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We introduce a gradient descent algorithm for bipartite ranking with general convex losses. The
implementation of this algorithm is simple, and its generalization performance is investigated.
Explicit learning rates are presented in terms of the suitable choices of the regularization parameter
and the step size. The result fills the theoretical gap in learning rates for ranking problem with
general convex losses.

1. Introduction

In this paper we consider a gradient descent algorithm for bipartite ranking generated from
Tikhonov regularization scheme with general convex losses and reproducing kernel Hilbert
spaces (RKHS).

Let X be a compact metric space and Y = {−1, 1}. In bipartite ranking problem, the
learner is given positive samples S+ = {x+

i }mi=1 and negative samples S− = {x−
i }ni=1, which are

randomly independent drawn from ρ+ and ρ−, respectively. Given training set S := (S+, S−),
the goal of bipartite ranking is to learn a real-valued ranking function f : X → R that ranks
future positive samples higher than negative ones.

The expected loss incurred by a ranking function f on a pair of instances (x+, x−) is
I{f(x+)−f(x−)≤0}, where I{t} is 1 if t is true and 0 otherwise. However, due to the nonconvexity of
I, the empirical minimization method based on I is NP-hard. Thus, we consider replacing I
by a convex upper loss function φ(f(x+)− f(x−)). Typical choices of φ include the hinge loss,
the least square loss, and the logistic loss.
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The expected convex risk is

E(f) =
∫∫

X
φ
(
f(x+) − f

(
x−))dρ+(x+)dρ−

(
x−). (1.1)

The corresponding empirical risk is

ES

(
f
)
=

1
mn

m∑

i=1

n∑

j=1

φ
(
f
(
x+
i

) − f
(
x−
j

))
. (1.2)

Let ϑ = {f ∈ F : f = arg minf∈FE(f)} be the target function set, where F is
the measurable function space. We can observe that the target function is not unique. In
particular, for the least square loss, the regression function is one element in this set.

The ranking algorithm we investigate in this paper is based on a Tikhonov
regularization scheme associated with a Mercer kernel. We usually call a symmetric and
positive semidefinite continuous function K : X × X → R a Mercer kernel. The RKHS
HK associated with the kernel K is defined (see [1]) to be the closure of the linear span
of the set of functions {Kx := K(x, ·) : x ∈ X} with the inner product 〈 · 〉K given
by 〈Kx,Kx′ 〉K = K(x, x′). The reproducing property takes the form f(x) = 〈f,Kx〉K, for
all x ∈ X, f ∈ HK. The reproducing property with the Schwartz inequality yields that
|f(x)| ≤

√
K(x, x)‖f‖HK

. Then, ‖f‖∞ ≤ κ‖f‖HK
, where κ := supx∈X

√
K(x, x).

The regularized ranking algorithm is implemented by an offline regularization scheme
[2] inHK

fz,λ = arg min
f∈HK

{
ES

(
f
)
+ λ
∥∥f
∥∥2
HK

}
, (1.3)

where λ > 0 is the regularization parameter. A data free-limit of (1.3) is

fλ = arg min
f∈HK

{
E(f) + λ

∥∥f
∥∥2
HK

}
. (1.4)

Though the offline algorithm (1.3) has been well understood in [2], it might
be practically challenging when the sample size m or n is large. The same difficulty
for classification and regression algorithms is overcome by reducing the computational
complexity through a stochastic gradient descent method. Such algorithms have been
proposed for online regression in [3, 4], online classification in [5, 6], and gradient learning in
[7, 8]. In this paper, we use the idea of gradient descent to propose an algorithm for learning
a target function in ϑ.

Since φ is convex, we know that its left derivative φ′
− is well defined and nondecreasing

on R. By taking functional derivatives in (1.3), we introduce the following algorithm for
ranking.
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Definition 1.1. The stochastic gradient descent ranking algorithm is defined for the sample S
by fS

1 = 0 and

fS
t+1 =

(
1 − ηtλ

)
fS
t − ηt

mn

m∑

i=1

n∑

j=1

φ′
−
(
fS
t

(
x+
i

) − fS
t

(
x−
j

))(
Kx+

i
−Kx−

j

)
, (1.5)

where t ∈ N and {ηt} is the sequence of step sizes.

In fact, Burges et al. [9] investigate gradient descent methods for learning ranking
functions and introducing a neural network to model the underlying ranking function.
From the idea of maximizing the generalized Wilcoxon-Mann-Whitney statistic, a ranking
algorithm using gradient approximation has been proposed in [10]. However, these
approaches are different from ours and their analysis focuses on computational complexity.
Recently, for least square loss, numerical experiments by gradient descent algorithm have
been presented in [11]. The aim of this paper is to provide generalization bounds for the
gradient descent ranking algorithm (1.5) with general convex losses. To the best of our
knowledge, there is no error analysis in this case; This is why we conduct our study in this
paper.

We mainly analyze the errors ‖fS
t − fλ‖HK

and inff∈ϑ‖fS
t − f‖HK

, which is different
from previous error analysis for ranking algorithms based on uniform convergence (e.g.,
[12–16]) and stability analysis in [2, 17, 18]. Though the convergence rates of HK norm for
classification and regression algorithms have been elegantly investigated in [19, 20], there is
no such analysis in the ranking setting. The main difference in the formulation of the ranking
problem as compared to the problems of classification and regression is that the performance
or loss in ranking is measured on pairs of examples, rather than on individual examples.
This means in particular that, unlike the empirical error in classification or regression, the
empirical error in ranking cannot be expressed as a sum of independent random variables
[17]. This makes the convergence analysis of HK norm difficult and previous techniques
invalid. Fortunately, we observe that similar difficulty for gradient learning has been well
overcome in [7, 21, 22] for gradient learning by introducing some novel techniques. In this
paper, we will develop an elaborative analysis in terms of these analysis techniques.

2. Main Result

In this section we present our main results on learning rates of algorithm (1.5) for learning
ranking functions. We assume that φ ∈ C1(R) satisfies

∣∣φ(u)
∣∣ ≤ C0(1 + |u|)q, ∣∣φ′(u)

∣∣ ≤ C0(1 + |u|)q−1, ∀u ∈ R (2.1)

for some C0 > 0 and q ≥ 1. Denote the constant

Δ∗ = 1 + 4κ2

(

sup
|u|≤1

∣∣φ′
−(u) − φ′(0)

∣∣

|u| + C0φ
′(0) +

(
8κ2φ′(0)

)q−1
)

. (2.2)
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Table 1: The values of parameters for different convex losses.

Loss function C0 q Δ∗ α

φ(t) = t2 1 2 1 + 12κ2 θmin{(1/2)(θ − 3γ), γβ}
φ(t) = log(1 + e−t) 2 1 1 + 11κ2 (γ + θ)min{θ − γ, γ − β}
φ(t) = (1 − t)+ 1 1 1 + 8κ2 θmin{(1/2)(θ − 3γ), γβ}

Theorem 2.1. Assume φ satisfies (2.1), and choose the step size as

ηt = η∗λmax{q−2,0}t−θ for some 0 < θ < 1, 0 < η∗ ≤ 1
Δ∗

. (2.3)

For 0 < γ < (1 − θ)/min{q − 1, 1}, s > 0, one takes λ = t−γ with (mn/(m + n)3/2)
s ≤ t ≤

2(mn/(m + n)3/2)
s
. Then, for any 0 < δ < 1, with confidence at least 1 − δ, one has

∥∥∥fS
t − fλ

∥∥∥
2

HK

≤ C

(
mn

(m + n)3/2

)−α
, (2.4)

where C is a constant independent ofm,n, and

α = min
{
sθ − sγ min

{
q + 1, 2q − 1

}
, 1 − sγ

(
1 + q
)}

. (2.5)

Theorem 2.1 will be proved in the next section where the constant C can be obtained
explicitly. The explicit parameters in Theorem 2.1 are described in Table 1 for some special loss
functions φ. Note that the iteration steps and iterative numbers depend on sample number
m,n. When m = O(n) and m → ∞, we have t → ∞ and ηt → 0.

From the results in Theorem 2.1, we know that the balance of samples is crucial to
reach fast learning rates. For m = O(n) and the least square loss, the approximation order is
O(m(−1/2)min{sθ−3sγ,1−3sγ}). Moreover, when sθ → 1 and sγ → 0, we have ‖fS

t − fλ‖2HK
→ 0

with the order O(m(−1/2)).
Now we present the estimates of inff∈ϑ‖fS

t − f‖HK
under some approximation

conditions.

Corollary 2.2. Assume that there is f∗ ∈ ϑ such that ‖fλ − f∗‖2HK
≤ Cβλ

β for some 0 < β < 1.
Under the condition in Theorem 2.1, for any 0 < δ < 1, with confidence at least 1 − δ, one has

inf
f∈ϑ

∥∥∥fS
t − f

∥∥∥
2

HK

≤ C̃

(
mn

(m + n)3/2

)−α̃
, (2.6)

where C̃ is a constant independent ofm,n, and

α̃ = min
{
sθ − sγ min

{
q + 1, 2q − 1

}
, 1 − sγ

(
1 + q
)
, sγβ
}
. (2.7)
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For m = O(n) and the least square loss, by setting s = 1/γ(3 + β), we can derive the
learning rateO(m(−1/γ(6+2β))min{θ−3γ,γβ}). Moreover, if β < (θ−3γ)/γ , we get the approximation
order O(m−(β)/(6+2β)).

For the least square loss, the regression function is an optimal predictor in ϑ. Then, the
bipartite ranking problem can be reduced as a regression problem. Based on the theoretical
analysis in [19, 20], we know that the approximation condition in Corollary 2.2 can be
achieved when the regression function lies in the (β + 1)/2th power of the integral operator
associated with the kernel K.

The highlight of our theoretical analysis results is to provide the estimate of the
distance between fS

t and the target function set ϑ in RKHS. This is different from the previous
result on error analysis that focuses on establishing the estimate of |E(f) − ES(f)|. Compared
with the previous theoretical studies, the approximation analysis inHK-norm is new and fills
the gap on learning rates for ranking problem with general convex losses.

We also note that the techniques of previous error estimate for ranking problemmainly
include stability analysis in [2, 17], concentration estimation based on U-statistics in [14],
and uniform convergence bounds based on covering numbers [15, 16]. Our analysis presents
a novel capacity-independent procedure to investigate the generalization performance of
ranking algorithms.

3. Proof of Main Result

We introduce a special property of E(f) + (λ/2)‖f‖2HK
. Since the proof is the same as that in

[5], we will omit it here.

Lemma 3.1. Let λ > 0. For any f ∈ HK, there holds

λ

2
∥∥f − fλ

∥∥
HK

≤
{
E(f) + λ

2
∥∥f
∥∥2
HK

}
−
{
E(fλ
)
+
λ

2
∥∥fλ
∥∥2
HK

}
. (3.1)

Denote

fλ
t =

1
mn

m∑

i=1

n∑

j=1

φ′
−
(
f
(
x+
i

) − f
(
x−
j

))(
Kx+

i
−Kx−

j

)
+ λfS

t ,

fS
t+1 = fS

t − ηtf
λ
t .

(3.2)

Now we give the one-step analysis.

Lemma 3.2. For t ≥ 0, one has

∥∥∥fS
t+1 − fλ

∥∥∥
2

HK

≤ (1 − ηtλ
)∥∥∥fS

t − fλ
∥∥∥
2

HK

+ η2
t

∥∥∥fλ
t

∥∥∥
2

HK

+ 2ηtϕ(S, t), (3.3)

where ϕ(S, t) = ES(fλ) − E(fλ) + E(fS
t ) − ES(fS

t ).
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Proof. Observe that

∥
∥
∥fS

t+1 − fλ
∥
∥
∥
2

HK

=
∥
∥
∥fS

t − fλ
∥
∥
∥
2

HK

+ η2
t

∥
∥
∥fλ

t

∥
∥
∥
2

HK

+ 2ηt
〈
fλ − fS

t , f
λ
t

〉

K
. (3.4)

Note that

〈
fλ − fS

t , f
λ
t

〉

K
=

1
mn

m∑

i=1

n∑

j=1

φ′
−
(
fS
t

(
x+
i

) − fS
t

(
x−
j

))(
fλ
(
x+
i

) − fλ
(
x−
j

)

−fS
t

(
x+
i

)
+ fS

t

(
x−
j

))
+ λ
〈
fλ − fS

t , f
S
t

〉

K

≤ ES

(
fλ
) − ES

(
fS
t

)
− λ
∥
∥∥fS

t

∥
∥∥
2

HK

+ λ
〈
fλ, f

S
t

〉

K

≤
{
ES

(
fλ
)
+
λ

2
∥∥fλ
∥∥2
HK

}
−
{
ES

(
fS
t

)
+
λ

2

∥∥∥fS
t

∥∥∥
2

HK

}
,

(3.5)

where the first and the second inequalities are derived by the convexity of φ and the Schwartz
inequality, respectively.

By Lemma 3.1, we know that

{
ES

(
fλ
)
+
λ

2
∥∥fλ
∥∥2
HK

}
−
{
ES

(
fS
t

)
+
λ

2

∥∥∥fS
t

∥∥∥
2

HK

}

≤
{
ES

(
fλ
) − E(fλ

)
+ E
(
fS
t

)
− ES

(
fS
t

)}
− λ

2

∥∥∥fS
t − fλ

∥∥∥
2

HK

.

(3.6)

Thus, the desired result follows by combining (3.5) and (3.6)with (3.4).

To deal with the sample error iteratively by applying (3.3), we need to bound the
quantity ϕ(S, t) by the theory of uniform convergence. To this end, a bound for the norm of
fS
t is required.

Definition 3.3. One says that φ′
− is locally Lipschitz at the origin if the local Lipschitz constant

M(λ) = sup

{∣∣φ′
−(u) − φ′

−(0)
∣∣

|u| : |u| ≤ 4κ2
∣∣φ′

−(0)
∣∣

λ

}

(3.7)

is finite for any λ > 0.

Now we estimate the bound of fS
t from the ideas given in [5].

Lemma 3.4. Assume that φ′
− is locally Lipschitz at the origin. If the step size ηt satisfies ηt(4κ

2M(λ)+
λ) ≤ 1 for each t, then ‖fS

t ‖HK
≤ 2κ|φ′

−(0)|/λ.
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Proof. We prove by induction. It is trivial that fS
1 = 0 satisfies the bound.

Suppose that this bound holds true for fS
t , ‖fS

t ‖HK
≤ 2κ|φ′

−(0)|/λ. Consider

fS
t+1 =

(
1 − ηtλ

)
fS
t − ηt

mn

m∑

i=1

n∑

j=1

φ′
−
(
fS
t

(
x+
i

) − fS
t

(
x−
j

))(
Kx+

i
−Kx−

j

)

=
(
1 − ηtλ

)
fS
t − ηt

mn

m∑

i=1

n∑

j=1

φ′
−
(
fS
t

(
x+
i

) − fS
t

(
x−
j

))
− φ′

−(0)

fS
t

(
x+
i

) − fS
t

(
x−
j

)

·
(
fS
t

(
x+
i

) − fS
t

(
x−
j

))(
Kx+

i
−Kx−

j

)
− ηt
mn

m∑

i=1

n∑

j=1

φ′
−(0)
(
Kx+

i
−Kx−

j

)
.

(3.8)

Let Lijf = 〈f,Kx+
i
−Kx−

j
〉K(Kx+

i
−Kx−

j
). Since

0 ≤ 〈Lijf, f
〉
K
=
∣∣∣
〈
f,Kx+

i
−Kx−

j

〉

K

∣∣∣
2
≤ 4κ2∥∥f

∥∥2
HK

, (3.9)

we have ‖Lij‖ ≤ 4κ2.
Meanwhile, (φ′

−f
S
t (x

+
i ) − fS

t (x
−
j ) − φ′

−(0)/f
S
t (x

+
i ) − fS

t (x
−
j ) ≤ M(λ)). Then,

ηt
mn

m∑

i=1

n∑

j=1

φ′
−
(
fS
t

(
x+
i

) − fS
t

(
x−
j

))
− φ′

−(0)

fS
t

(
x+
i

) − fS
t

(
x−
j

) Lij (3.10)

is a positive linear operator on HK and its norm is bounded by 4κ2M(λ).
Since ηt(4κ2M(λ) + λ) ≤ 1, the operator

A :=
(
1 − ηtλ

)
I − ηt

mn

m∑

i=1

n∑

j=1

φ′
−
(
fS
t

(
x+
i

) − fS
t

(
x−
j

))
− φ′

−(0)

fS
t

(
x+
i

) − fS
t

(
x−
j

) Lij (3.11)

on HK is positive and A ≤ (1 − ηtλ)I.
Thus,

∥∥∥fS
t+1

∥∥∥
HK

≤ (1 − ηtλ
)∥∥∥fS

t

∥∥∥
HK

+
ηt
mn

m∑

i=1

n∑

j=1

∣∣φ′
−(0)
∣∣
∥∥∥Kx+

i
−Kx−

j

∥∥∥
HK

=
2κ
∣∣φ′

−(0)
∣∣

λ
.

(3.12)

This proves the lemma.

For r > 0, denote Fr = {f ∈ HK : ‖f‖HK
≤ r}. Meanwhile, denote Lr =

max{|φ′
−(2κr)|, |φ′

−(−2κr)|} and Mr = max{|φ(2κr)|, |φ(−2κr)|}.
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Based on analysis techniques in [21, 23], we derive the capacity-independent bounds
for W(S, r) := supf∈Fr

|ES(f) − E(f)|.

Lemma 3.5. For every r > 0 and ε > 0, one has

ProbS{|W(S, r) − EW(S, r)| > ε} ≤ exp

{

− 2m2n2ε2

(m + n)3M2
r

}

,

EW(S, r) ≤ (4Lrκr + 2φ(0)
)
√
m +

√
n√

mn
.

(3.13)

Proof. Because of the feature of S, four cases of samples change should be taken into account
to use McDiarmid’s inequality. Denote by Sk the sample coinciding with S except for x+

k (or
x−
k) replaced by x̃+

k (or x̃−
k). It is easy to verify that

|W(S, r) −W(Sk, r)| =
∣∣∣∣∣
sup
f∈Fr

∣∣ES

(
f
) − E(f)∣∣ − sup

f∈Fr

∣∣ESk

(
f
) − E(f)∣∣

∣∣∣∣∣

≤ sup
f∈Fr

∣∣ES

(
f
) − ESk

(
f
)∣∣ ≤ m + n

mn
Mr.

(3.14)

Based on MicDiarmid’s inequality in [24], we can derive the first result in Lemma 3.5. To
derive the second result, we denote ξ(x+, u−) = φ(f(x+)−f(u−)). Then, E(f) = Ex+Ex−ξ(x+, x−)
and ES(f) = 1/mn

∑m
i=1
∑n

j=1 ξ(x
+
i , x

−
j ). Observe that

W(S, r) ≤ sup
f∈Fr

∣∣∣∣∣∣
E(f) − 1

n

n∑

j=1

Ex+ξ
(
x+, x−

j

)
∣∣∣∣∣∣
+ sup

f∈Fr

∣∣∣∣∣∣

1
n

n∑

j=1

Ex+ξ
(
x+, x−

j

)
− ES

(
f
)
∣∣∣∣∣∣

≤ Ex+sup
f∈Fr

∣∣∣∣∣∣
Ex−ξ
(
x+, x−) − 1

n

n∑

j=1

ξ
(
x+, x−

j

)
∣∣∣∣∣∣

+
1
n

n∑

j=1

sup
f∈Fr

sup
x−

∣∣∣∣∣
Ex+ξ
(
x+, x−) − 1

m

m∑

i=1

ξ
(
x+
i , x

−)
∣∣∣∣∣

= W1 +W2.

(3.15)

Denote Gx+ = {h(x−) = f(x+) − f(x−) : f ∈ F}. Then,

EW1 = ExE sup
h∈Gx+

∣∣∣∣∣∣
Ex−φ
(
h
(
x−)) − 1

n

n∑

j=1

φ
(
h
(
x−
j

))
∣∣∣∣∣∣
≤ 2sup

x+
E sup
h∈Gx+

∣∣∣∣∣∣

1
n

n∑

j=1

εjφ
(
h
(
x−
j

))
∣∣∣∣∣∣
. (3.16)
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Since φ(h(x−
j )) − φ(0) ≤ Lr(h(x−

j ) − 0), we have

EW1 ≤ 2Lr sup
x+

E sup
h∈Gx+

∣
∣
∣
∣
∣
∣

1
n

n∑

j=1

εjh
(
x−
j

)
∣
∣
∣
∣
∣
∣
+
2φ(0)
n

E

∣
∣
∣
∣
∣
∣

n∑

j=1

εj

∣
∣
∣
∣
∣
∣

≤ 4Lrκr

n
+
2φ(0)
n

E

∣
∣
∣
∣
∣
∣

n∑

j=1

εj

∣
∣
∣
∣
∣
∣

≤ 4Lrκr + 2φ(0)
n

⎛

⎜
⎝E

∣
∣
∣
∣
∣
∣

n∑

j=1

εj

∣
∣
∣
∣
∣
∣

2
⎞

⎟
⎠

1/2

≤ 4Lrκr + 2φ(0)
n

⎛

⎝E
n∑

j,j ′=1

εjεj ′

⎞

⎠

1/2

=
4Lrκr + 2φ(0)√

n
.

(3.17)

With the same fashion, we can also derive

EW2 ≤
4Lrκr + 2φ(0)√

m
. (3.18)

Thus, the second desired result follows by combining (3.17) and (3.18).

Now we can derive the estimate of ϕ(S, t).

Lemma 3.6. If ηt satisfies (1) for each t and r = 2κ|φ′
−(0)|/λ +

√
2φ(0)/λ, then with confidence at

least 1 − δ one has

ϕ(S, t) ≤ Bλ :=

⎛

⎝4Lrκr + 2φ(0) +Mr

√

2 log
(
2
δ

)
⎞

⎠ (m + n)3/2

mn
. (3.19)

Proof. By Lemma 3.5, we have, with confidence at least 1 − δ,

W(S, r) ≤ (4Lrκr + 2φ(0)
)
√
m +

√
n√

mn
+
(m + n)3/2Mr

2mn

√

2 log
(
2
δ

)
. (3.20)

By taking f = 0 in the definition of fλ, we see that

λ

2
∥∥fλ
∥∥2
HK

≤ E(0) + 0 ≤ φ(0). (3.21)

Then, for any λ > 0, we have ‖fλ‖HK
≤ √2φ(0)/λ. Thus, fS

t , fλ ∈ Fr for r = 2κ|φ′
−(0)|/λ +

√
2φ(0)/λ. So, ϕ(S, t) ≤ 2W(S, r) for each t. This completes the proof.

We are in a position to give bounds for the sample error. We need the following
elementary inequalities that can be found in [3, 5].
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Lemma 3.7. (1) For α ∈ (0, 1] and θ ∈ [0, 1],

t∑

i=1

1
iθ

t∏

j=i+1

(

1 − α

jθ

)

≤ 3
α
. (3.22)

(2) Let v ∈ (0, 1] and θ ∈ (0, 1]. Then

T−1∑

t=1

1
t2θ

exp

⎧
⎨

⎩
−v

T∑

j=t+1

j−θ

⎫
⎬

⎭
≤

⎧
⎪⎪⎨

⎪⎪⎩

18
vTθ

+
9T1−θ

(1 − θ)21−θ
exp

{

−v
(
1 − 2θ−1

)

1 − θ
(T + 1)1−θ

}

if θ < 1,

8
1 − v

(T + 1)−v if θ = 1.

(3.23)

(3) For any t < T and θ ∈ (0, 1], there holds

T∑

j=t+1

j−θ ≤
⎧
⎨

⎩

1
1 − θ

[
(T + 1)1−θ − (t + 1)1−θ

]
if θ < 1,

log(T + 1) − log(t + 1) if θ = 1.
(3.24)

Proposition 3.8. Let ηt = η1t
−θ for some θ ∈ [0, 1], and let η1 satisfy η1(4M(λ) + λ) ≤ 1. Set r and

Bλ as in Lemma 3.6. Denote B̃λ = 2κLr + κ|φ′
−(0)|. Then, with confidence at least 1 − δ, the following

bound holds for t ≥ 1: when θ < 1,

∥∥∥fS
t − fλ

∥∥∥
2

HK

≤ ∥∥fλ
∥∥2
HK

exp
{
− η1λ

1 − θ

(
t1−θ − 1

)}
+
18B̃2

λη1

λtθ

+
2B̃2

λ
η2
1t

1−θ

(1 − θ)21−θ
exp

{

−η1λ
(
1 − 2θ−1

)

1 − θ
(t + 1)1−θ

}

+
6Bλ

λ
,

(3.25)

when θ = 1,

∥∥∥fS
t − fλ

∥∥∥
2

HK

≤ ∥∥fλ
∥∥2
HK

t−η1λ +
8B̃2

λ
η2
1

1 − η1λ
(t + 1)−η1λ +

6Bλ

λ
. (3.26)

Proof. Since ‖fS
t ‖HK

≤ 2κ|φ′
−(0)|/λ, we have |fS

t (x
+
i ) − fS

t (x
−
j )| ≤ 2κ‖fS

t ‖HK
≤ 2κr. From the

definition of fλ
t , we know that ‖fλ

t ‖HK
≤ 2κLr + κ|φ′

−(0)| = B̃λ. Thus, when ϕ(S, t) ≤ Bλ, we
have from Lemma 3.2

∥∥∥fS
t+1 − fλ

∥∥∥
2

HK

≤ (1 − ηtλ
)∥∥∥fS

t − fλ
∥∥∥
2

HK

+ η2
t B̃

2
λ + 2ηtBλ. (3.27)

Applying this relation iteratively, we have

∥∥∥fS
t − fλ

∥∥∥
2

HK

≤
t−1∏

i=1

(
1 − ηiλ

)∥∥fλ
∥∥2
HK

+
t−1∑

i=1

t−1∏

j=i+1

(
1 − ηiλ

)(
η2
i B̃

2
λ + 2ηiBλ

)
. (3.28)
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Since ηi = η1i
−θ, by Lemma 3.7(2), we have for θ < 1

t−1∑

i=1

t−1∏

j=i+1

(
1 − ηiλ

)
η2
i ≤ η2

1

t−1∑

i=1

1
2θ

exp

⎧
⎨

⎩
−η1λ

t−1∑

j=i+1

j−θ

⎫
⎬

⎭

≤ 18η1
λt

+
9η2

1t
1−θ

(1 − θ)21−θ
exp

{

−η1λ
(
1 − 2θ−1

)

1 − θ
(t + 1)1−θ

} (3.29)

and for θ = 1

t−1∑

i=1

t−1∏

j=i+1

(
1 − ηiλ

)
η2
i ≤

8η2
1

1 − η1λ
(t + 1)−η1λ. (3.30)

Lemma 3.7(1) yields

t−1∑

i=1

t−1∏

j=i+1

(
1 − ηiλ

)
ηi ≤ η1

t−1∑

i=1

1
iθ

t−1∏

j=i+1

(

1 − η1λ

jθ

)

≤ 3
λ
. (3.31)

By Lemma 3.7(3), we also have for θ < 1

t−1∑

i=1

(
1 − ηiλ

) ≤ exp

{

−
t−1∑

i=1

ηiλ

}

≤ exp
{

η1λ

1 − θ

(
1 − t1−θ

)}
(3.32)

and for θ = 1

t−1∑

i=1

(
1 − ηiλ

) ≤ t−η1λ. (3.33)

Combining the above estimations with Lemma 3.6, we derive the desired results.

Now we present the proof of Theorem 2.1.

Proof of Theorem 2.1. First we derive explicit expressions for the quantities in Proposition 3.8.
Since λ = t−γ , we have r ≤ C3t

γ , where C3 = 2κ|φ′
−(0)| +

√
2φ(0). By (2.1), we find that

Lr ≤ C0(1 + 2κr)q−1 ≤ C0(1 + 2κ)q−1Cq−1
3 t(q−1)γ ,

Mr ≤ C0(1 + 2κ)qCq

3t
qγ .

(3.34)
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Then,

Bλ ≤ C4

√

log
(
2
δ

)
tqγ

(m + n)3/2

mn
, B̃λ ≤ C5t

(q−1)γ , (3.35)

where C4 = 4C0κ(1+ 2κ)q−1Cq−1
3 +C0(1+ 2κ)qCq

3 + 2φ(0) and C5 = 2κC0(1+ 2κ)q−1Cq−1
3 + 2φ(0).

Next, we bound M(λ). When 1 ≤ |u| ≤ 4κ2|φ′
−(0)|/λ, we have

∣
∣φ′

−(u) − φ′
−(0)
∣
∣

|u| ≤ ∣∣φ′
−(0)
∣
∣ + 2q−1C0

(
4κ2φ′

−(0)
)q−1

λ2−q. (3.36)

Hence,

M(λ) ≤
(

sup
|u|≤1

∣∣φ′
−(u) − φ′

−(0)
∣∣

|u| +
∣∣φ′

−(0)
∣∣ + 2q−1C0

(
4κ2φ′

−(0)
)q−1
)

λmin{2−q,0}. (3.37)

It follows that the condition η1(4κ2M(λ)+λ) ≤ 1 in Proposition 3.8 holds true when ηt = η1t
−θ

and η1 = η∗λmax{q−2,0}. Based on Proposition 3.8 and (mn/m + n3/2)s ≤ t ≤ 2(mn/m + n3/2)s,
we have, with confidence at least 1 − δ,

∥∥∥fS
t − fλ

∥∥∥
2

HK

≤
⎛

⎝c̃1
∥∥fλ
∥∥2
HK

exp

⎧
⎨

⎩
η∗

1 − θ
+

c̃2η
2
∗

(1 − θ)21−θ

(
mn

(m + n)3/2

)s(1−θ−2(q−1)γ)⎫⎬

⎭

⎞

⎠

× exp

{

−η∗
(
1 − 2θ−1

)

1 − θ
t1−θ−γ max{q−1,1}

}

+ c̃3

(
mn

(m + n)3/2

)sγ(1+q)−1

+ c̃4η∗

(
mn

(m + n)3/2

)sγ min{q+1,2q−1}−sθ
,

(3.38)

where c̃1, c̃2, c̃3, and c̃4 are constants independent ofm,n,and t.
Thus, when 1−θ− γ max{q−1, 1} > 0, we can derive the desired result in Theorem 2.1.
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