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The multiple-set split feasibility problem (MSSFP), as a generalization of the split feasibility
problem, is to find a point in the intersection of a family of closed convex sets in one space
such that its image under a linear transformation will be in the intersection of another family
of closed convex sets in the image space. Censor et al. (2005) proposed a method for solving the
multiple-set split feasibility problem (MSSFP), whose efficiency depends heavily on the step size,
a fixed constant related to the Lipschitz constant of ∇p(x) which may be slow. In this paper, we
present an accelerated algorithm by introducing an extrapolated factor to solve the multiple-set
split feasibility problem. The framework encompasses the algorithm presented by Censor et al.
(2005). The convergence of the method is investigated, and numerical experiments are provided
to illustrate the benefits of the extrapolation.

1. Introduction

The multiple-set split feasibility problem (MSSFP) is to find a point

x ∈ C =
t⋂

i=1

Ci such that Ax ∈ Q =
r⋂

j=1

Qj, (1.1)

where t and r are positive integers, Ci ⊂ �N, i = 1, . . . , t and Qj ⊂ �M, j = 1, . . . , r are closed
convex, A is an M × N real matrix. When t = r = 1, the problem becomes to find a point
x ∈ C andAx ∈ Q, which is just the two-set split feasibility problem (SFP, for short). SFP was
originally introduced in [1] allowing for constraints both in the domain and range of a linear
operator. Many methods have been developed for solving the SFP, for example, the basic CQ
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algorithm proposed by Byrne [2], the relaxed CQ algorithm presented by Yang [3] and the
KM-CQ-like algorithm developed by Dang and Gao [4]. The MSSFP, formulated in [5], arises
in the field of intensity-modulated radiation therapy when one attempts to describe physical
does constraints and equivalent uniform does (EUD) constraints within a single model, see
[6]. Censor et al. generalized the CQ algorithm [2] to solve the MSSFP [5] to get the following
iterative process:

xk+1 = xk − s

L
·
(

t∑
i=1
αi

(
xk − PCi

(
xk
))

+
r∑

j=1
βjA

T
(
Axk − PQj

(
Axk
))
)
, (1.2)

where 0 < s < 2, L =
∑t

i=1 αi + ρ(ATA)
∑r

j=1 βj and ρ(ATA) is the spectral radius of ATA, and
αi > 0, βj > 0, for all i and j with

∑t
i=1 αi +

∑r
j=1 βj = 1. Let PS denote the projection onto the

convex set S, that is,

PSx = argmin
y∈S

∥∥x − y
∥∥. (1.3)

There also came out other algorithms for solving MSSFP, such that Xu in [7] and Masad
and Reich in [8] introduced strong convergence methods in infinite dimensional Hilbert
space, respectively. Censor et al. in [9] presented the perturbed projection and simultaneous
subgradient projection algorithm to deal with the limit of accurately computing the
orthogonal projection, Censor and Segal proposed string-averaging algorithmic scheme for
sparse case in [10] and employed product space formulation to derive and analyze the
simultaneous algorithm for MSSFP in [11]. However, the above algorithms use a fixed
stepsize related to the largest eigenvalue of the matrix ATA, which sometimes affects the
convergence speed of the algorithms.

Extrapolated iterative method was first proposed in [12], it is an accelerated method in
optimization since Pierra observed that the extrapolation parameter can be much larger than
1 and that the sequence generated by the extrapolated method converges fast. Subsequently,
Heinz et al. in [13], proposed a general parallel block-iterative algorithmic framework by
introducing extrapolated overrelaxations to solve the affine-convex feasibility problems, the
corresponding numerical results also show the fast convergence.

Motivated by the extrapolated method for solving the affine-convex feasibility prob-
lems, in this paper, we present an extrapolated iterative method to solve the MSSFP, which
includes the algorithm proposed by Censor et al. in [5]. As will be shown our algorithm
extends and includes as a special case of the method in [5].

The paper is organized as follows. Section 2 reviews some preliminaries. Section 3
gives an extrapolated algorithm and shows its convergence. Section 4 provides some numer-
ical experiments.

2. Preliminaries

Under normal circumstances, the MSSFP considers both the feasible and the infeasible
cases by the use of a proximity function, that is, if the MSSFP problem is consistent then
unconstrained minimization of the proximity function yields the value 0; in the inconsistent
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case, it finds a point which is least violating the feasibility by being “closest” to all sets, as
“measured” by the proximity function. The minimization problem is

min
1
2
‖x − PC(x)‖2 + 1

2
∥∥Ax − PQ(Ax)

∥∥2. (2.1)

We know that the projections of a point onto the sets C and Q are difficult to
implement, even if each individual sets Ci and Qj have simple or special structures such that
projection onto each of them is easy to implement. In practical applications, the projections
onto individual sets Ci are more easily calculated than the projection onto the intersection
C. For this purpose, Censor et al. [5] introduced the proximity function p(x), to measure the
distance of a point to all sets. We have

p(x) :=
1
2

t∑

i=1

αi‖PCi(x) − x‖2 + 1
2

r∑

j=1

βj
∥∥∥PQj (Ax) −Ax

∥∥∥
2
, (2.2)

where αi > 0, βj > 0, for all i and j with
∑t

i=1 αi +
∑r

j=1 βj = 1. Then,

∇p(x) =
t∑

i=1

αi

(
xk − PCi

(
xk
))

+
r∑

j=1

βjA
T
(
Axk − PQj

(
Axk
))

, (2.3)

Hence, (1.2) can be rewritten as

xk+1 = xk − s · 1
L · ∇p

(
xk
) . (2.4)

The lemma provides well-known properties of orthogonal projections.

Lemma 2.1 (see [14]). Let S be a nonempty closed convex subset of �N , for any x, y ∈ �N and any
z ∈ S, the following properties hold:

(1) x ∈ S ⇔ PS(x) = x,

(2) 〈x − PS(x), z − PS(x)〉 ≤ 0,

(3) ‖PS(x) − z‖2 ≤ ‖x − z‖2 − ‖PS(x) − x‖2,
(4) ‖PS(x) − PS(y) ‖ ≤ ‖x − y‖.

3. The Extrapolated Projection Algorithm and Its Convergence

The following is our extrapolated projection algorithm.

Algorithm 3.1. For an arbitrary initial point x0, {xk}k≥0 is generated by the iteration

xk+1 = xk + smax
{
1
L
, λk

}⎛

⎝
t∑

i=1

αi

(
PCi

(
xk
)
− xk
)
+

r∑

j=1

βjA
T
(
PQj

(
Axk
)
−Axk

)
⎞

⎠, (3.1)
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where s is a positive scalar such that 0 < s < 2, αi > 0, βj > 0 for all i and j with
∑t

i=1 αi +∑r
j=1 βj = 1, L =

∑t
i=1 αi + ρ(ATA)

∑r
j=1 βj and ρ(ATA) being the spectral radius of ATA,

λk =

∑t
i=1 αi

∥∥(PCi

(
xk
) − xk

)∥∥2 +
∑r

j=1 βj
∥∥∥
(
PQj

(
Axk
) −Axk

)∥∥∥
2

∥∥∥
∑t

i=1 αi

(
PCi

(
xk
) − xk

)
+
∑r

j=1 βjA
T
(
PQj

(
Axk
) −Axk

)∥∥∥
2
. (3.2)

Evidently, (3.1) happens to be (1.2), when 1/L > λk.

Now we prove the convergence of the Algorithm 3.1.

Theorem 3.2. Assume that the set of the solution of the multiple-sets split feasibility problem
(MSSFP) is nonempty. Then, any sequence {xk}∞k=0 generated by Algorithm 3.1 converges to a
solution of MSSFP (1.1).

Proof. Let hk = max{1/L, λk} and take a point z ∈ C with Az ∈ Q.

Step 1. First we show that ‖xk − z‖ ≤ ‖xk+1 − z‖. From (3.1), we have

∥∥∥xk+1 − z
∥∥∥
2
=

∥∥∥∥∥∥
xk + shk

(
t∑

i=1

αi

(
PCi

(
xk
)
− xk
))

+
r∑

j=1

βjA
T
(
PQj

(
Axk
)
−Axk

)
− z

∥∥∥∥∥∥

2

=
∥∥∥xk − z

∥∥∥
2
+ s2h2

k

∥∥∥∥∥∥

(
t∑

i=1

αi

(
PCi

(
xk
)
− xk
))

+
r∑

j=1

βjA
T
(
PQj

(
Axk
)
−Axk

)
∥∥∥∥∥∥

2

+ 2shk

〈
xk − z,

t∑

i=1

αi

(
PCi

(
xk
)
− xk
)〉

+ 2shk

〈
xk − z,

r∑

j=1

βjA
T
(
PQj

(
Axk
)
−Axk

)〉
.

(3.3)

Observe that

〈
xk − z,

t∑

i=1

αi

(
PCi

(
xk
)
− xk
)〉

=
t∑

i=1

αi

〈
xk − z, PCi

(
xk
)
− xk
〉

=
t∑

i=1

αi

〈
xk − PCi

(
xk
)
, PCi

(
xk
)
− xk
〉

+
t∑

i=1

αi

〈
PCi

(
xk
)
− z, PCi

(
xk
)
− xk
〉
.

(3.4)
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By the property (2) in Lemma 2.1, we get

t∑

i=1

αi

〈
PCi

(
xk
)
− z, PCi

(
xk
)
− xk
〉
≤ 0. (3.5)

Therefore,

〈
xk − z,

t∑

i=1

αi

(
PCi

(
xk
)
− xk
)〉

≤ −
t∑

i=1

αi

∥∥∥PCi

(
xk
)
− xk
∥∥∥
2
. (3.6)

Similarly, we have

〈
xk − z,

r∑

j=1

βjA
T
(
PQj

(
Axk
)
−Axk

)〉
=

r∑

j=1

βj
〈
xk − z,AT

(
PQj

(
Axk
)
−Axk

)〉

=
r∑

j=1

βj
〈
Axk −Az,

(
PQj

(
Axk
)
−Axk

)〉
.

(3.7)

Since Az ∈ Q, using again property (2) in Lemma 2.1, we obtain that

〈
xk − z,

r∑

j=1

βjA
T
(
PQj

(
Axk
)
−Axk

)〉
≤ −

r∑

j=1

βj
∥∥∥PQj

(
Axk
)
−Axk

∥∥∥
2
. (3.8)

Substituting (3.6) and (3.8) into (3.3), we get the following:

∥∥∥xk+1 − z
∥∥∥
2 ≤
∥∥∥xk − z

∥∥∥
2
+ s2h2

k

∥∥∥∥∥∥

(
t∑

i=1

αi

(
PCi

(
xk
)
− xk
))

+
r∑

j=1

βjA
T
(
PQj

(
Axk
)
−Axk

)
∥∥∥∥∥∥

2

− 2shk

t∑

i=1

αi

∥∥∥PCi

(
xk
)
− xk
∥∥∥
2 − 2shk

r∑

j=1

βj
∥∥∥PQj

(
Axk
)
−Axk

∥∥∥
2
.

(3.9)

Assume at k th step, 1/L > λk, then algorithms (3.1) and (2.4) coincide. Since ∇p(x) has a
Lipschitz constant L, and ∇p(x) is 1/L-ism (inverse-strongly monotone), that is,

∥∥∇p(x) − ∇p
(
y
)∥∥ ≤ L

∥∥x − y
∥∥,

〈∇p(x) − ∇p
(
y
)
, x − y

〉 ≥ 1
L

∥∥∇p(x) − ∇p
(
y
)∥∥2,

(3.10)
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see [5]; then, from the proof of Theorem 2.1 in [2], we get that the sequence {xk} generated
by (1.2) satisfies

∥∥∥xk+1−z
∥∥∥
2 ≤
∥∥∥xk−z

∥∥∥
2−s(2−s)

∥∥∥
∑t

i=1 αi

(
PCi

(
xk
)−xk

)
+
∑r

j=1 βjA
T
(
PQj

(
Axk
)−Axk

)∥∥∥
2

L2
.

(3.11)

Similarly, assume at kth step, 1/L ≤ λk, that is hk = λk, then replacing 1/L with λk in (3.9),
we get the following:

∥∥xk+1−z∥∥2 ≤
∥∥∥xk−z

∥∥∥
2−s(2−s)

[∑t
i=1 αi

∥∥(PCi

(
xk
)−xk

)∥∥2+
∑r

j=1 βj
∥∥∥
(
PQj

(
Axk
)−Axk

)∥∥∥
2
]2

∥∥∥
∑t

i=1 αi

(
PCi

(
xk
)−xk

)
+
∑r

j=1 βjA
T
(
PQj

(
Axk
)−Axk

)∥∥∥
2

.

(3.12)

Combing (3.11) with (3.12)

∥∥∥xk+1 − z
∥∥∥
2 ≤
∥∥∥xk − z

∥∥∥
2

−s(2−s)max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∥∥∥
∑t

i=1 αi

(
PCi

(
xk
) − xk

)
+
∑r

j=1 βjA
T
(
PQj

(
Axk
) −Axk

)∥∥∥
2

L2
,

[∑t
i=1 αi

∥∥(PCi

(
xk
)−xk

)∥∥2 +
∑r

j=1 βj
∥∥∥
(
PQj

(
Axk
)−Axk

)∥∥∥
2
]2

∥∥∥
∑t

i=1 αi

(
PCi

(
xk
)−xk

)
+
∑r

j=1 βjA
T
(
PQj

(
Axk
)−Axk

)∥∥∥
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

(3.13)

Since s ∈ (0, 2), we have

∥∥∥xk+1 − z
∥∥∥ ≤
∥∥∥xk − z

∥∥∥ (3.14)

for all z ∈ C such that Az ∈ Q. Evidently, both {xk} and {‖xk − z‖} are bounded.

Step 2. Secondly we show that limk→∞xk = x∗ with x∗ ∈ C and Ax∗ ∈ Q.
As shown in Step 1, the sequence {‖xk−z‖} is monotonically decreasing and bounded,

and there exists the limit

lim
k→∞

∥∥∥xk − z
∥∥∥ = d . (3.15)
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Since the case hk = 1/L is already treated in [5], we only need to consider the subsequence
{xkp}λkp>1/L. Hence, we need to show that the subsequence {xkp} converges to x∗ with x∗ ∈ C

and Ax∗ ∈ Q. From (3.12) and (3.15), and replacing xk by xkp , we have

lim
p→∞

[∑t
i=1 αi

∥∥(PCi

(
xkp
) − xkp

)∥∥2 +
∑r

j=1 βj
∥∥∥
(
PQj

(
Axkp

) −Axkp
)∥∥∥

2
]2

∥∥∥
∑t

i=1 αi

(
PCi

(
xkp
) − xkp

)
+
∑r

j=1 βjA
T
(
PQj

(
Axkp

) −Axkp
)∥∥∥

2
= 0 (3.16)

From (3) in Lemma 2.1, we know that ‖PCi(x
kp)−xkp)‖ ≤ ‖xkp −z‖ and ‖PQj (Axkp)−Axkp)‖ ≤

‖Axkp −Az‖, then, we may assume that there exists a constant M such that

∥∥∥∥∥∥

t∑

i=1

αi

(
PCi

(
xkp
)
− xkp

)
+

r∑

j=1

βjA
T
(
PQj

(
Axkp

)
−Axkp

)
∥∥∥∥∥∥

2

≤ M. (3.17)

Therefore,

[∑t
i=1 αi

∥∥(PCi(x
kp) − xkp

)∥∥2 +
∑r

j=1 βj
∥∥∥(PQj (Axkp) −Axkp)

∥∥∥
2
]2

∥∥∥
∑t

i=1 αi

(
PCi

(
xkp
) − xkp

)
+
∑r

j=1 βj
(
PQj

(
Axkp

) −Axkp
)∥∥∥

2

≥ 1
M

⎛

⎝
t∑

i=1

αi

∥∥∥
(
PCi

(
xkp
)
− xkp

)∥∥∥
2
+

r∑

j=1

βj
∥∥∥(PQj (Axkp) −Axkp)

∥∥∥
2

⎞

⎠
2

≥ 0.

(3.18)

Taking limits as p → ∞ in (3.18) and considering (3.16) lead to

lim
p→∞

t∑

i=1

αi

∥∥∥PCi

(
xkp
)
− xkp

∥∥∥
2
+

r∑

j=1

βj
∥∥∥PQj

(
Axkp

)
−Axkp

∥∥∥
2
= 0, (3.19)

this implies that

lim
p→∞

∥∥∥PCi

(
xkp
)
− xkp

∥∥∥ = 0, i = 1, . . . , t ,

lim
p→∞

∥∥∥PQj

(
Axkp

)
−Axkp

∥∥∥ = 0, j = 1, . . . , r.
(3.20)

Since the sequence {xkp} is bounded, there exists a subsequence {xkp
l } of {xkp}which conver-

ges to a point b, and a corresponding subsequence {Ax
kp
l
} of {Axkp} which converges to a

point Ab. Therefore, from (3.20), it is easy to get that b ∈ C and Ab ∈ Q.
To obtain the result that the sequence {xkp} itself is convergent to a point b ∈ C with

Ab ∈ Q, it is now sufficient to show that the subsequence of {xkp} converges to the same
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point b and the corresponding subsequence of {Axkp} is convergent to Ab. Let us suppose
that there exists a subsequence {xkp

l′ } of {xkp} that is convergent to point b′, as above, b′ ∈ C
and Ab′ ∈ Q. For l ∈ Z+, we obtain

∥∥∥xkp
l − b′

∥∥∥
2
−
∥∥∥xkp

l − b
∥∥∥
2
=
〈
x
kp
l − b + b − b′, x

kp
l − b + b − b′

〉
−
∥∥∥xkp

l − b
∥∥∥
2
, (3.21)

which, after calculating the inner product, leads to

∥∥∥xkp
l − b′

∥∥∥
2
−
∥∥∥xkp

l − b
∥∥∥
2
= 2
〈
x
kp
l − b, b − b′

〉
+
∥∥b′ − b

∥∥2. (3.22)

Similarly, for l′ ∈ Z+, it is easily to obtain that

∥∥∥xkp
l′ − b

∥∥∥
2
−
∥∥∥xkp

l′ − b′
∥∥∥
2
= 2
〈
x
kp
l′ − b′, b′ − b

〉
+
∥∥b − b′

∥∥2. (3.23)

As remarked, the sequences {‖xkp −b‖}+∞p=1 and {‖xkp −b′‖}+∞p=1 are convergent to d(b) and d(b′).
In particular, we get the following:

lim
p→+∞

(∥∥∥xkp − b
∥∥∥ −

∥∥∥xkp − b′
∥∥∥
)
= d(b) − d

(
b′
)
. (3.24)

Taking the limits in (3.22) and (3.23), for l → +∞ and for l′ → +∞, we deduce that

d
(
b′
)2 − d(b)2 = 0 +

∥∥b − b′
∥∥2,

d(b)2 − d
(
b′
)2 = 0 +

∥∥b′ − b
∥∥2,

(3.25)

from above we conclude that b = b′. Similarly, Ab = Ab′. Hence, limp→∞xkp = b with b ∈ C
and Ab ∈ Q, that is, limp→∞‖xkp − b‖ = 0 with b ∈ C and Ab ∈ Q. Replace b with x∗, it can be
written as limp→∞‖xkp −x∗‖ = 0 with x∗ ∈ C andAx∗ ∈ Q. And by reason of the monotonicity
and boundness of the sequence {‖xk − x∗‖}, we get the result.

Here we shortly explain the rational for the choice of the parameter λk in
Algorithm 3.1. In fact, if s = 1, (3.9) can be rewritten as

∥∥∥xk − z
∥∥∥
2 −
∥∥∥xk+1 − z

∥∥∥
2 ≥ 2hk

t∑

i=1

αi

∥∥∥PCi(x
k) − xk

∥∥∥
2
+ 2hk

r∑

j=1

βj
∥∥∥PQj (Axk) −Axk

∥∥∥
2

− h2
k

∥∥∥∥∥∥

(
t∑

i=1

αi

(
PCi

(
xk
)
− xk
))

−
r∑

j=1

βjA
T
(
PQj

(
Axk
)
−Axk

)
∥∥∥∥∥∥

2

.

(3.26)
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Evidently, when

hk =

∑t
i=1 αi

∥∥PCi

(
xk
) − xk

∥∥2 +
∑r

j=1 βj
∥∥∥PQj (Axk) −Axk

∥∥∥
2

∥∥∥
(∑t

i=1 αi

(
PCi

(
xk
) − xk

) −∑r
j=1 βjA

T
(
PQj

(
Axk
) −Axk

))∥∥∥
2
, (3.27)

the maximal value of the right hand side expression of (3.26) is obtained. Hence, if s = 1,
for the case λk > 1/L, the factor λk can be considered as the “best” possible value which
assures that xk+1 as the “closest” point to the set of solution of MSSFP along the direction∑t

i=1 αi(PCi(x
k)−xk)−∑r

j=1 βjA
T (PQj (Axk)−Axk). Therefore, to some extent, the extrapolated

factor λk plays an important role for the accelerated convergence for Algorithm 3.1.

4. Numerical Experiments

In the numerical results listed in the following table CPU time in seconds. We denote that
e0 = (0, 0, . . . , 0) ∈ �N and e1 = (1, 1, . . . , 1) ∈ �N . “Algorithm (1.2)” in the tables denotes the
projection algorithm developed by Censor et al., in [5] as (1.2). “Algorithm 3.1” in the tables
denotes Algorithm 3.1.

Now we give the following examples to test the efficiency of the above algorithm.

Example 4.1. In this example, we considered the multiples-set split feasibility problem, where

A =

⎡

⎢⎢⎣

2 −1 3 2 3
1 2 5 2 1
2 0 2 1 −2
2 −1 0 −3 5

⎤

⎥⎥⎦,

C1 =
{
x ∈ �5 | x1 + x2 ≤ 0.25

}
,

C2 =
{
x ∈ �5 | x2 + x3 ≤ 0.25

}
,

C3 =
{
x ∈ �5 | x3 + x4 ≤ 0.25

}
,

C4 =
{
x ∈ �5 | x4 + x5 ≤ 0.25

}
,

C5 =
{
x ∈ �5 | x1 + x5 ≤ 0.25

}
,

(4.1)

and Q = {x ∈ �4 | x ≤ d}with d = (1, 1, 1, 1). Consider the following three cases:

Case I. x0 = (1,−1, 1,−1, 1),

Case II. x0 = (1, 1, 1, 1, 1),

Case III. x0 = (10, 0, 10, 0, 10).

The number of iterative step needed for Algorithm (1.2) and Algorithm 3.1, and the
corresponding solutions of this example are shown in Table 1.
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Table 1: The numerical results of Example 4.1.

Case Algorithm (1.2) Algorithm 3.1 Algorithm (1.2) Algorithm 3.1 Algorithm (1.2) Algorithm 3.1
s = 1 s = 1 s = 0.6 s = 0.6 s = 1.6 s = 1.6

I

Iter. = 85 Iter. = 3 Iter. = 143 Iter. = 9 Iter. = 52 Iter. = 2
Sec. = 0.123 Sec. = 0.002 Sec. = 0.210 Sec. = 0.006 Sec. = 0.099 Sec. = 0.001
x∗ = (0.0781 x∗ = (0.1149 x∗ = (0.0765 x∗ = (0.0863 x∗ = (0.0809 x∗ = (−0.2996
−0.6930 −0.7321 −0.6912 −0.7045 −0.6958 −0.6310
0.4143 0.3215 0.4175 0.3868 0.4095 −0.0882
−0.6005 −0.6893 −0.5997 −0.6248 −0.6051 −0.6830
−0.3276) −0.4082) −0.3249) −0.3483) −0.3321) −0.9525)

II

Iter. = 658 Iter. = 4 Iter. = 1096 Iter. = 8 Iter. = 411 Iter. = 2
Sec. = 0.890 Sec. = 0.003 Sec. = 0.996 Sec. = 0.019 Sec. = 0.633 Sec. = 0.002

x∗ = (−0.0289 x∗ = (−0.1147 x∗ = (−0.0267 x∗ = (−0.0607 x∗ = (−0.0324 x∗ = (−0.3398
0.3333 0.3647 0.3314 0.3399 0.3367 0.3019
−0.3736 −0.5197 −0.3715 −0.4232 −0.3771 −1.1325
0.2065 0.2310 0.2059 0.2142 0.2077 0.0975
0.0682) 0.0115) 0.0688) 0.0467) 0.0670) −0.1164)

III

Iter. = 774 Iter. = 5 Iter. = 1288 Iter. = 11 Iter. = 484 Iter. = 1
Sec. = 0.910 Sec. = 0.011 Sec. = 1.231 Sec. = 0.022 Sec. = 0.810 Sec. = 0.004
x∗ = (0.5447 x∗ = (0.7013 x∗ = (0.5376 x∗ = (0.5206 x∗ = (0.5572 x∗ = (−1.2386
−0.2349 −0.4513 −0.2277 −0.2120 −0.2474 0.0067
−0.7627 −1.4225 −0.7437 −1.0221 −0.7953 −6.9419
−0.9891 −1.4560 −0.9679 −1.1625 −1.0249 −3.1678
−0.7520) −1.3338) −0.7343) −0.8719) −0.7822) −6.8881)

Table 2: The numerical results of Example 4.2.

t, r
Algorithm

(1.2) Algorithm 3.1 Algorithm
(1.2) Algorithm 3.1 Algorithm

(1.2) Algorithm 3.1

N s = 1 s = 1 s = 0.8 s = 0.8 s = 1.95 s = 1.95

N = 20 t = 5 Iter. = 1944 Iter. = 257 Iter. = 2387 Iter. = 303 Iter. = 1076 Iter. = 165
r = 20 Sec. = 2.395 Sec. = 0.313 Sec. = 2.741 Sec. = 0.352 Sec. = 1.305 Sec. = 0.294

N = 40 t = 10 Iter. = 5494 Iter. = 267 Iter. = 6824 Iter. = 314 Iter. = 2901 Iter. = 176
r = 40 Sec. = 5.403 Sec. = 0.340 Sec. = 6.304 Sec. = 0.396 Sec. = 2.988 Sec. = 0.345

N = 60 t = 10 Iter. = 14352 Iter. = 278 Iter. = 17895 Iter. = 326 Iter. = 7445 Iter. = 183
r = 60 Sec. = 20.304 Sec. = 0.452 Sec. = 26.401 Sec. = 0.620 Sec. = 17.04 Sec. = 0.370

Example 4.2. In this example, we consider a multiple-set split feasibility where A =
(aij)N × N ∈ �N × N , and aij ∈ (0, 10) are generated randomly

Ci =
{
x ∈ �N | ‖x − ie1‖2 ≤ (38 + 2i)2

}
, i = 1, . . . , t,

Qj =
{
x ∈ �N | (24 ≤ xj ≤ 26

}
, j = 1, . . . , r(N).

(4.2)

Take initial point x0 = e0 ∈ �N , we test the algorithms with different values of s, t, r, and N,
respectively, in different dimensional Euclidean space.The number of iterative step needed
for Algorithm (1.2) and Algorithm 3.1 is displayed in Table 2.
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Table 3: The numerical results of Example 4.3.

Case Algorithm (1.2) Algorithm 3.1 Algorithm (1.2) Algorithm 3.1 Algorithm (1.2) Algorithm 3.1
s = 1 s = 1 s = 0.6 s = 0.6 s = 1.6 s = 1.6

I

Iter. = 623323 Iter. = 3 Iter. = 1038874 Iter. = 48 Iter. = 389576 Iter. = 2
Sec. = 69.210 Sec. = 0.013 Sec. = 200.546 Sec. = 0.021 Sec. = 40.087 Sec. = 0.010
x∗ = (0.1550 x∗ = (0.1250 x∗ = (0.1550 x∗ = (0.1250 x∗ = (0.1550 x∗ = (−0.2099
−1.1979 −1.1980 −1.1979 −1.1989 −1.1980 −1.3168
0.8021 0.8020 0.8021 0.8011 0.8020 0.6832
−1.1979 −1.1980 −1.1979 −1.1989 −1.1980 −1.3168
0.1550) 0.1250) 0.1550) 0.1250) 0.1550) −0.2099)

II

Iter. = 33 Iter. = 2 Iter. = 58 Iter. = 47 Iter. = 19 Iter. = 1
Sec. = 0.069 Sec. = 0.034 Sec. = 0.096 Sec. = 0.081 Sec. = 0.033 Sec. = 0.011
x∗ = (0.0021 x∗ = (0.020 x∗ = (0.0021 x∗ = (0.0020 x∗ = (0.0021 x∗ = (−0.5968

0.0021 0.0020 0.0021 0.0020 0.0021 −0.5968
0.0021 0.0020 0.0021 0.0020 0.0021 −0.5968
0.0021 0.0020 0.0021 0.0020 0.0021 −0.5968
0.0021) 0.0020) 0.0021) 0.0020) 0.0021) −0.5968)

III

Iter. = 972361 Iter. = 4 Iter. = 1620605 Iter. = 52 Iter. = 607724 Iter. = 2
Sec. = 165.303 Sec. = 0.084 Sec. = 280.564 Sec. = 0.115 Sec. = 79.910 Sec. = 0.071
x∗ = (0.1550 x∗ = (0.1250 x∗ = (0.1550 x∗ = (0.1250 x∗ = (0.1550 x∗ = (−0.0419
−5.9977 −6.3782 −5.9976 −6.0071 −5.9977 −9.5967
4.0023 3.6218 4.0024 3.9929 4.0023 0.4033
−5.9977 −6.3782 −5.9976 −6.0071 −5.9977 −9.5967
0.1550) 0.1250) 0.1550) 0.1250) 0.1550) −0.0419)

Example 4.3. In this example, we considered the multiples-set split feasibility problem, where

A =

⎡

⎢⎢⎣

100 100 100 100 100
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎦,

C1 =
{
x ∈ �5 | x1 + x2 ≤ 0.25

}
;

C2 =
{
x ∈ �5 | x2 + x3 ≤ 0.25

}
,

C3 =
{
x ∈ �5 | x3 + x4 ≤ 0.25

}
,

C4 =
{
x ∈ �5 | x4 + x5 ≤ 0.25

}
,

C5 =
{
x ∈ �5 | x1 + x5 ≤ 0.25

}
,

(4.3)

and Q = {x ∈ �4 | x ≤ d}with d = (1, 1, 1, 1). Consider the following three cases:

Case I. x0 = (1,−1, 1,−1, 1),

Case II. x0 = (1, 1, 1, 1, 1),

Case III. x0 = (10, 0, 10, 0, 10).
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The number of iterative step needed for Algorithm (1.2) and Algorithm 3.1, and the
corresponding solutions of this example are shown in Table 3.

In all numerical experiments, we take the weights as αi = βj = 1/(r + t), i = 1, . . . , t,
j = 1, . . . , r. The stopping criterion is p(x) < ε = 10−4.

From these preliminary numerical results, we can see that themethod is efficient, while
the computational burden is not too large using the extrapolated technique.
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