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1 Departamento de Matemáticas, Universidad de Jaén, Campus Las Lagunillas s/n.,
23071 Jaén, Spain

2 Department of Mathematics, Technical University, Str. C. Daicoviciu 15,
400020 Cluj-Napoca, Romania

Correspondence should be addressed to Daniel Cárdenas-Morales, cardenas@ujaen.es

Received 31 December 2011; Accepted 15 February 2012

Academic Editor: Gabriel Turinici

Copyright q 2012 Daniel Cárdenas-Morales et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We present a sort of Korovkin-type result that provides a tool to obtain asymptotic formulae for
sequences of linear positive operators.

1. Introduction

This paper deals with the approximation of continuous functions by sequences of positive
linear operators. In this setting, on studying a sequence of operators, say Ln, one usually
intends to prove firstly that the sequence defines an approximation process; that is, for each
function f of some space, Lnf converges to f , in a certain sense as n tends to infinity;
afterwards, one searches for quantitative results that estimate the degree of convergence, and
finally one measures the goodness of the estimates, mainly through inverse and saturation
results. An outstanding tool to achieve these saturation results is given by the asymptotic
formulae that provide information about the so-called optimal degree of convergence. The
most representative expression of this type was stated for the classical Bernstein operators
by Voronovskaja in [1] and reads as follows: for f ∈ C[0, 1] and x ∈ (0, 1), if f ′′(x)
exists, then

lim
n→∞

n
(
Bnf(x) − f(x)

)
=

x(1 − x)
2

f ′′(x). (1.1)

This work dwells upon this type of expressions.
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A classical key ingredient to prove an asymptotic formula for a sequence of positive
linear operators Ln is Taylor’s theorem. From it, the formula appears after some minor work
if one is able to find easy-to-use expressions for the first moments of the operators, namely,

Ln e
x
i (x) = Ln

(
(e1 − xe0)i

)
(x), i = 0, 1, 2, 4, (1.2)

(ei and exi denote the monomials ei(t) = ti and exi (t) = (t − x)i). On the contrary, if the
calculation of the moments gets complicated, then a drawback appears.

The main purpose of this paper is to present a tool that helps to overcome these
situations. The basic ideas behind the main result (Theorem 2.1 below) lies in [2, Chapter
5], the novelty here being that instead of using the Taylor formula of the function f to be
approximated, we consider the Taylor formula of f ◦ ϕ−1 for a certain function ϕ.

It is the intention of the authors that the paper offers a clear and quick procedure to
obtain asymptotic expressions for a wide variety of sequences of linear positive operators.

2. The Main Result

Let ϕ be any∞-times continuously differentiable function on [0, 1], such that ϕ(0) = 0, ϕ(1) =
1, and ϕ′(x) > 0 for x ∈ (0, 1). We denote by exϕ,i the function

exϕ,i(t) =
(
ϕ(t) − ϕ(x)

)i
, (2.1)

and Di denotes the usual ith differential operator, though we keep on using the common
notation f ′ and f ′′ for the first and second derivatives of a function f .

Although we restrict our attention to the space C[0, 1] of all continuous functions
defined on [0, 1], the following main result of the paper remains valid for any compact real
interval with the obvious modifications.

Theorem 2.1. Let Ln : C[0, 1] → C[0, 1] be a sequence of linear positive operators, and let x ∈ (0, 1)
be fixed. Let us assume that there exist a sequence of positive real numbers λn → +∞ (as n → +∞)
and two functions p, q ∈ C[0, 1], p being strictly positive on (0, 1), such that for all i ∈ {0, 1, 2, 4}

lim
n→+∞

λn
(
Lne

x
ϕ,i(x) − exϕ,i(x)

)
= p(x)D2exϕ,i(x) + q(x)D1exϕ,i(x). (2.2)

Then for each f ∈ C[0, 1], twice differentiable at the point x,

lim
n→+∞

λn
(
Lnf(x) − f(x)

)
= p(x)f ′′(x) + q(x)f ′(x). (2.3)

Remark 2.2. Notice that for i = 0, identity (2.2) becomes limn→+∞λn(Lne0(x) − 1) = 0, which
is obviously fulfilled if the operators Ln preserve the constants. This property is satisfied by
most classical sequences of linear operators (see, e.g., [3]), among them being the ones that
we study in the present paper.
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Moreover, for i = 1, 2, 4, identity (2.2) becomes, respectively,

lim
n→+∞

λnLne
x
ϕ,1(x) = p(x)ϕ′′(x) + q(x)ϕ′(x),

lim
n→+∞

λnLne
x
ϕ,2(x) = 2p(x)ϕ′(x)2,

lim
n→+∞

λnLne
x
ϕ,4(x) = 0.

(2.4)

These are, actually, the identities that we will explicitly use throughout the paper. However,
we have decided to write the hypotheses of the theorem as in (2.2) for the sake of brevity
and to put across that we can think of the result as if it were of Korovkin type, since we
can guarantee the convergence of λn(Lnf(x) − f(x)) and obtain its limit for any f ∈ C[0, 1],
whenever we have it for four test functions.

Proof. The classical Taylor theorem, applied to the function f ◦ ϕ−1, yields for t ∈ [0, 1] that

f(t) =
(
f ◦ ϕ−1

)(
ϕ(t)
)
=
(
f ◦ ϕ−1

)(
ϕ(x)

)
+D1

(
f ◦ ϕ−1

)(
ϕ(x)

)(
ϕ(t) − ϕ(x)

)

+
D2(f ◦ ϕ−1)(ϕ(x)

)

2
(
ϕ(t) − ϕ(x)

)2 + h(t − x)
(
ϕ(t) − ϕ(x)

)2
,

(2.5)

where h is a continuous function which vanishes at 0. Equivalently we can write for t ∈ [0, 1]

f(t) = f(x) +D1
(
f ◦ ϕ−1

)(
ϕ(x)

)
exϕ,1(t) +

D2(f ◦ ϕ−1)(ϕ(x)
)

2
exϕ,2(t) + hx(t)exϕ,2(t), (2.6)

where hx(t) := h(t−x). Applying the operator Ln and then evaluating at the fixed point x, we
obtain the equality

Lnf(x) = f(x)Lne
x
ϕ,0(x) +D1

(
f ◦ ϕ−1

)(
ϕ(x)

)
Lne

x
ϕ,1(x) +

D2(f ◦ ϕ−1)(ϕ(x)
)

2
Lne

x
ϕ,2(x)

+ Ln

(
hxe

x
ϕ,2

)
(x).

(2.7)

Now we subtract f(x) from both sides and multiply by λn to get

λn
(
Lnf(x) − f(x)

) − λnLn

(
hxe

x
ϕ,2

)
(x) = f(x)λn

(
Lne

x
ϕ,0(x) − 1

)

+D1
(
f ◦ ϕ−1

)(
ϕ(x)

)
λnLne

x
ϕ,1(x)

+
D2(f ◦ ϕ−1)(ϕ(x)

)

2
λnLne

x
ϕ,2(x).

(2.8)
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Taking into account the basic identities

D1
(
f ◦ ϕ−1

)(
ϕ(x)

)
=

f ′(x)
ϕ′(x)

,

D2
(
f ◦ ϕ−1

)(
ϕ(x)

)
=

1
ϕ′(x)

(
f ′′(x)ϕ′(x) − f ′(x)ϕ′′(x)

(
ϕ′(x)

)2

) (2.9)

and using (2.4), we derive that

lim
n→+∞

(
λn
(
Lnf(x) − f(x)

) − λnLn

(
hxe

x
ϕ,2

)
(x)
)
= p(x)f ′′(x) + q(x)f ′(x). (2.10)

The proof will be over once we prove that λnLn(hxe
x
ϕ,2)(x) → 0 as n → +∞.

To this purpose let ε > 0 and let θx be an open set containing x such that for t ∈ θx,
|hx(t)| < ε. Then if we define w(t) := max{0, |hx(t)| − ε}exϕ,2(t), we have that for all t ∈ [0, 1]

∣∣∣hx(t)exϕ,2(t)
∣∣∣ ≤ εexϕ,2(t) +max{0, |hx(t)| − ε}exϕ,2(t) = εexϕ,2(t) +w(t). (2.11)

On the other hand, w vanishes on θx, so there is a constant M such that for all t ∈ [0, 1],

|w(t)| ≤ Mexϕ,4(t). (2.12)

Finally, the linearity and positivity of Ln allow us to write, from (2.11) and (2.12),

∣∣∣λnLn

(
hxe

x
ϕ,2

)
(x)
∣∣∣ ≤ ελnLne

x
ϕ,2(x) + λnMLne

x
ϕ,4(x), (2.13)

from where taking limits and using again (2.4),

lim sup
n→+∞

∣∣∣λnLn

(
hxe

x
ϕ,2

)
(x)
∣∣∣ ≤ 2εp(x)ϕ′(x)2. (2.14)

This ends the proof, as p(x) and ϕ′(x) are strictly positive and ε was arbitrary.

3. Applications

The first two applications correspond to sequences of operators recently introduced in [4, 5].
They represent respective modifications of the classical Bernstein operators and the well-
known modified Meyer-König and Zeller operators (see [6]) which, instead of preserving
the linear functions, hold fixed e0 and e2. Thus they are inside this new line of work which
originated with the paper [7] and found further development in a long list of papers (see,
e.g., [8–14]).

The aforementioned preserving property usually makes it quite difficult to compute
the first moments and consequently to obtain asymptotic formulae. Here our result, applied
with λn = n and ϕ = e2, enters the scene.
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Two further applications with different values of ϕ are presented afterwards in less
detail.

3.1. Modified Bernstein Operators Which Preserve x2

This section deals with the following sequence of operators presented in [4] (we use the same
notation) as a byproduct of some interesting results, defined for f ∈ C[0, 1] and n > 1 as

Bn,0,2f(x) =
n∑

k=0

f

⎛

⎝

√
k(k − 1)
n(n − 1)

⎞

⎠
(
n
k

)
xk(1 − x)n−k. (3.1)

As pointed out in [13], this provides an example of a sequence of positive linear polynomial
operators that preserve e0 and e2 and represents an approximation process for functions f ∈
C[0, 1].

The presence of the square root in the definition makes it difficult to obtain easy-to-
handle expressions for the moments Bn,0,2e

x
i (x), i = 0, 1, 2, 4, and consequently to obtain an

asymptotic formula. We will apply our theorem to get it, though we first prove a quantitative
result missed in [4].

Proposition 3.1. Let f ∈ C[0, 1], x ∈ [0, 1], and let δ > 0. Then

∣∣Bn,0,2f(x) − f(x)
∣∣ ≤ ω

(
f, δ
)
⎛

⎝1 +
1
δ

√

2x(1 − x)
1 − (1 − x)n−1

n − 1

⎞

⎠. (3.2)

Proof. From the usual quantitative estimate in terms of ω(f, ·) stated in [15], we can write

∣∣Bn,0,2f(x) − f(x)
∣∣ ≤ ω

(
f, δ
)
(
1 +

1
δ

√
2x(x − Bn,0,2e1(x))

)
. (3.3)

Now, for n > 1, (k − 1)/(n − 1) ≤ k/n, so
√
k(k − 1)/n(n − 1) ≤ k/n and Bn,0,2e1 ≤ Bne1 = e1.

Thus

x − Bn,0,2e1(x) ≥ 0. (3.4)

On the other hand, for n > 1, (1/2)(k/n+(k−1)/(n−1)) ≥
√
k(k − 1)/n(n − 1) ≥ (k−1)/(n−1),

so

1
2

n∑

k=1

(
k

n
+
k − 1
n − 1

)(
n
k

)
xk(1 − x)n−k ≥ Bn,0,2e1(x) ≥

n∑

k=1

k − 1
n − 1

(
n
k

)
xk(1 − x)n−k, (3.5)
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and using the equalities

n∑

k=1

k

n

(
n
k

)
xk(1 − x)n−k = x,

n∑

k=1

k − 1
n − 1

(
n
k

)
xk(1 − x)n−k =

n

n − 1

n∑

k=1

(
k

n
− 1
n

)(
n
k

)
xk(1 − x)n−k =

nx − 1
n − 1

+
(1 − x)n

n − 1
,

(3.6)

we get

1 − x

2(n − 1)

(
1 − (1 − x)n−1

)
≤ x − Bn,0,2e1(x) ≤ 1 − x

n − 1

(
1 − (1 − x)n−1

)
, (3.7)

from which the result follows.

Corollary 3.2. For all f ∈ C[0, 1] and x ∈ (0, 1), whenever f ′′(x) exists,

lim
n→∞

n
(
Bn,0,2f(x) − f(x)

)
= −1 − x

2
f ′(x) +

(1 − x)x
2

f ′′(x). (3.8)

Proof. We will apply the theorem with ϕ = e2, λn = n, q(x) = −(1 − x)/2, and p(x) = (1 −
x)x/2. As the operators Bn,0,2 preserve the constants, it suffices to check that (2.4) holds true.

First computations yield

Bn,0,2e0(x) = 1,

Bn,0,2e2(x) = x2,

Bn,0,2e4(x) =
2

n(n − 1)
x2 +

4(n − 2)
n(n − 1)

x3 +
(n − 3)(n − 2)

n(n − 1)
x4,

Bn,0,2e6(x) =
4

n2(n − 1)2
x2 +

32(n − 2)

n2(n − 1)2
x3 +

38(n − 3)(n − 2)

n2(n − 1)2
x4

+
12(n − 4)(n − 3)(n − 2)

n2(n − 1)2
x5 +

(n − 5)(n − 4)(n − 3)(n − 2)

n2(n − 1)2
x6,

Bn,0,2e8(x) =
8

n3(n − 1)3
x2 +

208(n − 2)

n3(n − 1)3
x3 +

652(n − 2)(n − 3)

n3(n − 1)3
x4

+
576(n − 4)(n − 3)(n − 2)

n3(n − 1)3
x5 +

188(n − 5)(n − 4)(n − 3)(n − 2)

n3(n − 1)3
x6

+
24(n − 6)(n − 5)(n − 4) (n − 3)(n − 2)

n3(n − 1)3
x7

+
(n − 7)(n − 6)(n − 5)(n − 4)(n − 3)(n − 2)

n3(n − 1)3
x8.

(3.9)



Abstract and Applied Analysis 7

Thus for i = 1, 2, 4 the quantities Bn,0,2e
x
ϕ,i appear after some calculations using the following

identities:

exϕ,1 = exe2,1 = e2 − x2e0,

exϕ,2 = exe2,2 = e4 − 2x2e2 + x4e0,

exϕ,4 = exe2,4 = e8 − 4x2e6 + 6x4e4 − 4x6e2 + x8e0,

Bn,0,2e
x
ϕ,1(x) = 0,

Bn,0,2e
x
ϕ,2(x) =

2(1 − x)x2

(n − 1)n
(1 − 3x + 2nx),

Bn,0,2e
x
ϕ,4(x) =

4(1 − x)x2

(n − 1)3n3

(
n4(12 − 12x)x4 + n3

(
112 − 324x + 216x2

)
x3

+ n2
(
159 − 1041x + 1881x2 − 1011x3

)
x2

+ n
(
52 − 759x + 2921x2 − 4089x3 + 1887x4

)
x

+
(
2 − 102x + 876x2 − 2580x3 + 3060x4 − 1260x5

))
.

(3.10)

Finally we are in a position to apply Theorem 2.1 and then prove the corollary, since
we show below that assumptions in (2.4) are fulfilled:

lim
n→∞

nBn,0,2e
x
ϕ,1(x) = 0 = 2xq(x) + 2p(x) = q(x)ϕ′(x) + p(x)ϕ′′(x),

lim
n→∞

nBn,0,2e
x
ϕ,2(x) = 4(1 − x)x3 = 8x2p(x) = 2p(x)ϕ′(x)2,

lim
n→∞

nBn,0,2e
x
ϕ,4(x) = 0.

(3.11)

3.2. The Modified Meyer-König and Zeller Operators

For f ∈ C[0, 1], x ∈ [0, 1], and n > 1, we consider the operators defined as

Rnf(x) =
∞∑

k=0

f

⎛

⎝

√
k(k − 1)

(n + k)(n + k − 1)

⎞

⎠
(
n + k
k

)
xk(1 − x)n+1, (3.12)

for x < 1 and Rnf(1) = f(1).
They were introduced in [5] as a modification of the well-known modified Meyer-

König and Zeller operators (see [6]).
It turns to be another example of a sequence of positive linear operators that preserve

e0 and e2 and represents an approximation process for functions f ∈ C[0, 1].
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Here again, the presence of the square root in the definition makes it difficult to obtain
easy-to-handle expressions for Rne

x
i (x), i = 0, 1, 2, 4, and consequently to obtain by usual

means an asymptotic formula. With this aim we shall apply our theorem.

Corollary 3.3. For all f ∈ C[0, 1] and x ∈ (0, 1), whenever f ′′(x) exists,

lim
n→∞

n
(
Rnf(x) − f(x)

)
= − (1 − x)2

2
f ′(x) +

x(1 − x)2

2
f ′′(x). (3.13)

Proof. We will apply the theorem with ϕ = e2, λn = n, q(x) = −(1 − x)2/2 and p(x) = x(1 −
x)2/2. As the operators Rn preserve the constants, it suffices to check that (2.4) holds true.

Direct computations with the use of mathematical software (Mathematica) give

Rne0(x) = 1,

Rne2(x) = x2,

Rne4(x) =
4nx3

(2 + n)(3 + n)
+

n2(1 + n)x4

(2 + n)(3 + n)(4 + n)

+
4n3x5

(2 + n)(3 + n)(4 + n)(5 + n)
+O
(
n−2
)
,

Rne6(x) =
12n8x5

(1 + n)(2 + n)2(3 + n)2(4 + n)2(5 + n)2

+
n10(17 + n)x6

(1 + n)(2 + n)2(3 + n)2(4 + n)2(5 + n)2(6 + n)2

+
12n12x7

(1 + n)(2 + n)2(3 + n)2(4 + n)2(5 + n)2(6 + n)2(7 + n)2
+O
(
n−2
)
,

Rne8(x) =
24n19x7

(1 + n)2(2 + n)3(3 + n)3(4 + n)3(5 + n)3(6 + n)3(7 + n)3

+
n22(59 + n)x8

(1 + n)2(2 + n)3(3 + n)3(4 + n)3(5 + n)3(6 + n)3(7 + n)3(8 + n)3

+
24n25x9

(1 + n)2(2 + n)3(3 + n)3(4 + n)3(5 + n)3(6 + n)3(7 + n)3(8 + n)3(9 + n)3
+O
(
n−2
)
.

(3.14)

Now, using again (3.10)we can write

Rne
x
ϕ,1(x) = 0,

Rne
x
ϕ,2(x) =

4x3n3(1 − x)2

(2 + n)(3 + n)(4 + n)(5 + n)
+O
(
n−2
)
,
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Rne
x
ϕ,4(x) =

n25x7(24 + 59x + 24x2)

(1 + n)2(2 + n)3(3 + n)3(4 + n)3(5 + n)3(6 + n)3(7 + n)3(8 + n)3(9 + n)3

+
3n22x8

(1 + n)2(2 + n)3(3 + n)3(4 + n)3(5 + n)3(6 + n)3(7 + n)3(8 + n)3

− 4n12x7(12 + 17x + 12x2)

(1 + n)(2 + n)2(3 + n)2(4 + n)2(5 + n)2(6 + n)2(7 + n)2

+
6n3x7(4 + x + 4x2)

(2 + n)(3 + n)(4 + n)(5 + n)
+O
(
n−2
)

(3.15)

and then the following identities which prove the corollary:

lim
n→∞

nRne
x
ϕ,1(x) = 0 = 2xq(x) + 2p(x) = q(x)ϕ′(x) + p(x)ϕ′′(x),

lim
n→∞

nRne
x
ϕ,2(x) = 4x3(1 − x)2 = 8x2p(x) = 2p(x)ϕ′(x)2,

lim
n→∞

nMn,4e
x
ϕ,4(x) = 0.

(3.16)

3.3. The Modified Bernstein Operators Which Preserve a General Function τ

Let τ be any function fulfilling the same properties as the general function ϕ considered in
the paper. For f ∈ C[0, 1], x ∈ [0, 1], and n > 0, we consider the following operators defined
from the classical Bernstein operators Bn:

Bτ
nf(x) =

n∑

k=0

(
n
k

)
τ(x)k(1 − τ(x))n−k

(
f ◦ τ−1

)(k

n

)
. (3.17)

This sequence of linear operators was studied by the authors in [13]. Here we show a nice
way to obtain its asymptotic formula.

Corollary 3.4. For all f ∈ C[0, 1] and x ∈ (0, 1), whenever f ′′(x) exists,

lim
n→+∞

n
(
Bτ
nf(x) − f(x)

)
= −τ(x)(1 − τ(x))τ ′′(x)

2τ ′(x)3
f ′(x)

+
τ(x)(1 − τ(x))

2τ ′(x)2
f ′′(x).

(3.18)
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Proof. It follows the same pattern as the proof of the previous corollaries. It suffices to make
use of the following identities which one can obtain directly from the corresponding ones for
the Bernstein operators (i.e., Bne

x
i (x), i = 1, 2, 4; see, e.g., [2]):

Bτ
ne

x
τ,1(x) = 0,

Bτ
ne

x
τ,2(x) =

τ(x)(1 − τ(x))
n

,

Bτ
ne

x
τ,4(x) =

3(1 − τ(x))2τ(x)2

n2

+
τ(x)(1 − τ(x))

(
1 − 6τ(x) + 6τ(x)2

)

n3
.

(3.19)

3.4. The Modified Bernstein Operators Which Preserve xj

This section deals with the family of sequences of positive linear polynomial operators
Bn,0,j , j = 1, 2, . . ., presented in [4] and defined for f ∈ C[0, 1] and n ≥ j as

Bn,0,jf(x) =
n∑

k=0

f

⎛

⎝
(

k(k − 1) · · · (k − j + 1
)

n(n − 1) · · · (n − j + 1
)

)1/j
⎞

⎠
(
n
k

)
xk(1 − x)n−k. (3.20)

The first two elements Bn,0,1 and Bn,0,2 are, respectively, the Bernstein operators and those ones
studied in Section 3.1. The operator Bn,0,j holds fixed the functions e0 and ej .

The next corollary deals with Bn,0,3 and shows an application of Theorem 2.1 with ϕ =
e3.

Corollary 3.5. For all f ∈ C[0, 1] and x ∈ (0, 1), whenever f ′′(x) exists,

lim
n→+∞

n
(
Bn,0,3f(x) − f(x)

)
=

x(1 − x)
2

f ′′(x) − (1 − x)f ′(x). (3.21)

Proof. It follows the same pattern as Corollary 3.2 although some more cumbersome
calculations, which we have carried out with the use of Mathematica, are required. We detail
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below the identities that allow us to end the proof. We make use of the notation

(n − 3)(i) = (n − 3)(n − 4) · · · (n − i − 2),

Bn,0,3e0(x) = 1,

Bn,0,3e3(x) = x3,

Bn,0,3e6(x) =
(n − 3)(3)

n(n − 1)(n − 2)
x6 +

9(n − 3)(2)

n(n − 1)(n − 2)
x5 +

18(n − 3)
n(n − 1)(n − 2)

x4 +
6

n(n − 1)(n − 2)
x3,

Bn,0,3e9(x) =
(n − 3)(6)

n2(n − 1)2(n − 2)2
x9 +

27(n − 3)(5)

n2(n − 1)2(n − 2)2
x8 +

243(n − 3)(4)

n2(n − 1)2(n − 2)2
x7

+
862(n − 3)(3)

n2(n − 1)2(n − 2)2
x6 +

1242(n − 3)(2)

n2(n − 1)2(n − 2)2
x5 +

540(n − 3)

n2(n − 1)2(n − 2)2
x4

+
36

n2(n − 1)2(n − 2)2
x3,

Bn,0,3e12(x) =
(n − 3)(9)

n3(n − 1)3(n − 2)3
x12 +

54(n − 3)(8)

n3(n − 1)3(n − 2)3
x11 +

1107(n − 3)(7)

n3(n − 1)3(n − 2)3
x10

+
11025(n − 3)(6)

n3(n − 1)3(n − 2)3
x9 +

56808(n − 3)(5)

n3(n − 1)3(n − 2)3
x8 +

149580(n − 3)(4)

n3(n − 1)3(n − 2)3
x7

+
186876(n − 3)(3)

n3(n − 1)3(n − 2)3
x6 +

94284(n − 3)(2)

n3(n − 1)3(n − 2)3
x5 +

13608(n − 3)

n3(n − 1)3(n − 2)3
x4

+
216

n3(n − 1)3(n − 2)3
x3.

(3.22)

For i = 1, 2, 4 the quantities Bn,0,3e
x
ϕ,i = Bn,0,3e

x
e3,i

, required to apply Theorem 2.1, appear after
some calculations using the following identities:

exϕ,1 = exe3,1 = e3 − x3e0,

exϕ,2 = exe3,2 = e6 − 2x3e3 + x6e0,

exϕ,4 = exe3,4 = e12 − 4x3e9 + 6x6e6 − 4x9e3 + x12e0.

(3.23)

Finally, motivated by the well-known Voronovskaja formula for the classical Bernstein
operators and by the results in Corollaries 3.2 and 3.5, we close this section and the paper
stating the following conjecture.

Conjecture 3.6. For all f ∈ C[0, 1], x ∈ (0, 1), and j ∈ {4, 5, . . .}, whenever f ′′(x) exists,

lim
n→+∞

n
(
Bn,0,jf(x) − f(x)

)
=

x(1 − x)
2

f ′′(x) − (j − 1
) (1 − x)

2
f ′(x). (3.24)
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