∫ t

tl

f
(
τ, yl(τ)

)
dτ. (2.17)

Thus, we have

yl(tl+1) = yl(tl) +
∫ tl+1

tl

f
(
τ, yl(τ)

)
dτ. (2.18)

Since yl(t) ≈ sl,n(t) in (2.16), we can approximate the value of yl(tl+1) by

yl(tl+1) = yl(tl) +
∫ tl+1

tl

f(τ, sl,n(τ))dτ. (2.19)

Then, yl(tl+1) = Yl+1(0). For each subdomain Dl, repeat this process (2.19) to approximate
yl(t). Thus, the solution y(t) can be approximated by

y(t) ≈
N−1∑

l=0

sl,n(t)χ(t − tl)χ(tl+1 − t), (2.20)

where

χ(t − tl) =

{
1, t ≥ tl,

0, otherwise.
(2.21)
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3. Application

To apply the MsDTM, we consider a subdomain with uniform length T/N = h stated in the
previous section. For each subdomain (tl, tl+1) ≡ Dl, we apply the DTM to the model problem
(1.1), then the following recursive relation is obtained:

(k + 1)Xl(k + 1) = aXl(k) − b
k∑

r=0

Xl(r)Yl(k − r),

(k + 1)Yl(k + 1) = −cYl(k) + d
k∑

r=0

Yl(r)Xl(k − r).
(3.1)

In order to compare the numerical performance for the enhanced MsDTM, we demonstrate
comparative approximations with the standard MsDTM, the multistage variational iteration
method (MVIM) [17, 19, 20], and the fourth-order Runge-Kutta method (RK4). In MVIM, for
each subdomain Dl, the solutions xl(t) and yl(t) can be determined by

xl(t) = lim
n→∞

xl,n(t), yl(t) = lim
n→∞

yl,n(t), (3.2)

where

xl,n+1(t) = xl,n(t) +
∫ t

tl

λ1(τ)
(

d

dt
xl,n(τ) − axl,n(τ) + bxl,n(τ)yl,n(τ)

)
,

yl,n+1(t) = yl,n(t) +
∫ t

tl

λ2(τ)
(

d

dt
yl,n(τ) − cyl,n(τ) + dxl,n(τ)yl,n(τ)

)
.

(3.3)

Here, λ1, λ2 are general Lagrange multiplier which are determined by solving the stationary
problem. Here, the multipliers are given by [17]

λ1(τ) = − exp[a(t − τ)], λ2(τ) = − exp[c(τ − t)]. (3.4)

In order to apply DTM to the Holling-type prey-predator model (1.2) we let φ(t) be
the functional response of predator to prey as

φ(t) =
mxp(t)
1 + xp(t)

. (3.5)

For each subdomain Dl, using the basic properties of DTM to (1.2) gives the following
recursive relation:

(k + 1)Xl(k + 1) = rXl(k) − r

k

k∑

i

Xl(i)Xl(k − i) −
k∑

i

Φl(i)Xl(k − i),

(k + 1)Yl(k + 1) = μ
k∑

i

Yl(i)Φ(k − i) −DYl(k),

(3.6)
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Figure 1: Population of x(t) and y(t) by RK4 (h = 0.0001) in case 1.

Table 1: Various parameters.

Case a b c d x(0) y(0)
1 1 1 0.1 1 14 18
2 0.1 1 1 1 16 10
3 2 0.1 1 1 0.1 0.2

where for p = 1,

Φl(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
1 +Xl(k)

(mXl(k)), k = 0,

1
1 +Xl(0)

(

mXl(k) −
k∑

i=1

Xl(i)Φl(k − i)

)

, k > 0,
(3.7)

and for p = 2

Φl(k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
1 +X2

l (k)

(
mX2

l (k)
)
, k = 0,

1
1 +X2

l (0)

⎛

⎝m
k∑

i=0

Xl(i)Xl(k − i) −
k∑

j=1

j∑

i=0

Xl

(
j
)
Xl

(
j − i
)
Φl

(
k − j

)
⎞

⎠, k > 0.
(3.8)

4. Numerical Experiment and Discussion

In this section, several numerical tests are demonstrated to show the effectiveness of the E-
MsDTM. For the simple prey-predator model (1.1), the constants in three different cases are
shown in Table 1. Figure 1 shows the population x(t) and y(t) for the case 1 by using RK4
with time step h = 0.0001 in (0, 1). With a dense time step h < 0.001 all approximations are
fitted well in graph. Thus it is difficult to show the effectiveness for the proposed method,
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Figure 2: Comparison of absolute errors in case 1.
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Figure 3: Population of x(t) and y(t) by RK4 (h = 0.0001) in case 2.
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Figure 4: Comparison of absolute errors in case 2.
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E-MsDTM. In order to show the performance of each method clearly, we fix the time-
step h = 0.01 at MsDTM, MVIM, and E-MsDTM. Figure 2 shows the absolute error of the
approximations obtained by RK4 and other methods with one iteration (a) and two iterations
(b). Since the solution is stable for t > 0.2 in Figure 1, all methods give reliable approximations
for t > 0.2. However, MVIM and MsDTM give a large error compared with the result by E-
MsDTM in (0, 0.2). Moreover, E-MsDTMgives an accurate approximation in all domain (0, 1).
In case 2, all numerical results present the similar behavior shown in case 1. See Figures 3 and
4. In order to see the effectiveness of the E-MsDTM in a more complex population system,
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Figure 8: x(t) (Top) and y(t) (Bottom); nonstandard scheme (Left, h = 0.01), MsDTM (Middle, h = 0.25),
E-MsDTM (Right, h = 0.25); k = 16.9.

we consider the population model in case 3 in a large domain (0, 50). Here we used a RK4
at h = 0.0001 and all other methods at h = 0.01. As seen in Figure 5 this system exhibits a
oscillatory dynamics as well as many peaks. In Figure 6 the absolute errors are demonstrated
as the number of iteration is increasing. All approximations have large errors at peaks, but
still the E-MsDTM yields a better performance than others. In order to see the performance
associated to the number of iteration, the maximum absolute errors between RK4 and other
methods are presented in Figure 7. As the number of iteration is increasing, it is shown that
MVIM and MsDTM give similar performance. However, the accuracy of the E-MsDTM is
dramatically increasing when the number of iteration is bigger than 2.
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√
2/7 − 0.1.

For the Holling-type prey-predator model (1.2), the parameters are set by r = 1, m =
1, μ = 9 and D = 1. For the Holling-type II (p = 1), it has been known [18] that the model
(1.2) has at least one limit cycle if k > 17 and no limit cycle if k ≤ 17 and the critical point
(x∗, y∗), where (x∗)p = D/(mμ−D), y∗ = rμx∗(1−x∗/k)/D is globally asymptotically stable if
8 < k ≤ 17 and unstable if k > 17. The results obtained by the nonstandard numerical scheme
[18], MsDTM and E-MsDTM are demonstrated in Figures 8 and 9. Here, the time step h = 0.01
is used in nonstandard scheme, h = 0.25 in both MsDTM and E-MsDTM. Only one iteration
is employed in both MsDTM, and E-MsDTM. As shown in Figures 8 and 9, all results by
nonstandard scheme and E-MsDTM are good agreement. However, the numerical results by
MsDTM present a wrong dynamical behavior. For Holling-type III (p = 2), it is shown in
Figures 10 and 11 that all numerical results by nonstandard scheme and E-MsDTM show the
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2/7 + 0.1.

accurate dynamical behavior, but the result by MsDTM does not. Moreover, E-MsDTM gives
the approximate solutions with a coarse time step h = 0.125, which shows that E-MsDTM is
very effective method.

5. Conclusion

In this paper, we propose an efficient computational algorithm, namely the enhanced multi-
stage differential transformmethod for solving several prey-predator systems. The basic idea
of the MsDTM is to apply the standard DTM to each sub-domain by updating an initial con-
dition. However, it is shown that the standard initial updating gives a numerical inefficiency
for the complex nonlinear systems. In E-MsDTM, an initial condition at each sub-domain is
updated by using the integral operator which is equivalent to the system. For all illustrative
examples the E-MsDTM yields accurate and stable numerical solutions in comparison with
the ones obtained by other methods such as the standard MsDTM and MVIM. Also, the
E-MsDTM gives almost the same results at low computational cost compared with ones
obtained by RK4 and nonstandard numerical scheme. Thus, it can be concluded that
the E-MsDTM is an effective numerical tool for solving differential equations. Here, all
computations are performed by using Mathematica 8.0.
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Mathematics, vol. 88, no. 3, pp. 491–500, 2011.

[10] A. Yildirim and Y. Cherruault, “Analytical approximate solution of a SIR epidemic model with
constant vaccination strategy by homotopy perturbation method,” Kybernetes, vol. 38, no. 9, pp. 1566–
1575, 2009.
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