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The purpose of this paper is to study solvability of the second-order nonlinear neutral delay
difference equation A(a(n,Yay,, -, Ya, ) AWYn + bunynr)) + f(0,Yfr-- - Yf,) = Cn, Y0 > ng. By
making use of the Rothe fixed point theorem, Leray-Schauder nonlinear alternative theorem,
Krasnoselskill fixed point theorem, and some new techniques, we obtain some sufficient conditions
which ensure the existence of uncountably many bounded positive solutions for the above
equation. Five nontrivial examples are given to illustrate that the results presented in this paper
are more effective than the existing ones in the literature.

1. Introduction

It is well known that the oscillation, nonoscillation, asymptotic behavior, and existence of
solutions for second-order difference equations with delays have been widely studied in
many papers over the last 20 years, see, for example, [1-9] and the references cited therein.

Recently, Cheng [5] considered the second-order neutral delay linear difference
equation with positive and negative coefficients

A? (yn + Pyn—m) + PulYn-k — GnYn-1 = 0, Vn>ng (11)

and investigated the existence of a nonoscillatory solution of (1.1) under the condition p # -1
by using the Banach fixed point theorem. M. Migda and J. Migda [9] and Luo and Bainov [8]
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discussed the asymptotic behaviors of nonoscillatory solutions for the second-order neutral
difference equation with maxima

A (Yn + PrYnk) +qumax{ys :n—1<s<n} =0, Vn>1 (1.2)

and the second-order neutral difference equation
A (Y +pYni) + f(n,ys) =0, VYn>1. (1.3)

Cheng and Chu [2] got sufficient and necessary conditions of the oscillatory solutions for the
second-order difference equation

A(rn1AYua) +payy =0, Yn>1. (1.4)

Li and Yeh [6] established some oscillation criteria of the second-order delay difference
equation

A(an-1A(Yn1 + Pro1Yn-i-0)) + Gnf (Yn-r) =0, Vn>1. (1.5)

Using the Leray-Schauder nonlinear alternative theorem, Agarwal et al. [1] studied the
existence of nonoscillatory solutions for the discrete equation

A(anA(Yn +PYn—r)) + F(n+1,yp1-6) =0, Vn>1 (1.6)

under the condition [p|#1. Very recently, Liu et al. [7] utilized the Banach contraction
principle to establish the global existence and multiplicity of bounded nonoscillatory
solutions for the second-order nonlinear neutral delay difference equation

A(anA(Yn +bYnr)) + f (M, Yn-dys Yn-dons - - - » Yn-dsn) = Cn, Y1 > 1g. (1.7)

Motivated by the results in [1-9], in this paper, we discuss the solvability of the second-
order nonlinear neutral delay difference equation

A(a(, Yays - s Yar ) A(Yn +baYnrz)) + f(M,Yfi - Yfin) =Cn, Yn2mg,  (1.8)

where 7,1,k € N, ny € Ny, {bn}neNm U{C‘ﬂ}neN,,O CR,a e C(N,xR",R\{0}), f € C(N,,, xRK,R),
U;:l {adn}neN < Z/ U?:l{fin}nENy,U ¢ Z and

no

lim ay, = nhf;ofj" =+oo0, (d,j) € Jrx Jk (1.9)

n—oo

It is clear that (1.1)—(1.7) are special cases of (1.8). By utilizing the Rothe fixed point theorem,
Leray-Schauder nonlinear alternative theorem, Krasnoselskill fixed point theorem, and a few
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new techniques, we prove the existence of uncountably many bounded positive solutions of
(1.8). Five examples are constructed to illuminate our results which extend essentially the
corresponding results in [1, 7].

2. Preliminaries

Throughout this paper, we assume that A is the forward difference operator defined by Ay, =
Yn+1 — Yn, R = (=00, +00), R* = [0, +o0), Z, N and Ny stand for the sets of all integers, positive
integers, and nonnegative integers, respectively,

p =min{ny—7,inf{ag, : d € J,,n € Ny },inf{ fi : j € Ji,n € Ny }},
Zg ={n:neZ withn > p}, N,, = {n:n €Ny with n > ny}, (2.1)
Ji={1,...,1} forle{rk}.

l;" denotes the Banach space of all bounded sequences y = {yn} ¢z, with the norm

[yl = sup|yn| for y = {yn},e;, €15 (2.2)

TlEZﬂ

For any M > N > 0, put

{
{
(2.3)
BM,N) = {y = {ynhes, €17 : v - M| < N},
{

Y = {Yn)pez, €15 N Sy < M,¥n € 2.

It is easy to see that V(IN) is a closed convex subset of l;", U (M) is a bounded open subset of
V(N) and B(M, N) is a bounded open convex subset of ZZ" and A(N, M) is a bounded closed
and convex subset of l;°.

By a solution of (1.8), we mean a sequence {Ya},cz, € l;" with a positive integer T >
no + T + |B| such that (1.8) is satisfied foralln > T.

The following Lemmas play important roles in this paper.

Lemma 2.1 (Discrete Arzela-Ascoli’s Theorem [3]). A bounded, uniformly Cauchy subset Y of
l;" is relatively compact.

Lemma 2.2 (Rothe Fixed Point Theorem [10]). Let D be a bounded convex open subset of a Banach
space E and A : D — E be a continuous, condensing mapping, and A(0D) C D. Then A has a fixed
point in D.
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Lemma 2.3 (Leray-Schauder Nonlinear Alternative Theorem [1]). Let U be an open subset of a
closed convex set K in a Banach space E with p* € U. Let f : U — K be a continuous, condensing
mapping with f(U) bounded. Then either

(a) f has a fixed point in U, or

(b) there exist an x € OU and a X € (0,1) such that x = (1 - A)p* + Afx.

Lemma 2.4 (Krasnoselskill Fixed Point Theorem [5]). Let Y be a nonempty bounded closed
convex subset of a Banach space X and f, g be mappings from 'Y into X such that fx + gy € Y for
every pair x,y € Y. If f is a contraction mapping and g is completely continuous, then the equation
fx + gx = x has at least one solution in'Y .

3. Main Results

Now we use the Rothe fixed point theorem to show the existence and multiplicity of bounded
positive solutions of (1.8).

Theorem 3.1. Assume that there exist two constants N and M with M > N > 0 and two positive
sequences {an} ey, and {pu}uen, satisfying

la(n,ui, uy,...,u)| > a, V(n,ug) €Ny x[N,M], de],;

3.1)
|f(nur,up, ..., u)| <pu, Y(m,uj) €Ny x [N,M], j€Ji;
[ee] 1 [ee]
Z —Z max{p;,|ci|} < +oo; (3.2)
s=ng as i=s
b, =1 eventually. (3.3)

Then (1.8) has uncountably many bounded positive solutions in B(M, N).

Proof. Let L € (M — N, M + N). First of all, we show that there exists a mapping Sy :
B(M,N) — l;" with 5. (6B(M, N)) € B(M, N) such that S has a fixed point y = {yn} ez, €

B(M, N), which is also a bounded positive solution of (1.8).
It follows from (3.2) and (3.3) that there exists T > max{1,n9 + 7 + ||} satisfying
by=1, Vn2>T; (3.4)

> X(pi+lal) < 3min(M+N-LN-M+L). (3.5)

s=T 'S i=s
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Define a mapping Sy : B(M, N) — ZE" as follows:

0 n+2lt-1 1

(SLy)n: L_Z Z )Z (l Yfiir-- ’yfki)_ci]/ n>T

1=1 s:n+(2171)7‘1(5/ Yaisr-- 1 Yay
(SLy)Tr ﬁ <n<T
(3.6)

for each y = {yn}nezﬂ € B(M, N). On account of (3.1), (3.5), and (3.6), we conclude that for
every y = {yn}nezﬁ € 0B(M,N)CB(M,N)andn>T

n+2lt-1 1

(Suy),-M|=|L-M-3 S

1=1 s=n+(2l1-1)7 a(s’ yals’ s yars

)Z f(l'yflz' : 'yfki) _Ci]

oo n+2r-1 1

<IL-M+> >

I=1 s=n+(2l- 1)T|a(5 Yarr-- 1 Yay,)

<|L-M|+ Z Z(pl+|cl|>

o=T+r % izs

Z[lf(l Yfir-- /yfki)l + Ici”

i=s

1
<|L=M]|+min(M+N-LN-M+L}
N
<_/
-2
(3.7)

which means that

N
Isiy-M[ < <N, (3.8)

thatis, Sp.(0B(M, N)) C B(M, N).

Now we assert that Sy, is a continuous and condensing mapping in B(M, N). Let y* =
{yg’}nezﬂ € B(M,N) foreachw € Nand y = {yn}nezﬂ € B(M, N) with lim,_,,y* = y. Let
€ > 0. It follows from (3.2) and the continuity of a and f that there exist T;, T, T5 € N with
Ty >Tand T, > T1 + 7 — 1 satisfying

{ > ali(PﬁICzl) Tlil i(r’ﬁlcll)} (3.9)

s=Ti+1 % i=s s=T+T ssz

{nilasﬂf( YY) = F Y Ys)|s

s=T+T i=

(3.10)

Tﬁszl la(s, v, ya,) = (s, Ya, - Yo ) | &

2
2
: S k| < vz
i=s

s=T+T as
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In view of (3.1) and (3.6)—(3.10), we deduce that for any w > T3

2 2

1=1 s=n+(2I-1)T

1Sy - Sry|| = sup

n>T

o  n+2r-1 [ 1

TR AR

a(s,ya,, - Ya,) =

1 =)
- f(i’yli""’y i>_Ci:|'
a(s’yals""’yars)é[ f fk ]

oo n+2lr-1 1 0 W w\
= snl;l? l_zlS_n%_mlia(s,y‘;’ls,...,y‘é’,s)é[f<l'yfli““'yf""> Cl]

: i[f(i’yfli""’yfki) _Ci]

a(slygjlsl‘ ° "yl(;)rs) i:S
1 e .
X Z[f(l’yfli/""yfki) _Ci]

+a(s w w)
’yals""’yars i=s

1 [*e]
- f(i’yli""’y i)_ci:H
a(sr:‘/als""/yam)é[ ! I ]

o  n+2lr-1 1
= su
P> [a(s,y;;,...,y;;)

n2T | =1 s=n+(2I-1)T

S 2) - 0]

+ < 1 _ 1 >
a(S,y:ﬁS,‘.',yz}rﬁ) a(s’yﬂls/“'lyurs)
XZ [f(i’yfw'“/yfki) - Ci]]'

o n+2r-1 1
< max supz Z

n2T1 1= s=n+(2l-1)7 la(s va., .- va,)l

Sl st )| o]

= n+2lt-1 < 1 1 >
+ Sup +
nleésin%—l)T |a(s’ygjls""’yg}rs) |a(s’ya15""’yars)|
[0.0)

x Z [|f<i’yfli""’yfki)| + |Ci|]/

1=5

n+2lr-1 1

sup i

T<n<Ti-11=1 s=n+(21-1)7 la(s,y&., ... va.)|

SN ) S )
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+ supi

T<n<Th-1]=1s=n+(2l-1)r

<SGy )| +|c1~|1}

n+2lt-1

1 1
a(s’ygjls""’ylaurs) a(s’yals""’yars)

< max{2 S ASh2 S LS p e,

s=Ti+T Sis s=Ti+T Sis

S LSt ) - £ )
S T 1=s

1 1
Aa(s ya, .- va.)  a(sYa - Ya.)

Z(Pz + Iczl)}

i=s

< max{i, asZ|f<l Yf ...,yj‘t;_) ~fYfuire V)

s=Ty+T i=s

Ti+7- 1 0

p3 Zlf( LY 8) = f@ Y vn)

s=T+T Sl T,

T] +T— 1

( y%i""'yﬁ) _f(i’yfli""’yfki)

s=T+r s iss

& 1 1
+ - (pi + lcil)
S%T a(s’yg}ls""’yg]rs) a<s’yals""’yars % l l
Ty+7-1 1 1
+ - (pi +lcil)
s=T+1 a(s’y‘auls""’y‘aurs) a(s’yals""’yars IZTZ ' '
Ti+7-1 1 1
+ - (pi + lci I)}
s=T+T a(s’yg]ls""’yg]vs) a(s’yals""’yam le: l l
Ty +7— 1 o
< m { ,2 Z Zp,+2 Z Zpl +2 Z Z(pl+|c,|)
s=T\+T Si s s=T+T 51 T, s=T1+T Si s

Ty+71— 1 =)
+2 ) Z(pl +lail) + 16}

s=T+T 51 =T,

max e be
4’8

<g§g,

IN

(3.11)

which gives that lim,, .S y* = Sry, that is, Sy, is continuous in B(M, N).



8 Abstract and Applied Analysis

In light of (3.1), (3.5), and (3.6), we get that for any y = {yn}nezﬂ € B(M,N)

n+2lt-1 1

Isuoll = suplL-37 3. Sy v) -l

I=1s=n+@I-1)7 @ (8 Yaryr- -1 Yar)

[ee) 1 [e0)
<L+ ) a—Z(Pi +cil)

s=T+1 5 i=

[}

<L+%min{M+N—L,N—M+L}

< %(M +N+1L),
(3.12)
which implies that S (B(M, N)) is uniformly bounded.
Given ¢ > 0. Clearly (3.2) ensures that there exists T* > T satisfying
[*e] 1 [ee] €
> a—Z(Pi +lail) < 5 (3.13)

s=T* "5 i=s

which together with (3.1) and (3.6) implies that for all y = {y, }TlEZp € B(M,N) and t, > t; >
T*

[e'e] ty +2IT-1 1

|(SL]/)t2 - (SL]/)tl' = Z Z i[f(ifyfw' "’yfki) _Ci]

=1 s=t,+(2l-1)7 a(s, Ya.,--- Ya.) =

[oe] 5t +2IT-1 1

_Z i[f(i’yfli""’yfki) _Ci]

I=1 s=t+(2-1)T a(s,Yarer -1 Yar.) =2

tr+2lT-1 1

DG ys -y + el (3.14)

s=h+Q2I-1)1 la(s, Ya, - Yo )| 5

[*e]
<>
=1
[oe] H +2IT-1 1

v 2

I=1 s=t+(2-1)T |a(s, Yarer-+ 1 Yay,)

o0 1 =3
<2 D = (pi+lal)
s:T*+'ras i=s

<e,

i [lf(l/ Yfiir-- "yfki)| + |Ci|]

i=s

which vyields that Sp(B(M,N)) is uniformly Cauchy. Thus Lemma?2.l1 means that
Sp(B(M, N)) is relatively compact. Consequently Sy, is condensing in B(M, N).



Abstract and Applied Analysis 9

It follows from Lemma 2.2 that S, has a fixed point y = {v,} ez 5 € B(M, N), that is,

n+2lt-1 1

Yn=L- G Ypreeys) —cl, ¥n>T,  (3.15)
! é s=n+Q2l-1)7 a(s, Yars- - Ya,,) ; N e 1

which yields that

[e'e] 1 (e} .
yn+yﬂ—T:2L_Za(s Yarr - yav)z[f(l’yfli""’yfki)_ci]’ Vn2>T+T,

(3.16)
a(1, Yarr -+ Yan ) AWYn + Ynr) = DG v yp) —cil, Yn2T+r,

which together with (3.3) implies that
A(a(n,Yayr - Yan ) A(Yn + brynr)) = —f(n, Yfur- - ,yfkn) +cp, Vn>T+T, (3.17)

that is, (1.8) has a bounded positive solution y € B(M, N).

Next we show that (1.8) has uncountably many bounded positive solutions in
B(M,N). Let Li,L, € (M- N,M + N) and L; # L. For every 0 € {1,2}, we infer similarly
that there exist a constant T;, and a mapping S;, satisfying (3.4)—(3.6), where L, T, and
Sy, are replaced by Lg, Tr,, and Sy, respectively, and the mapping S;, has a fixed point
y? = {ys}nezﬁ € B(M, N), which is a bounded positive solution of (1.8) in B(M, N), that
is,

n+2lr-1 1 )

=Lo-> > 9>Z[f(i,y%,.,---,y?k,.)—ci]/ Vn2Ti.  (3.18)

1=1 s=n+(2I-1)T a(s, yg“, - Ya,, ) i=s

Equation (3.2) ensures that there exists T, > max{Ty,, T, } satisfying

<l . L Lo
gfﬂs 2 (pi+lal) < —— (3.19)

%}

In order to show that the set of bounded positive solutions of (1.8) is uncountable, it is
sufficient to prove that y! # 3. It follows from (3.1), (3.18), and (3.19) that for all n > T,

n+2lt-1 1

= Ll—i Z i[f<i’y}li""’y}ki>_ci]

1 1
1=1 s=n+Q2I-1)T I.Z(S, Yayro-s yurs) i=s

Yo = Yn

oo n+2lr-1 1 0

—L2+Z

2 2
I=1 s=n+(2I-1)T (1(5, Yayr--s yars) i=s

[f<i’y/2‘1i”"’y/2‘ki> - Ci]
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n+2lr-1 1

[ee)
>|Li-La|- >, —
I=1 s=n+(2l-1)7 ~%

x Z“f(i,y}h,...,y}kiﬂ +lci| + |f(i,y}li,...,yj2[ki> + |ci|]
1=5
0 1 0
> |Ly— Lo -2 D) a_Z(Pi +cil)
s=T.+1 % i=s
> %|L1 - Ly,
(3.20)
that is, y! # y2. This completes the proof. O

Theorem 3.2. Assume that there exist two constants N and M with M > N > 0 and two positive
sequences {a,,}neNn0 and {pn}neNnO satisfying (3.1) and

i i limax{i%lcil}<+<><>; (3.21)

b, = -1 eventually. (3.22)

Then (1.8) has uncountably many bounded positive solutions.

Proof. Let L € (M — N, M + N). Firstly, we show that there exists a mapping Sy : B(M, N) —
ZE‘) with SL(0B(M, N)) € B(M, N) such that S has a fixed point y = {yu},ez, € B(M,N),
which is also a bounded positive solution of (1.8). In view of (3.21) and (3.22), we choose a
sufficiently large integer T > max{1, ng + 7 + |f|} such that

bo=-1, Yn>T; (3.23)

> a—Z(pi+|Ci|)<§min{M+N—L,N—M+L}. (3.24)

I=1 s=T+IT "5 i

[}

Define a mapping Sr : B(M, N) — ZE" as follows:

vy > L Sy el maT

(SL}/)” = I=1 s=n+It a(s, Yaigr---s yﬂrs) i=s (325)
(SLy)r p<n<T
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for each y = {¥n}yez, € B(M,N). It follows from (3.1), (3.24), and (3.25) that for every
Y = {Ynlnez, €OB(M,N) C B(M,N)andn>T

(Swy),-M| = [L-M+3 S .

I=1 s=n+IT a (S’ Yarer--- 1 Yay

<|L- M|+Z Z !

1=1 s=n+lt a(slyllls/ . ’yﬂw)

SIL-MI+ 3, S S i+l (420

=1 s=T+It "% i=s

)Z f(l Yfir-- ’yfki) _Ci]

Z[lf(l Yfir-- ’yfki)l + |Ci|]

<|L-M|+=minfM+N-LN-M+L)}

N| =

N

<_/
-2

which means that

N
ISty Ml <5 <N, (3.27)

thatis, S (0B(M, N) € B(M, N).

Now we prove that Sy is a continuous and condensing mapping in B(M, N). Put y* =
{yi ez, € BIM, N) for each w € Nand y = {yu},ez, € B(M, N) with limy, .oy = y. Let
€ > 0. Using (3.21) and the continuity of a and f, we conclude that there exist four positive
integers Ty, Tz, T3, and Ty with Tz > T, T, > T3 + T17 satisfying

w© oo Ti+lT- 1

max {i gh: s(pl+|Cz|) Z Z Z(P1+|C1|)

I=1 s S j= I=T s=T+It as i ( )
3.28
T1-1 T3+lT- 1
Z(Pz + |Cl|)}
1=1 s=T+Ir % i=T,
T,- 1T3+1T 1
{ (1 (’y%i""’y;“ii>_f(l’yfli/""yfki) ’
I=1 s=T+lt ©% i=s

T,-1 T3+t 1|’1(5,]/g';/---,]/g])_’1(5,]/:11/“-/]/11-) T,-1 } e
: = : = pitlcl) t <—, VYw>T,.
g s:;l”r ag Z( l l) 16

(3.29)
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By virtue of (3.1) and (3.25)-(3.29), we infer that for each w > T}

3> s S (v ) e

Sty - Sry —sup
” ” I=1s= n+l7'a(s’yals’ . /ya

DIP)

I=1s= n+l'ra(s Yaysr-- -1 Yay

i i w ! )Z[ < y%i"“’y‘;;,)_f(i/yfu""/yfki)]

=1 s=n+l7'a(s/ Yayr--s ]/a

+ —
§S=nz+l‘r<a(s’y‘auls""’yz’m) a(S’yuls""’yarS)>

XZ [f(i/ Yfir-- '/yfki) - Ci]

)Z f(l Yfir-- ’yfki) _Ci]

= sup
n>T

{ i i -
< maxq sup
n2Ts =1 s=n+It |a(s, y‘l;]ls’ tecs y“;]rs) |

<SGy i)

+ |f(i/ Yfir--- 'yfki) |]

+su +
"Zghzlsmzﬂr< |£1(S,y:ﬁ5,.. "y“frs)l |a(slyﬂ1s/"‘/]/ﬂn)|>
x Z[|f(i’yfli""/yfki)| + ICi|]r

>3 1
su
TSHS7P3—1 1=1 s=n+ItT |[1(S, y(:ls’ Tt y“;’”) |

x i|f<i'yz,-""'yﬁ,-) _f(i’yfli""’yfki>

o o

+osup 3 3
T<n<T3-1]=1s=n+lr

1 1
a(s Ya - Ya.)  a(S Yar - Ya)

<SGy s + el }

< max{ZZ Z a—Zpi+ZZ Z Z(Pl+|01|)
I=1s=Ts+IT "% i=s 1=1s=T3+IT as i

i i aliv(i,y%i,...,y:fki) —fGYrir o Ysia)

~ i + |Cl|)}

1 1
a(s,Ya., - Ya,) (S Yanr - Ya,.)

)
2 2
I=1s

=1s=T+It
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0 =) 1 e o w .
- max{zfyz 2 a_§|f<l'yfw“-'yfki>‘f(l'yfﬁ"“"‘/fkf)

T1—1Tz3+lT-1 -1

e 3 S LS (i) - S )

I=1 s=T+It "% i=s

T1—1 T3+lT-

1 o
+ Z ;Z'f<l yfl ) ’y;;i>_f(i’yfli"“’yfki)

1=1 s=T+It ~Si=T,

T3+lT 1

+ |f< yfl, : /y(ﬁ,) _f(i’yfli"“’yfki)

I=Ty s=T+IT Sis

)ID) 1 e pa)
+ - pi + lcil
=1 s=T5+IT [1(5, yuls 4 y“frs) [1(5, yuls’ Tt ]/urs) i=s l l
T1-1Ts+lT-1 1 1 T>-1
+ - pi + |ci
1=1 s=T+It a(s’yzs""’yt&is) a(s’yals""’yars) E( 1 1)
T,-1 Ts+lT-1 1 1
+ - pi + Icil
lgl: S%lr a(s, Ya., - Ya.) (s Yay, - Ya,.) Iz’r‘;( 1 )
oo T3+lT-1 1 1 oo
+ - (pi+ |c~|)}
I=Ty s=T+It a(s’ yg’ls’ s y%s) a(s’ yals’ 4 yars) ; 1 l
< [e’] [ee] 1 [e'e] T1 1T3+1T 1 [ee] [oe] T3+ZT 1 1
R DS VRS RO WIS VAR WP 3
1=1s=Ts+IT "% i=s =1 s=T+lr %si= T, I=Ty s=T+IT asiss

T, -1T5+IT- 1 0

+2§: i Z(pl +cil) T3 +ZZ Z Z(p, +lcil)

1=1 s=T3+IT as i 1=1 s= T+lT S =T,

+2§T3+ZT ‘1 Z(Pl +ci]) }

I=T; s=T+It as i

< max €7
48

<g
(3.30)

which implies that lim,, . .S y*“ = Spy, that is, Sy, is continuous in B(M, N).
From (3.1), (3.24), and (3.25), we infer that for any y = {yn}nezp € B(M, N)

ISyl = sup L+Z Z ! Z[f(l Yfur- 1Y) = Cil

I=1 s= n+l'ra(s’yals’ . /]/a, i=s
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0

Le3 S oS

I=1 s

I/\

<L+-min{M+N-L N-M+L}

N =

—_

<-(M+N+1L),

N

(3.31)

which implies that S; (B(M, N)) is uniformly bounded.
Let € > 0. It follows from (3.21) that there exists T* > T satisfying

0

> 2 alZ (pi+leil) <3, (3.32)

I=1 s=T*+Ir "%

which together with (3.1) and (3.25) yields that for all y = { ]/n}nez,; € B(M,N) and t; > t; >
T*

|(S1v),, - (Stw), | =

i i ! )Z f(l'yfh . ryfki)_ci]

=1 S:t2+lTa(S’ yals’ T yar

0 0 1

P

1:15:t1+1Ta(5r1‘/u15r 1 Yay,

)Z (l Yer-- 'yfki)_ci]

[*e]

p3

I=1 s=tr+IT a(s’yals’ N ’yurs

MS

)IZ |f G yhr-yp)| +leil]

(3.33)

0 0 1

P

I=1 s=t1+IT |a(s, Yaygr--- /yayq

Z“f(l Yfir-- /yfki)l + |Ci|]

i=s

<2

i ali(Pi +lail)

s=T*+It % i=

Mis

1

Il
—_
[}

<e,

which gives that Sp(B(M,N)) is uniformly Cauchy. Hence Lemma 2.1 implies that
Sp(B(M, N)) is relatively compact, that is, Sy, is condensing in B(M, N).

It is clear that Lemma 2.2 means that Sp possesses a fixed point y = {yn},cz, €
B(M, N), that is,
n=L+ [fGyp ) —al, n2T,
gs%lTa(s ya‘ls’ : ’yars)z ' *
(3.34)

1

et _L+Z

=1 s=n+(I1- 1)7a(sfyals' s Ya,

)Z[f(llyfh’ /yfki)_ci]’ Vn>T+Tt
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which lead to
(o)) 1 (o)
Yn—Ynr =~ G ymi - ys)—c], Yn2T+r,
éa(s,yals,...,yam)g s Tk 635)
1 © '
A(Yn = Ynr) = SUfGys--yp)—cl, ¥n>T+1,

a(n’yaln" . "yurn) i=n

which together with (3.23) yields that

A(a(m Yayr -1 Yarm) AWYn +buYnr)) = =f (M Yfir-- - Yf) +Cn, V2T +1, (3.36)

that is, (1.8) has a bounded positive solution in B(M, N).

Next we show that (1.8) has uncountably many bounded positive solutions in
B(M,N). Let Li,L, € (M -— N,M + N) and L; #L,. Similarly we infer that for each
0 € {1,2}, there exist a constant T;, and a mapping S;, satisfying (3.23)-(3.25), where L, T
and Sp are replaced by L, Tr,, and Sy, respectively, and the mapping Sr, has a fixed point
yo = {y9 }nEZp € B(M, N), which is a bounded positive solution of (1.8) in B(M, N), that is,

I=1s=n+lt A\ S, Ya,;r++ -+ Ya,, ) i=s

e+ 3 S < - 9>§[f(i,y;2,.,-.-,y;?k,)—cz-]f 2T (337)

It follows from (3.21) that there exists T, > max{Ty,, T1,} such that

1& |L — Ly
T pitlel) < =5— (3.38)

I
—_
)

11
[}
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In order to show that the set of bounded positive solutions of (1.8) is uncountable, it is

sufficient to prove that y' # y*. By means of (3.1), (3.37) and (3.38), we infer that for each
n>T,

v =L+ 3 S . i[f(i,y}“,--wy}k,.)—ci]

1 1
=1 s:n+lra(sf Yayer--- /yﬂrs) i=s

L3S S )

2 2
I=1 s=n+IT IJ(S, Yo,y yﬂrs) i=s

2 |L1—L2|_i i ali”f<i’y}li"“’y}ki>

I=1s=n+lt % i=s

+eil + )f(i'yf’n"“'yjsz,->| + |Ci|]

[ee) [ee) 1 [ee)
>|Li- Lo -2 D) a_Z(pi"'lCiD

1=1s=T,+lT "% i=s

1
> §|L1 - Ly,
(3.39)

that is, y' # 2. This completes the proof. O

Next we use the Leray-Schauder nonlinear alternative theorem to show the existence
and multiplicity of bounded positive solutions of (1.8).

Theorem 3.3. Assume that there exist four constants N, M, by, and b* and two positive sequences
{an}neNn0 and {p"}neN,,O satisfying (3.1), (3.2) and

0<N<(-b,—bYM, b,>0,b">0,b,+b" <1, -b, <b, <b* cventually.  (3.40)

Then (1.8) has uncountably many bounded positive solutions in U (M).

Proof. Let L € (b*M+ N, (1-b,)M). Now we prove that there exists a mapping Sy, : U(M) —
V(N) such that it has a fixed point y = {yu} ez , € U (M), which is also a bounded positive
solution of (1.8). It follows from (3.2), (3.40) and that there exists a sufficiently large number
T > max{1,ng + 7 + |B|} satisfying

b, <b, <b, VYn>T; (3.41)

iali(r’i+|ci|) <min{L-b"M - N, (1-b,)M - L}. (3.42)

s=T 75 i=s

Putp* = M —¢*, where ¢* € (0, min{L-b*M - N, (1-b,)M-L, (M- N)/2}) is enough small
and

Zal (pi+|ci]) <min{L-b*M -N,(1-b))M - L} - £ (3.43)

s=T 73 i=s
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Obviously, p* € U(M). Define a mapping Sy : U(M) — l;" by

(Sty), = (Suy), + (Say),, n=p (3.44)

for each y = {yn},cz, € U(M), where the mappings Siz, So : U(M) — lg’ are defined by

(Swey),

(Sary), =

L- bnynf'r/ n>T
(SlLy)T' p<n<T,

LYf o Yf)—Ci|, n>T
Za(s yal/'/yays)z ( f f) ]

(Sa1y) 7 p<n<T.

(3.45)

(3.46)

It follows from (3.1), (3.41), and (3.43)—(3.46) that for any y = {y, }nez,, eUM)andn>T

(Sry), = (Suy), + (Sy),

= 1
) L_b"yﬂ_éa(s,yms, o Yar )Z[f(l Vs oY) =l
1
>L-b"M - Zl |Z(Pz+|C1|)

a(s’ yals’ s yars
(3.47)

[ee] 1 [ee]
> L—b*M—Za—Z(pi +lcil)

s=T =s

>L-b"M-min{L-b"M-N,(1-b)M-L} +¢

@
~.

>N +¢&*

> N,

which yields that Sp.(U(M)) € V(N).
Next we show that Syr, : U(M) — l;" is a continuous and relatively compact mapping.

Let y* = {yy bnez, € UM) and ¥ = {Yu} ez, € U(M) with limy, . ,y* = y. By virtue of (3.2)
and the continuity of a and f, we infer that there exist Ty, 15, T3 € Nwith T, > T1 -1 > T

satisfying
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max{ i ali(}?i +|cil), ZT ZT(Pl + |Cl|)}

(3.48)
s=Ty % i= as
-1 1 T—-1

max{Z@Z f<l,yzi,...,yjfki> —f(l,yf“,...,yfki) ,
s=T i=s
(3.49)

Ll a(s,ye .. y8 ) —a(s, Yay,- -1 Ya.) | o ;
S; 1 ‘ 2 ;(Pﬁlcil) T Yw > Ts.

It follows from (3.1) and (3.46)—(3.49) that for each w > T;

% 1 ) )
2 a2l ) el

Z

0

|S2Ly® - Sary|| = sup

flyh/ s Yfu) —CGi
[Z(S yuls’ . ’yur)z ( d fk) ]

1

;la(s,y‘,;’ls, . ,yarb)z[ (1 y%i""’y%c) _f(i’yfli""’yfki)]
+Z< _ 1 >
a(s,Ya,.--- Ya.) +Ya,.)

a(s, Yay,---

= sup
n>T

XZ [f(i' Yfr--- ’yfki) - Ci]

< max{ su i !
B et S a5,y yi)

<SGy

|f(i’yf1i""’yfki)|]

0

+sup

Z< 1 . 1 >
e\ la(s,ys., ... ya )| | +Ya,)|

a(s, Yay,,-- -

x Z[lf(i’yfli""’yfki)l + |Ci|]/

i=s

0

1
su
T<n<T)-1ls=n |a(s, yﬂls

x§|f<i,y/‘ﬁ;,..

: ’yl’;rs)l

"y;z,) _f(i’yfli" : "yfki)
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+ Ssu S - 1
T<n<1E1) ls=n a(s’yals ° ’yz)rs) a(s’yals""’yars)
S0 v vl
0] 1 (o]
< max{ZZ p; Zpl +ZZ Z(pl +cil),
s=T; S i=s =T sz s
o 13 W W w :
ZTa_sZ|f<1'yfl,~'yfz,-/‘"'yfki> _f(l/yfli/yfzﬂ"'/yfki)
5= i=s
+ — — - pi + |cil }
s=T a(s’yals""’yars) a(s’yals""’yars) é( )
T,-1 Tr-1
€ ] 1 S ; w w ;
< maX{Z, S:Ta—s /- |f<l/yf1i/---,yfki> _f(l/yfli/--./yfki)
T1—1 1 (o)
S ) S
s=T Si: 2
© 1 * o " )
+ _ZT]a—SZ|f(l,yfu/---,yfk,.) ~ f G Yfr- V)
T-1 1 1 T>-1
+ -~ — - pi +lcil
SET a(s’yals”"’yars) a(s’yals”"/yars) é( )
T,-1 0
< 1 1
+ o oy (pi +lcil)
s=T a(s’yals""’yars) a(s’yals""’yars) 1=ZTZ
[o0) 1 [0.0)
o (Pi+|Ci|)}
ZT S yuls : ’yars) a(s’yals""’yars) ;
E £
< rna\x{4 T Z Zpl+22 Zpl
s=T 51 =T, s=T; as iz s
= a(S yau ° ’yars) _a(s’yals""’yars) =
+ ag Z(pl + |Ci|)
+22 Z(pl+|cl)+22 Z(p,+|cl|)}
o %s = =T, s= Tl =
< max{f ﬁ}
—_ 4/ 8
<eg
(3.50)

which yields that lim,, —, || S2r.y* — Sary||

=0, that is, Sy is continuous in U (M).
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In light of (3.1) and (3.43)—(3.46), we deduce that for all y = {y, }nGZ,; eU(M)

ISry|l = S‘:§| (Siry), + (Say),|

< sup|(Siy),,| +sup|(Sary),,|
n>T n>T

0 1
< sup|L - b + su
i e e Y e

1
< L+ |by||yn-
Sup( +| ||y T|)+Snl>lpszn|a(s Yayr-- /yars)

)Z f(l Yfiir-- 'yfki) _Ci]

|Z |f(l Yfr-- 'yfki)| +|Ci|]

<L+ (b, +bY) M+Z Z(pl+|cl|)
s=T

as s

<L+M+min{L-b*M-N,(1-b)M-L} - ¢*

<2L+ M,
(3.51)
which means that Sp (U (M)) and S, (U(M)) are bounded.
Let € > 0. Notice that (3.2) ensures that there exists T* > T satisfying
[ee] 1 (o] €
2o upirlal) <3, (3.52)

which together with (3.1) and (3.46) implies that for all y = {y,},.cz , € U(M)andt, >t >T*

1
s= tza(s yals’ N ’yar

)

5= tla(s Yay,r -1 Yays

<Z Z(Pl+lal)+z Z(Pﬁlcll)

stzsis St]

|(Se1y),, — (), | =

)Z f(l'yfh : 'yfki)_ci]

)Z f(l Yhur-- ’yfki) _Ci]

(3.53)

0

Z i +cil)

I/\
M
Ql,_x

[
Il
~
[}

which means that Sy; (U(M)) is uniformly Cauchy. Thus Sy, (U (M)) is relatively compact.
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By virtue of (3.41) and (3.45), we infer that for all x = {xn}nezﬂ,y = {yn}nez,, e U(M)
andn>T

|(51Lx)n - (SlLy)nl = |bn||xn—‘r - yn—'r| < (bs + b*)”x - y”/ (3.54)
which yields that

|Siex = Siy|| < (b +b%)||x -y

, (3.55)

that is, Si; is a contraction mapping in U(M). It follows that S; is a continuous and
condensing mapping.
Put

P= {y ={Ynlyer, €I N<ya<Mn2p, |ly|| = M}, (3.56)

Q= {y = {V"}nezﬂ €17 N <y, < M,n > p and there exists n" > f§ satisfying y,- = N}.
(3.57)

It is easy to see that OU (M) = P U Q. Suppose that there exist y = { yn}nezﬁ € oU(M) and
A€ (0,1) with

y=0-1)p"+ASry. (3.58)

Now we consider two possible cases as follows.

Case 1. Let y € P. Obviously (3.41), (3.43)—-(3.46), (3.56), and (3.58) guarantee that

Y= (1-N)p" +ASLy,

[0.0] 1 [00)
= (1= \)p" +A|L = byypur - LY Ys) — G
( )P [ y Sgna(s’yals""’yars)é[f( yf yfk) ]]

<(1-A)(M-¢) +A[L+b*M+iali(pi +|cil)

s=T 7% i=s

] (3.59)

<(A-MNM-€)+A[L+bM+min{L-b"M - N,(1-b,)M - L} —£"]
<M-¢, Vn>T,

which implies that

M = ||ly|l =sup|ya| <M -€" <M, (3.60)

n>p

which is a contradiction.
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Case 2. Let y € Q. It follows from (3.41), (3.43)—(3.46), (3.57), and (3.58) that

N=yp=0-A)p"+ASLy,

. o 1 o) )
=(1-Mp +)L[L_bn*yn*‘r - Z Z[f(l’yfli""’yfki) _Ci]

s=max{n*T} I.Z(S, Yayr--- /yﬂrs) i=s

> (1-)(M-¢") +A[L—b*M— > %Z(pi +la)
s=max{n*,T} i=s

>(1-0)(M-g)+A[L-b"M-min{L -b*"M - N, (1 -b,)M - L} + ¢']
(1= 1) (M -€") + A(N + &%)

v

> min{M —-¢*,N + ¢}

= N +¢7,
(3.61)

which is absurd. Thus Lemma 2.3 ensures that there exists y = {yn},cz, € U(M) satisfying
Sty = SiLy + Sy =y, that is,

oo} 1 [oo) .
yn :L_bnyn_T_;la(slyﬂls/-../yurs)é[f(l’yf“"“’xhki) _Ci]’ VTLZT, (362)

which means that
a0, Yo Yo ) A+ batis) = S Gys o vp) —al, ¥n2T,  (363)
1=n

which yields that
A(a(m Yays - Yarm) A(Yn +buYnr)) = —f (0, Yf1r- - Ygo) ¥ Cn, V02T, (3.64)

thatis, ¥ = {¥n},ez, € U(M) is a bounded positive solution of (1.8).

Finally we show that (1.8) has uncountably many bounded positive solutions in
U(M).LetLy, L, € (b*M+N, (1-b,)M) and L; # L,. Similarly we infer that foreach 6 € {1, 2},
there exists a mapping Sr, : U(M) — V(N) satisfying (3.41)—(3.46), where L, B, T, Si1, Sor,
and Sy, are replaced by Lo, fo, Tr,, Sir,, Sor, and Sy, respectively, and the mapping Sy, has
a fixed point y? = {yﬁ}nezﬂ € U (M), which is a bounded positive solution of (1.8) in U(M),
that is,

1

v =Lo-buyl_. ‘§a<s Sy >§;[f<i;y?w-..,y?ki> —Ci], Vn > T,. (3.65)
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It follows from (3.2) that there exists T, > max{Ty,,Tr,} satisfying

< 1< |L1 — Lo|
22 pitlel) < —5— (3.66)

s=T, 'S i=

[}

In order to prove that the set of bounded positive solutions of (1.8) is uncountable, it is
sufficient to verify that y! # y2. In terms of (3.1), (3.65), and (3.66), we deduce that for n > T,

y:: - yi = Ll - LZ - bnyzl—r + bnyrzz—’r - 522;1 a(S,y,lzls, o ’y;rs) IE:; [f(l’y}li/ s /y}k,) - Ci]
[o'e] 1 o0 .
+5:na(51 y%ls, - -,yﬁ,s) é [f(l, yj%“, . ’y}%ki> - Ci]
> |L1 - L2| - |bn| y}z—’r - yi—r
[e'e] 1 [ee] . .
N Za_Z[|f<l’y}1i" : "y}ki> + |Ci| + |f<l’y12r1i’y12‘2i" "’yjzcki> + |Ci|]
s=n "8 j=5
o0 1 [ee]
> L1 - Lol = (b + D) ||y = 2| 23, — D (pi +leil)
s=T, 'S i=s
1 * 1 2
> §|L1—L2|—(b*+b MWy - vl
(3.67)
which means that
Li-L
I~ 1> s >© (3.68)
that is, y' # 2. This completes the proof. O

Theorem 3.4. Assume that there exist four constants N, M, b, and b* and two positive sequences
{an}neNno and {pn}nem0 satisfying (3.1), (3.2) and

1+b")M<(1+b,)N <0, b, <b, <b" <-1 eventually. (3.69)

Then (1.8) has uncountably many bounded positive solutions in U (M).

Proof. Let L € ((1+b*)M, (1+b.)N). Now we show that there exists a mapping Sy, : U(M) —
V(N) such that it has a fixed point y = {y,} ez , € U (M), which is also a bounded positive
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solution of (1.8). It follows from (3.2) and (3.69) that there exists T > max{1,ny + 7 + ||}
satisfying

by<b,<b'<-1, ¥n>T; (3.70)

Z Z(Pl +ail) < mm{ (1+ b*)M b [N(l +b,) - ]} (3.71)
14

Let p* = M —¢*, where ¢* € (0, min{L-(1+b*)M, (b*/b,)[N(1+b,)-L,b*(M-N)/(b*-1)]})

is enough small and

iii<pi+|ci|><min{ (1+b*>Mb[N(1+b> L]} (372)

=T %s iz

[

Obviously, p* € U(M). Define a mapping Sy : U(M) — l°° by (3.44), where the mappings
Si1, 501 : U(M) — lg’ are defined by

L _ Yn+r

(Siey), = bure  bue’ =T (3.73)
(SlLy)T' p<n<T,
1 & 1
(S2ry), = bur sgﬁﬂa(sr%ﬁsr oY) i= s[f(l g Ypa) 6l 2T (3.74)
(SzL]/)T, psn<T

foreach y = {yn} ez, € U(M). By virtue of (3.1), (3.70), and (3.72)-(3.74), we get that for any
y= {]/n}neZ,; eUM)andn>T

(Sty), = (Suy), + (Sary),

_ L Ynir 1 = 1 .
B bn+T bn+‘l’ bn+'rs=§n;,,ra(s,]/als/ . /yars)z f(l yfhl . ,yfki) Cz]

L N 1 &1
Zb——b—+FZ—Z(pi+|Ci|>
* * s=T+r 35 iss (3.75)
2£—ﬁ+l 1n{L (1+b*)M—[N(1+b) L]}—ls*
b. b, b*
ZN—%&‘*
> N,

which gives that Sp (U(M)) C V(IN). The rest of the proof is similar to that of Theorem 3.3
and is omitted. This completes the proof. O
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Now we employ the Krasnoselskii fixed point theorem to prove the existence and
multiplicity of bounded positive solutions of (1.8).

Theorem 3.5. Assume that there exist four constants N, M, b, and b* and two positive sequences
{an}neNnO/ {]on}neNn0 satisfying (3.1), (3.2) and

0< Nb'b, < M(bf - b*), 1<b, < b, <b* < b? eventually. (3.76)

Then (1.8) has uncountably many bounded positive solutions in A(IN, M).

Proof. Let L € ((b*/b,)M +b*N, b.M). Now we show that there exist two mappings Siz, Sor. :
AN,M) — ZZ" such that the equation SiLy + Sory = y has a solution y = {yn},ez, €
A(N, M), which is also a bounded positive solution of (1.8). It follows from (3.2) and (3.76)
that there exists T > max{1, ny + 7 + |B|} satisfying

1<b.<b,<b*<b? VYn>T; (3.77)
1 & b.L
> -2 (pitlal) <ming b M - L, —= - M -b.N ¢. (3.78)
s=T 'S i=s

Define two mappings Sip and Syr @ A(N,M) — l;" by (3.73) and (3.74), respectively. It
follows from (3.1), (3.73), (3.74), (3.77), and (3.78) that for any x = {xn}nezp, Yy = {yn}nezp €
AN,M)andn>T

1
(S22, = (S11y),| = g—lner = ymer| < *llx—yllr
L xpe 1 & 1
S11), + (Sary), = —— — 5T — Y Ysa) - Ci
( 1Lx)n ( ZLy)n bn+7- bn+7- bn+7-s:;r.ra(s,yals, . ’yars)z[f(l yflx yfkt) C]
L M 1 & .
2 E - b_ T Z a_z |f(l’yfli”"’yfki)| + |Ci|]
* *s n+t S i=s
L M 1 &1
e b—*s;ﬂ—sé(r’i +cil)
L M 1 | b.L
> E—b—*—b—*mm{b*M—L,F—M—b*N}
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L Xn+r 1 & 1
an+S = N - l 177 i_Ci
(S12x), + (Sary), bror  byon anst”a(S/yaw ‘ ,yaN)Z[f( Y Yfa) —cil
L o1a1&..
St Z _Z“f(l’yfli""’yfki)l + |Ci|]
b. b s=nir s i
L 1 & 18
St Z _Z(Pi+|Ci|)
b. b* s=T+T s i
L 1 . b.L
<b—*+b—*mln{b*M—Lb——M bN}
<M,

(3.79)

which yield that
1
”Sle—SlLy” < b—||x—y||, Sle+SzLy€A(N,M), VX,yEA(N,M). (3.80)

As in the proof of Theorem 3.3, we infer similarly that Sy; is continuous in A(N, M) and
Sar(A(N, M)) is relatively compact. Thus S,y is completely continuous, which together with
(3.77), (3.80), and Lemma 2.4, ensures that the equation Si1y + Sy = y has a solution y =
{Yn }nezﬁ € A(N, M), which is also a bounded positive solution of (1.8) in A(IN, M). The rest
of the proof is similar to that of Theorem 3.3 and is omitted. This completes the proof. O

Remark 3.6. Theorems 3.1-3.5 extend and improve Theorem 2.1 in [1] and Theorems 2.1-2.7
in [7], respectively. The examples in Section 4 show that our results are indeed generalizations
of the corresponding results in [1, 7].

4. Examples

Now we construct five examples to show the applications of the results presented in Section 3.
Note that none of the known results can be applied to the five examples.

Example 4.1. Consider the second-order nonlinear neutral delay difference equation

—31’13yﬁ+1 + \/ﬁynﬂ + (yn+1 - 1)4/5

mSIn* (1 +2) + |y — 112|3 +1

<( 1" <n -n +1)<yi+1>A(yn+yn_T)>+
(4.1)
_ (-)'m*-5n+1

bt m4sinVmd+ 1

Vn>1,
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where 7 € Nis fixed. Letngp=1,r=1, k=2, N=2, M=3,f=1-71and

(-1)"n® -5n+1
Cp = ,
i sinVid + 1

a(n,u) = (—1)"<n6—n5+1> <u2+1>, an :3<n6—n5+1>,

2
aiy =n, fln=n+1/ f2n=1’l, bn=1/

3ndut + au+ (u-1)Y° _ 243n% +3y/n+2
n5ln2(n+2)+|v—n2|3+1l "

f(n,u,v) =

s , Y(n,u,v) €N, x R2.

(4.2)

It is easy to verify that (3.1)-(3.3) hold. Thus Theorem 3.1 guarantees that (4.1) has

uncountably many bounded positive solutions in B(M, N). But the results in [1, 7] are not
applicable for (4.1).

Example 4.2. Consider the second-order nonlinear neutral delay difference equation

13 (Ynia —2)" = (B =2n+1)y3 _
A <<n5 Vn+2+ yi2—60y§n+(—l)n> Ayn - y"_T)> * - 2 o
nd + (yiz_3 - 3n> +8in(nyne4) +2

(4.3)
5,3 a1
_n 6n°v/2n—4 5, Vn>5,
n'l +4
where 7 € Nis fixed. Letng =5,r=2, k=3, N =1, M =3, = min{5 - 7,-35} and
ar, = n® - 60, ay =2n+(-1)",  fiu=n+4,  fr,=2n-1,
S_—6n’V2n -4 -
f3n:n2—3, b, =-1, cn:n 61:111+n4 5, a(n,u,v):n5 n+ 2+ u’o?,
-2 - (nd-2n+1)°
a, =n°Vn+2+1, f(n,u,v,w) = ( ) (2 ) ,
n® + (w* - 3n)” + sin(nu) + 2
28n> + 54n + 27
Pn = %, V(n,u,v,w) € Ny, x R3.
n
(4.4)

It is clear that (3.1), (3.21), and (3.22) hold. Hence Theorem 3.2 ensures that (4.3) has
uncountably many bounded positive solutions in B(M, N). But the results in [1, 7] are not
valid for (4.3).
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Example 4.3. Consider the second-order nonlinear neutral delay difference equation

2.2 (-D"(n"-1)
+n Yus + 1>A <xn + Wxn_r

2
n(n+1)/2 ~ 2| (4.5)

A <(_1)n(n—1)/2 <<n3 + 2) 'ygn

(Xns -1+

X

+

nln’n + 1
_ n®-30n" + 8cos® (4n® - 1)

5 , Yn2>3,
n’ +n®° +2In“n

where 7 € Nis fixed. Letng =3, r=k=2, b, =b*=1/3, N=2, M =7, f=min{3 - 7,-5}
and

nn+1)
2 7

B (-D)"(n” -1)
o 3 +1

a, =3n, dy, =n—38, fin=n-5, fon = by

n® — 30n* + 8cos® (4n® - 1)
Cn =

9 4 115 + 2In? ’ a(n,u,v) = (—1)n(n71)/2<<n3 + 2) |u3| +n’v? + 1),
n +n n‘n

(-3 + /o2 =2]

a, =8n° +4n* +1, f(n,u,v) = 5 ,
nln‘n+1
613+ /47

, Y(n,u,v)eN, x R2.

" nin’n
(4.6)

It is clear that (3.1), (3.2) and (3.40) are satisfied. Hence Theorem 3.3 implies that (4.5)

has uncountably many bounded positive solutions in U(M). But the results in [1, 7] are
unapplicable for (4.5).

Example 4.4. Consider the second-order nonlinear neutral delay difference equation

) 3n®> -3n-3cos(n/2-1)+1
INE N 1)A( x, - nr
<( ) n (ynu + > <x n2—n-cos(n/2-1) ¥
+ (3 - xnz—9)1/3 - mxgn73

4.7)
nt+nx; o +1

m + (-1)"n? +In’ (1 + n?)

6 +4n5 - 3nt +sin(@n2 -5) + 1
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where 7 € Nis fixed. Letng =2, r =1, k=3, b, = -4b"=-3, N=1 M =3, =
min{2 - 7,-5} and

ap=m"-1,  fi,=n*-9,  fou=3n-7,  f3,=2n-3,

b _ 3n*-3n-3cos(n/2-1) +1 ~ n + (-1)"n? +In° (1 + n?)
" n2-n-cos(n/2-1) ' "6+ 4n5 - 3nt +sin3(dn2 -5) + 17
_ 3-u)?—\2n-30°
a(n,u) = (-1)" In? <u4 + 1), a, = n’In’n, f(n,u,v,w) = ( n)4 ——— ,
2+427/2n —
n = +—4”, Y(n,u,v,w) € N, x R>.

n
(4.8)

It is easy to verify that (3.1), (3.2), and (3.69) hold. Hence Theorem 3.4 implies that (4.7) has

uncountably many bounded positive solutions in U (M). But the results in [1, 7] are not valid
for (4.7).

Example 4.5. Consider the second-order nonlinear neutral delay difference equation

A <(—1)"("_1)/2<(n +1)° + Y5, 5 +21°y% | +In(1 + 1| yngun |)>

11In(1 +n2) + 11sinn + 10 Xns = 2174+ (Xpinezy = 2)°
gy P2 ) + 1 B P T ) MY
In(1+n?) +sinn+1 (12 +3)° + |xps — M2xp(00)| + 1

n’ —5n* -9
= , n>0,
n'l +7n8 —6n” +5n3 +1

where 7 € Nis fixed. Letng =0, r =3, k =2, b, =10, b* =11, N =2, M =3, =
min{-7,-5} and

g, =2n-3, o =n>-1, as, =n(n-1), fin=n-5, fon=n(n-2),
_ 11In(1+n?) +11sinn+10 ~ n’ —5n* -9
" In(1+n?) +sinn+1 T AT 7S —6n 4 5m0 + 1
" i (4.10)
a(n,u,v,w) = (-1)""H/ ((n +1)° +u® + 2n’0? + In(1 + n|w|)>, a, =n’,
— 2P/ -2)? 2
f(n,u,v) = u-2""+(@-2) Pn = , V(n,u,v,w)eNnoxRS.

(2 +3)° + ju-n2o|+1° nt+1

It is easy to see that (3.1), (3.2), and (3.76) hold. Hence Theorem 3.5 guarantees that (4.9)
possesses uncountably many bounded positive solutions in A(IN, M). But the results in [1, 7]
are inapplicable for (4.9).
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