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This paper is devoted to the study of abstract time-fractional equations of the following form:
Dαn
t u(t) +

∑n−1
i=1 AiD

αi
t u(t) = ADα

t u(t) + f(t), t > 0, u(k)(0) = uk , k = 0, ..., �αn� − 1, where n ∈ N \ {1},
A andA1, ..., An−1 are closed linear operators on a sequentially complete locally convex space E, 0 ≤
α1 < · · · < αn, 0 ≤ α < αn, f(t) is an E-valued function, and Dα

t denotes the Caputo fractional deri-
vative of order α (Bazhlekova (2001)). We introduce and systematically analyze various classes of
k-regularized (C1, C2)-existence and uniqueness (propagation) families, continuing in such a way
the researches raised in (de Laubenfels (1999, 1991), Kostić (Preprint), and Xiao and Liang (2003,
2002). The obtained results are illustrated with several examples.

1. Introduction and Preliminaries

A great number of abstract time-fractional equations appearing in engineering, mathematical
physics, and chemistry can be modeled through the abstract Cauchy problem

Dαn
t u(t) +

n−1∑

i=1

AiDαi
t u(t) = ADα

t u(t) + f(t), t > 0,

u(k)(0) = uk, k = 0, . . . , �αn� − 1.

(1.1)

For further information about the applications of fractional calculus, the interested reader
may consult the monographs by Baleanu et al. [1], Klafter et al. (Eds.) [2], Kilbas et al. [3],
Mainardi [4], Podlubny [5], and Samko et al. [6]; we also refer to the references [7–19].
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The aim of this paper is to develop some operator theoretical methods for solving the
abstract time-fractional equations of the form (1.1). We start by quoting some special cases.
The study of qualitative properties of the abstract Basset-Boussinesq-Oseen equation:

u′(t) −ADα
t u(t) + u(t) = f(t), t ≥ 0, u(0) = 0 (α ∈ (0, 1)), (1.2)

describing the unsteadymotion of a particle accelerating in a viscous fluid under the action of
the gravity, has been initiated by Lizama and Prado in [17]. For further results concerning the
C-wellposedness of (1.2), [20, 21] are of importance. In [12], Karczewska and Lizama have
recently analyzed the following stochastic fractional oscillation equation:

u(t) +
∫ t

0
(t − s)[ADα

su(s) + u(s)]ds =W(t), t > 0, (1.3)

where 1 < α < 2, A is the generator of a bounded analytic C0-semigroup on a Hilbert space
H andW(t) denotes anH-valued Wiener process defined on a stochastic basis (Ω,F, P). The
theory of (a, k)-regularized resolvent families (cf. [12, Theorems 3.1 and 3.2]) can be applied
in the study of deterministic counterpart of (1.3) in integrated form:

u(t) +
∫ t

0

(t − s)1−α
Γ(2 − α) Au(s)ds +

∫ t

0
(t − s)u(s)ds =

∫ t

0
(t − s)f(s)ds, t > 0, (1.4)

where Γ(·) denotes the Gamma function and f ∈ L1
loc([0,∞) : E). Equation (1.4) generalizes

the so-called Bagley-Torvik equation, which can be obtained by plugging α = 3/2 in (1.4),
and models an oscillation process with fractional damping term (cf. [21] for the analysis of
C-wellposedness and perturbation properties of (1.4)). After differentiation, (1.4) becomes,
in some sense,

u′′(t) +ADα
t u(t) + u(t) = f(t), t ≥ 0; u(0) = u′(0) = 0. (1.5)

Notice also that the periodic solutions for the equation

Dαu(t) + BDβu(t) +Au(t) = f(t), t ∈ [0, 2π], (1.6)

where A and B are closed linear operators defined on a complex Banach space X, 0 ≤ β < α ≤
2, f ∈ C([0, 2π] : X) and Dα denotes the Liouville-Grünwald fractional derivative of order
α, have been studied by Keyantuo and Lizama in [13]. Observe also that Diethelm analyzed
in [22, Chapter 8] scalar-valued multiterm Caputo fractional differential equations. Consider,
for illustration purposes, the following abstract time-fractional equation:

Dα
t u(t) +Dβ

t u(t) = au(t), t > 0; u(0) = u0, u′(0) = 0, (1.7)
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where 1 < α < 2, 0 < β < α and A = a is a certain complex constant. Applying the Laplace
transform (see, e.g., [10, (1.23)]), we get:

(
λα + λβ

)
ũ(λ) −

(
λα−1 + λβ−1

)
u0 = aũ(λ). (1.8)

Therefore,

ũ(λ) =
λα−1 + λβ−1

λα + λβ − au0.
(1.9)

By (24) and (26) in [19], it readily follows that:

u(t) =
∞∑

n=0
(−1)nt(α−β)n

[

En+1
α,(α−β)n+1(at

α) + tα−βEn+1
α,(α−β)(n+1)+1(at

α)
]

u0, (1.10)

where

E
γ

α,β(z) =
∞∑

n=0

(
γ
)
nz

n

Γ
(
nα + β

)
n!

(1.11)

is the generalized Mittag-Leffler function. Here (γ)n = γ(γ +1) · · · (γ +n−1) (n ∈ N) and (γ)0 =
1. The formula (1.10) shows that it is quite complicated to apply Fourier multiplier theorems
to the abstract time-fractional equations of the form (1.1); for some basic references in this
direction, the reader may consult [16, 23]. Before going any further, we would also like to
observe that Atanacković et al. considered in [8], among many other authors, the following
fractional generalization of the telegraph equation:

τDα
t u(t) +Dβ

t u(t) = Duxx, x ∈ (0, l), t > 0, (1.12)

where 0 < β ≤ α ≤ 2, τ > 0 and D > 0. In that paper, solutions to signalling and Cauchy
problems in terms of a series and integral representation are given.

In the second section, we continue the analysis from our recent paper [15], where it
has been assumed that Aj = cjI for some complex constants cj ∈ C (1 ≤ j ≤ n − 1); here, and
in the sequel of the second section, I denotes the identity operator on E. We introduce and
clarify the basic structural properties of various types of k-regularized (C1, C2)-existence and
uniqueness propagation families. This is probably the best concept for the investigation of
integral solutions of the abstract time-fractional equation (1.1) with Aj ∈ L(E), 1 ≤ j ≤ n − 1.
If there exists an index j ∈ Nn−1 such thatAj /∈ L(E), then the vector-valued Laplace transform
cannot be so easily applied (cf. Theorems 2.10–2.11), which implies, however, that there exist
some limitations to the introduced classes of propagation families. The notion of a strong
solution of (1.1) is introduced in Definition 2.1, and the notions of strong and mild solutions
of inhomogeneous equations of the form (2.15) below are introduced in Definition 2.7. The
generalized variation of parameters formula is proved in Theorem 2.8.

On the other hand, the notions of C1-existence families and C2-uniqueness families
for the higher order abstract Cauchy problem (ACPn) were introduced by Xiao and Liang in
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[24, Definition 2.1]. In the third section, we will introduce more general classes of (local) k-
regularizedC1-existence families for (1.1), k-regularizedC2-uniqueness families for (1.1), and
k-regularized C-resolvent families for (1.1). Our intention in this section is to transfer results
of [24] to abstract time-fractional equations. In addition, various adjoint type theorems for
k-regularized C-resolvent families are considered in Theorem 3.6.

Throughout this paper, we will always assume that E is a Hausdorff sequentially com-
plete locally convex space over the field of complex numbers, SCLCS for short, and that the
abbreviation � stands for the fundamental system of seminorms which defines the topology
of E; in this place, we would like to mention in passing that the locally convex spaces are
very important to describe a set of mixed states in quantum theory [2]. The completeness of
E, if needed, will be explicitly emphasized. By L(E) is denoted the space of all continuous
linear mappings from E into E. Let B be the family of bounded subsets of E and let pB(T) :=
supx∈Bp(Tx), p ∈ �, B ∈ B, T ∈ L(E). Then pB(·) is a seminorm on L(E) and the system
(pB)(p,B)∈�×B induces the Hausdorff locally convex topology on L(E). Recall that L(E) is sequ-
entially complete provided that E is barreled. Henceforth A is a closed linear operator acting
on E, L(E) 	 C is an injective operator, and the convolution like mapping ∗ is given by
f ∗ g(t) := ∫ t0 f(t − s)g(s)ds. The domain, resolvent set and range of A are denoted by D(A),
ρ(A) and R(A), respectively. Since it makes no misunderstanding, we will identifyAwith its
graph. Recall that the C-resolvent set of A, denoted by ρC(A), is defined by

ρC(A) :=
{
λ ∈ C; λ −A is injective and (λ −A)−1C ∈ L(E)

}
. (1.13)

Suppose F is a linear subspace of E. Then the part of A in F, denoted by A|F , is a linear
operator defined by D(A|F) := {x ∈ D(A) ∩ F : Ax ∈ F} and A|Fx := Ax, x ∈ D(A|F).

Define Ep := E/p−1(0) (p ∈ �). Then the norm of a class x + p−1(0) is defined by
||x + p−1(0)||Ep := p(x) (x ∈ E). The canonical mapping Ψp : E → Ep is continuous and the
completion of Ep under the norm || · ||Ep is denoted by Ep. Since no confusion seems likely, we
will also denote the norms onEp and L(Ep) (Ep and L(Ep)) by ||·||; L�(E) denotes the subspace
of L(E) which consists of those bounded linear operators T on E such that, for every p ∈ �,
there exists cp > 0 satisfying p(Tx) ≤ cpp(x), x ∈ E. If T ∈ L�(E) and p ∈ �, then the operator
Tp : Ep → Ep, defined by Tp(Ψp(x)) := Ψp(Tx), x ∈ E, belongs to L(Ep). This operator is
uniquely extensible to a bounded linear operator Tp on Ep, and the following holds: ||Tp|| =
||Tp||. The function πqp : Ep → Eq, defined by πqp(Ψp(x)) := Ψq(x), x ∈ E, is a continuous
homomorphism of Ep onto Eq, and extends therefore, to a continuous linear homomorphism
πqp of Ep onto Eq. The reader may consult [25] for the basic facts about projective limits of
Banach spaces (closed linear operators acting on Banach spaces) and their projective limits.
Recall, a closed linear operatorA acting on E is said to be compartmentalized (w.r.t. �) if, for
every p ∈ �, Ap := {(Ψp(x),Ψp(Ax)) : x ∈ D(A)} is a function. Therefore, T ∈ L�(E) is a
compartmentalized operator.

Given s ∈ R in advance, set s� := sup{l ∈ Z : s ≥ l} and �s� := inf{l ∈ Z : s ≤ l}.
The principal branch is always used to take the powers. Set Nl := {1, . . . , l}, N

0
l := {0, 1, . . . , l},

0ζ := 0, gζ(t) := tζ−1/Γ(ζ) (ζ > 0, t > 0) and g0 := the Dirac δ-distribution. If γ ∈ (0, π], then we
define Σγ := {λ ∈ C : λ/= 0, | arg(λ)| < γ}. We refer the reader to [26] and references cited there
for the basic material concerning integration in sequentially complete locally convex spaces
and vector-valued analytic functions.
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Let α > 0, let β ∈ R, and let the Mittag-Leffler function Eα,β(z) be defined by Eα,β(z) :=∑∞
n=0 z

n/Γ(αn+β), z ∈ C. In this place, we assume that 1/Γ(αn+β) = 0 if αn+β ∈ −N0. Set, for
short,Eα(z) := Eα,1(z), z ∈ C. TheWright functionΦγ(t) is defined byΦγ(t) := L−1(Eγ(−λ))(t),
t ≥ 0, where L−1 denotes the inverse Laplace transform. For further information concerning
Mittag-Leffler and Wright functions, we refer the reader to [10, Section 1.3].

The following definition has been recently introduced in [27].

Definition 1.1. Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), k /= 0, a ∈ L1
loc([0, τ)), a/= 0 and A is a closed

linear operator on E.

(i) Then it is said that A is a subgenerator of a (local, if τ < ∞) (a, k)-regularized (C1,
C2)-existence and uniqueness family (R1(t), R2(t))t∈[0,τ) ⊆ L(E) × L(E) if and only if
the mapping t �→ (R1(t)x,R2(t)x), t ∈ [0, τ) is continuous for every fixed x ∈ E and
if the following conditions hold:

(a) Ri(0) = k(0)Ci, i = 1, 2,

(b) C2 is injective,

(c)

A

∫ t

0
a(t − s)R1(s)xds = R1(t)x − k(t)C1x, t ∈ [0, τ), x ∈ E, (1.14)

∫ t

0
a(t − s)R2(s)Axds = R2(t)x − k(t)C2x, t ∈ [0, τ), x ∈ D(A). (1.15)

(ii) Let (R1(t))t∈[0,τ) ⊆ L(E) be strongly continuous. Then it is said that A is a sub-
generator of a (local, if τ < ∞) (a, k)-regularized C1-existence family (R1(t))t∈[0,τ) if
and only if R1(0) = k(0)C1 and (1.14) holds.

(iii) Let (R2(t))t∈[0,τ) ⊆ L(E) be strongly continuous. Then it is said that A is a sub-
generator of a (local, if τ <∞) (a, k)-regularized C2-uniqueness family (R2(t))t∈[0,τ)
if and only if R2(0) = k(0)C2, C2 is injective and (1.15) holds.

It will be convenient to remind us of the following definitions from [14, 20, 26].

Definition 1.2. (i) Let 0 < τ ≤ ∞, k ∈ C([0, τ)), k /= 0 and let a ∈ L1
loc([0, τ)), a/= 0. A strongly

continuous operator family (R(t))t∈[0,τ) is called a (local, if τ < ∞) (a, k)-regularized C-
resolvent family having A as a subgenerator if and only if the following holds:

(a) R(t)A ⊆ AR(t), t ∈ [0, τ), R(0) = k(0)C and CA ⊆ AC,
(b) R(t)C = CR(t), t ∈ [0, τ),

(c) R(t)x = k(t)Cx +
∫ t
0 a(t − s)AR(s)xds, t ∈ [0, τ), x ∈ D(A),

(R(t))t∈[0,τ) is said to be nondegenerate if the condition R(t)x = 0, t ∈ [0, τ) implies
x = 0, and (R(t))t∈[0,τ) is said to be locally equicontinuous if, for every t ∈ (0, τ), the
family {R(s) : s ∈ [0, t]} is equicontinuous. In the case τ = ∞, (R(t))t≥0 is said to be
exponentially equicontinuous (equicontinuous) if there exists ω ∈ R (ω = 0) such
that the family {e−ωtR(t) : t ≥ 0} is equicontinuous.
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(ii) Let β ∈ (0, π] and let (R(t))t≥0 be an (a, k)-regularized C-resolvent family. Then
it is said that (R(t))t≥0 is an analytic (a, k)-regularized C-resolvent family of angle β, if there
exists a function R : Σβ → L(E) satisfying that, for every x ∈ E, the mapping z �→ R(z)x,
z ∈ Σβ is analytic as well as that

(a) R(t) = R(t), t > 0 and

(b) limz→ 0,z∈ΣγR(z)x = k(0)Cx for all γ ∈ (0, β) and x ∈ E,
(R(t))t≥0 is said to be an exponentially equicontinuous, analytic (a, k)-regularized
C-resolvent family, respectively, equicontinuous analytic (a, k)-regularized C-
resolvent family of angle β, if for every γ ∈ (0, β), there exists ωγ ≥ 0, respectively,
ωγ = 0, such that the set {e−ωγ |z|R(z) : z ∈ Σγ} is equicontinuous. Since there is no
risk for confusion, we will identify in the sequel R(·) and R(·).

Definition 1.3. (i) Let k ∈ C([0,∞)) and a ∈ L1
loc([0,∞)). Suppose that (R(t))t≥0 is a global

(a, k)-regularized C-resolvent family havingA as a subgenerator. Then it is said that (R(t))t≥0
is a quasi-exponentially equicontinuous (q-exponentially equicontinuous, for short) (a, k)-
regularized C-resolvent family havingA as subgenerator if and only if, for every p ∈ �, there
existMp ≥ 1, ωp ≥ 0 and qp ∈ � such that:

p(R(t)x) ≤Mpe
ωptqp(x), t ≥ 0, x ∈ E. (1.16)

(ii) Let β ∈ (0, π], and let A be a subgenerator of an analytic (a, k)-regularized C-
resolvent family (R(t))t≥0 of angle β. Then it is said that (R(t))t≥0 is a q-exponentially equi-
continuous, analytic (a, k)-regularized C-resolvent family of angle β, if for every p ∈ � and
ε ∈ (0, β), there existMp,ε ≥ 1, ωp,ε ≥ 0 and qp,ε ∈ � such that

p(R(z)x) ≤Mp,εe
ωp,ε |z|qp,ε(x), z ∈ Σβ−ε, x ∈ E. (1.17)

For a global (a, k)-regularized (C1, C2)-existence and uniqueness family (R1(t),
R2(t))t≥0 having A as subgenerator, it is said that is locally equicontinuous (exponentially
equicontinuous, (q-)exponentially equicontinuous, analytic, (q-)exponentially analytic,. . .) if
and only if both (R1(t))t≥0 and (R2(t))t≥0 are.

The reader may consult [26, Theorems 2.7 and 2.8] for the basic Hille-Yosida type the-
orems for exponentially equicontinuous (a, k)-regularized C-resolvent families. The charac-
terizations of exponentially equicontinuous, analytic (a, k)-regularized C-resolvent families
in terms of spectral properties of their subgenerators are given in [26, Theorems 3.6 and
3.7]. For further information concerning q-exponentially equicontinuous (a, k)-regularized
C-resolvent families, we refer the reader to [20, 25].

Henceforth, we assume that k, k1, k2, . . . are scalar-valued kernels and that a/= 0 in
L1
loc([0, τ)). All considered operator families will be nondegenerate.

The following conditions will be used in the sequel:

(H1) A is densely defined and (R(t))t∈[0,τ) is locally equicontinuous.

(H2) ρ(A)/= ∅.
(H3) ρC(A)/= ∅, R(C) = E and (R(t))t∈[0,τ) is locally equicontinuous.

(H3)’ ρC(A)/= ∅ and C−1AC = A.
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(H4) A is densely defined and (R(t))t∈[0,τ) is locally equicontinuous, or ρC(A)/= ∅.
(H5) (H1) ∨ (H2) ∨ (H3) ∨ (H3)

′
.

(P1) k(t) is Laplace transformable, that is, it is locally integrable on [0,∞) and there
exists β ∈ R so that k̃(λ) = L(k)(λ) := limb→∞

∫b
0 e

−λtk(t)dt :=
∫∞
0 e−λtk(t)dt exists

for all λ ∈ C with �λ > β. Put abs(k) := inf{�λ : k̃(λ) exists}.

2. The Main Structural Properties of k-Regularized (C1, C2)-Existence
and Uniqueness Propagation Families

In this section, we will always assume that E is a SCLCS,A andA1, . . . , An−1 are closed linear
operators acting on E, n ∈ N \ {1}, 0 ≤ α1 < · · · < αn and 0 ≤ α < αn. Our intention is to clarify
the most important results concerning the C-wellposedness of (1.1). Setmj := �αj�, 1 ≤ j ≤ n,
m := m0 := �α�, A0 := A and α0 := α.

Definition 2.1. A function u ∈ Cmn−1([0,∞) : E) is called a (strong) solution of (1.1) if and only
if AiD

αi
t u ∈ C([0,∞) : E) for 0 ≤ i ≤ n − 1, gmn−αn ∗ (u −∑mn−1

k=0 ukgk+1) ∈ Cmn([0,∞) : E) and
(1.1) holds. The abstract Cauchy problem (1.1) is said to be (strongly) C-wellposed if:

(i) for every u0, . . . , umn−1 ∈ ⋂0≤j≤n−1 C(D(Aj)), there exists a unique solution u(t;u0,
. . . , umn−1) of (1.1);

(ii) for every T > 0 and q ∈ �, there exist c > 0 and r ∈ � such that, for every u0,
. . . , umn−1 ∈

⋂
0≤j≤n−1 C(D(Aj)), the following holds:

q(u(t;u0, . . . , umn−1)) ≤ c
mn−1∑

k=0

r
(
C−1uk

)
, t ∈ [0, T]. (2.1)

In the case of abstract Cauchy problem (ACPn), the definition of C-wellposedness
introduced above is slightly different from the corresponding definition introduced by Xiao
and Liang [28, Definition 5.2, page 116] in the Banach space setting (cf. also [28, Defini-
tion 1.2, page 46] for the caseC = I). Recall that the notion of a strongC-propagation family is
important in the study of existence and uniqueness of strong solutions of the abstract Cauchy
problem (ACPn); compare [28, Section 3.5, pages 115–130] for further information in this
direction. Suppose now that u(t) ≡ u(t;u0, . . . , umn−1), t ≥ 0 is a strong solution of (1.1), with
f(t) ≡ 0 and initial values u0, . . . , umn−1 ∈ R(C). Convoluting both sides of (1.1) with gαn(t),
and making use of the equality [10, (1.21)], it readily follows that u(t), t ≥ 0 satisfies the
following:

u(·) −
mn−1∑

k=0

ukgk+1(·) +
n−1∑

j=1

gαn−αj ∗Aj

⎡

⎣u(·) −
mj−1∑

k=0

ukgk+1(·)
⎤

⎦

= gαn−α ∗A
[

u(·) −
m−1∑

k=0

ukgk+1(·)
]

.

(2.2)

In the sequel of this section, we will primarily consider various types of solutions of the inte-
gral equation (2.2).
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Given i ∈ N
0
mn−1 in advance, setDi := {j ∈ Nn−1 : mj−1 ≥ i}. Then it is clear thatDmn−1 ⊆

· · · ⊆ D0. Plugging uj = 0, 0 ≤ j ≤ mn − 1, j /= i, in (2.2), one gets:

[
u(·; 0, . . . , ui, . . . , 0) − uigi+1(·)

]

+
∑

j∈Di

gαn−αj ∗Aj

[
u(·; 0, . . . , ui, . . . , 0) − uigi+1(·)

]

+
∑

j∈Nn−1\Di

[
gαn−αj ∗Aju(·; 0, . . . , ui, . . . , 0)

]

=

{
gαn−α ∗Au(·; 0, . . . , ui, . . . , 0), m − 1 < i,
gαn−α ∗A

[
u(·; 0, . . . , ui, . . . , 0) − uigi+1(·)

]
, m − 1 ≥ i,

(2.3)

where ui appears in the ith place (0 ≤ i ≤ mn − 1) starting from 0. Suppose now 0 < τ ≤ ∞,
0/=K ∈ L1

loc([0, τ)) and k(t) =
∫ t
0K(s)ds, t ∈ [0, τ). Denote Ri(t)C−1ui = (K ∗ u(·; 0, . . . ,

ui, . . . , 0))(t), t ∈ [0, τ), 0 ≤ i ≤ mn − 1. Convoluting formally both sides of (2.3) with K(t),
t ∈ [0, τ), one obtains that, for 0 ≤ i ≤ mn − 1:

[
Ri(·)C−1ui −

(
k ∗ gi

)
(·)ui
]
+
∑

j∈Di

gαn−αj ∗Aj

[
Ri(·)C−1ui −

(
k ∗ gi

)
(·)ui
]

+
∑

j∈Nn−1\Di

[
gαn−αj ∗AjRi(·)C−1ui

]

=

{(
gαn−α ∗ARi

)
(·)C−1ui, m − 1 < i,

gαn−α ∗A
[
Ri(·)C−1ui −

(
k ∗ gi

)
(·)ui
]
, m − 1 ≥ i.

(2.4)

Motivated by the above analysis, we introduce the following definition.

Definition 2.2. Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), C, C1, C2 ∈ L(E), C and C2 are injective. A
sequence ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) of strongly continuous operator families in L(E)
is called a (local, if τ <∞):

(i) k-regularized C1-existence propagation family for (1.1) if and only if Ri(0) = (k ∗
gi)(0)C1 and the following holds:

[
Ri(·)x − (k ∗ gi

)
(·)C1x

]
+
∑

j∈Di

Aj

[
gαn−αj ∗

(
Ri(·)x − (k ∗ gi

)
(·)C1x

)]

+
∑

j∈Nn−1\Di

Aj

(
gαn−αj ∗ Ri

)
(·)x

=

{
A
(
gαn−α ∗ Ri

)
(·)x, m − 1 < i, x ∈ E,

A
[
gαn−α ∗

(
Ri(·)x − (k ∗ gi

)
(·)C1x

)]
(·), m − 1 ≥ i, x ∈ E,

(2.5)

for any i = 0, . . . , mn − 1.
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(ii) k-regularized C2-uniqueness propagation family for (1.1) if and only if Ri(0) = (k ∗
gi)(0)C2 and

[
Ri(·)x − (k ∗ gi

)
(·)C2x

]
+
∑

j∈Di

gαn−αj ∗
[
Ri(·)Ajx − (k ∗ gi

)
(·)C2Ajx

]

+
∑

j∈Nn−1\Di

(
gαn−αj ∗ Ri(·)Ajx

)
(·)

=

{(
gαn−α ∗ Ri(·)Ax

)
(·), m − 1 < i,

gαn−α ∗
[
Ri(·)Ax − (k ∗ gi

)
(·)C2Ax

]
(·), m − 1 ≥ i,

(2.6)

for any x ∈ ⋂0≤j≤n−1D(Aj) and i ∈ N
0
mn−1.

(iii) k-regularized C-resolvent propagation family for (1.1), in short k-regularized C-
propagation family for (1.1), if ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) is a k-regularized
C-uniqueness propagation family for (1.1), and if for every t ∈ [0, τ), i ∈ N

0
mn−1 and

j ∈ N
0
n−1, one has Ri(t)Aj ⊆ AjRi(t), Ri(t)C = CRi(t) and CAj ⊆ AjC.

The above classes of propagation families can be defined by purely algebraic equations
(cf. [11, 15, 27]). We will not go into further details about this topic here.

As indicated before, we will consider only nondegenerate k-regularized C-resol-
vent propagation families for (1.1). In case k(t) = gζ+1(t), where ζ ≥ 0, it is also said that
((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) is a ζ-times integrated C-resolvent propagation family for
(1.1); 0-times integrated C-resolvent propagation family for (1.1) is simply called C-resolvent
propagation family for (1.1). For a k-regularized (C1, C2)-existence and uniqueness family
((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)), it is said that is locally equicontinuous (exponentially equi-
continuous, (q-)exponentially equicontinuous, analytic, (q-)exponentially analytic,. . .) if and
only if all single operator families (R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ) are. The above termi-
nological agreements and abbreviations can be simply understood for the classes of k-
regularized C1-existence propagation families and k-regularized C2-uniqueness propagation
families. The class of k-regularized (C1, C2)-existence and uniqueness propagation families
for (1.1) can be also introduced (cf. Definitions 1.1 and 3.1 below).

In case that Aj = cjI, where cj ∈ C for 1 ≤ j ≤ n − 1, it is also said that the operator
A is a subgenerator of ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)). Now we would like to notice
the following: if A is a subgenerator of a k-regularized C-resolvent propagation family
((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) for (1.1), then, in general, there do not exist ai ∈ L1

loc([0, τ)),
i ∈ N

0
mn−1 and ki ∈ C([0, τ)) such that (Ri(t))t∈[0,τ) is an (ai, ki)-regularized C-resolvent

family with subgenerator A; the same observation holds for the classes of k-regularized
C1-existence propagation families and k-regularized C2-uniqueness propagation families.
Despite this fact, the structural results for k-regularized C-resolvent propagation families can
be derived by using appropriate modifications of the proofs of corresponding results for
(a, k)-regularized C-resolvent families. Furthermore, these results can be clarified for any
single operator family (Ri(t))t∈[0,τ) of the tuple ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)).
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Let ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) be a k-regularized C-resolvent propagation fam-
ily with subgenerator A. Then one can simply prove that the validity of condition (H5)
implies the following functional equation:

[
Ri(·)x − (k ∗ gi

)
(·)Cx] +

n−1∑

j=1

cjgαn−αj ∗
[
Ri(·)x − (k ∗ gi

)
(·)Cx]

+
∑

j∈Nn−1\Di

cj
[
gαn−αj+i ∗ k

]
(·)Cx

=

{
A
[
gαn−α ∗ Ri

]
(·)x, m − 1 < i, x ∈ E,

A
[
gαn−α ∗

(
Ri(·)x − (k ∗ gi

)
(·)Cx)], m − 1 ≥ i, x ∈ E,

(2.7)

for any i = 0, . . . , mn − 1. The set consisted of all subgenerators of ((R0(t))t∈[0,τ), . . . ,
(Rmn−1(t))t∈[0,τ)), denoted by χ(R), need not to be finite. Notice that the supposition A ∈
χ(R) obviously implies C−1AC ∈ χ(R). The integral generator Â of ((R0(t))t∈[0,τ), . . . ,
(Rmn−1(t))t∈[0,τ)) is defined as the set of all pairs (x, y) ∈ E × E such that, for every i =
0, . . . , mn − 1 and t ∈ [0, τ), the following holds:

[
Ri(·)x − (k ∗ gi

)
(·)Cx] +

n−1∑

j=1

cjgαn−αj ∗
[
Ri(·)x − (k ∗ gi

)
(·)Cx]

+
∑

j∈Nn−1\Di

cj
[
gαn−αj+i ∗ k

]
(·)Cx

=

{[
gαn−α ∗ Ri

]
(·)y, m − 1 < i,

gαn−α ∗
[
Ri(·)y − (k ∗ gi

)
(·)Cy], m − 1 ≥ i.

(2.8)

It is a linear operator on E which extends any subgenerator A ∈ χ(R) and satisfies Â =
C−1ÂC. We have the following.

(i) Ri(t)(λ − A)−1C = (λ − A)−1CRi(t), t ∈ [0, τ), provided A ∈ χ(R), λ ∈ ρC(A) and
0 ≤ i ≤ mn − 1.

(ii) Let ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) be locally equicontinuous. Then:

(a) Â is a closed linear operator.
(b) Â ∈ χ(R), if Ri(t)Ri(s) = Ri(s)Ri(t), 0 ≤ t, s < τ , i ∈ N

0
mn−1.

(c) Â = C−1AC, if A ∈ χ(R) and (H5) holds. Furthermore, the condition (H5) can
be replaced by (2.7).

(iii) Let {A,B} ⊆ χ(R). Then Ax = Bx, x ∈ D(A) ∩ D(B), and A ⊆ B ⇔ D(A) ⊆ D(B).
Assume that (2.7) holds for A, and that (2.7) holds for A replaced by B. Then we
have the following:

(a) C−1AC = C−1BC and C(D(A)) ⊆ D(B).
(b) A and B have the same eigenvalues.
(c) A ⊆ B ⇒ ρC(A) ⊆ ρC(B).
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Albeit the similar assertions can be considered in general case, wewill omit the corresponding
discussion even in the case that Aj ∈ L(E) for 1 ≤ j ≤ n − 1.

Proposition 2.3. Let i ∈ N
0
mn−1, and let ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) be a locally equicon-

tinuous k-regularized C-resolvent propagation family for (1.1). If (2.5) holds with C1 = C, then the
following holds:

(i) the equality

Ri(t)Ri(s) = Ri(s)Ri(t), 0 ≤ t, s < τ (2.9)

holds providedm − 1 < i and the following condition:

(�) any of the assumptions f(t) +
∑

j∈Di
Aj(gαn−αj ∗f)(t) = 0, t ∈ [0, τ), orA(gαn−α ∗f)

(t) = 0, for some f ∈ C([0, τ) : E), implies f(t) = 0, t ∈ [0, τ);

(ii) the equality (2.9) holds providedm − 1 ≥ i, Nn−1 \Di /= ∅, and the following condition:

(��) if∑j∈Nn−1\Di
Aj(gαn−αj ∗ f)(t) = 0, t ∈ [0, τ), for some f ∈ C([0, τ) : E), then f(t) =

0, t ∈ [0, τ).

Proof. Let x ∈ E and s ∈ [0, τ) be fixed. Define ui(t) := Ri(t)Ri(s)x − Ri(s)Ri(t)x, t ∈ [0, τ).
Using (2.5), it is not difficult to prove that

A

∫ t

0
gαn−α(t − r)u(r)dr = u(t) +

n−1∑

j=1

∫ t

0
Aj

(
gαn−αj ∗ u

)
(r)dr = 0, t ∈ [0, τ). (2.10)

Let m − 1 < i. Convoluting both sides of (2.10) with Ri(·), we easily infer that u(t) +
∑n−1

j=1 Aj(gαn−αj ∗ u)(t) = 0, t ∈ [0, τ) and A(gαn−α ∗ u)(t) = 0, t ∈ [0, τ). Now the equality
(2.9) follows from (�). The proof is quite similar in the casem − 1 ≥ i.

Remark 2.4. The equations (1.1) with α = 0 are much easier to deal with, since in this case,
m = 0 and m − 1 < i for all i ∈ N

0
mn−1. In general, (1.1) with α > 0 cannot be reduced to an

equivalent equation of the previously considered form.

Proposition 2.5. Suppose ((Rj,0(t))t∈[0,τ), . . . , (Rj,mn−1(t))t∈[0,τ)) is a locally equicontinuous kj-
regularized C-resolvent propagation family for (1.1), j = 1, 2, and 0 ≤ i ≤ mn − 1. Then we have
the following.

(i) Ifm − 1 < i and (�) holds, then

(k1 ∗ R2,i)(t)x = (k2 ∗ R1,i)(t)x, x ∈
n−1⋂

j=0

D
(
Aj

)
, t ∈ [0, τ). (2.11)
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If, additionally,

n−1⋂

j=0

D
(
Aj

)
is dense in E, (2.12)

then (2.11) holds for all x ∈ E.
(ii) The equality (2.11) holds providedm−1 ≥ i, Nn−1 \Di /= ∅ and (��); assuming additionally

(2.12), we have the validity of (2.11) for all x ∈ E.

Proof. We will only prove the second part of proposition. Let x ∈ ⋂n−1
j=0 D(Aj). Then the

functional equation of (Rj,i(t))t∈[0,τ) (j = 1, 2) implies:

[(
k2 ∗ gi

) ∗ (R1,i(·)x − (k1 ∗ gi
)
(·)Cx)](·)

=

⎧
⎨

⎩
R2,i(·) +

∑

j∈Di

gαn−αj ∗
[
R2,i(·)Aj −

(
k ∗ gi

)
(·)CAj

]

+
∑

j/∈Di

gαn−αj ∗ R2,i(·)Aj − gαn−α ∗
[
R2,i(·)A − (k ∗ gi

)
(·)CA]

⎫
⎬

⎭

∗ [R1,i(·)x − (k ∗ gi
)
(·)Cx](·)

=

⎧
⎨

⎩
R2,i(·) +

∑

j∈Di

gαn−αj ∗
[
R2,i(·)Aj −

(
k ∗ gi

)
(·)CAj

]
+
∑

j/∈Di

gαn−αj ∗ R2,i(·)Aj

⎫
⎬

⎭

∗ [R1,i(·) −
(
k1 ∗ gi

)
(·)Cx](·)

− [R2,i(·)x − (k2 ∗ gi
)
(·)C] ∗A(gαn−α ∗

[
R1,i(·)x − (k1 ∗ gi

)
(·)Cx])(·),

(2.13)

which yields after a tedious computation:

∑

j/∈Di

gαn−αj ∗Aj[(k2 ∗ R1,i)(·) − (k1 ∗ R2,i)(·)] ≡ 0. (2.14)

In view of (��), the above equality shows that (k2 ∗ R1,i)(t)x = (k1 ∗ R2,i)(t)x, t ∈ [0, τ). It can
be simply verified that the condition (2.12) implies that (2.9) holds for all x ∈ E.

Proposition 2.6. Let ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) be a locally equicontinuous k-regularized
C1-existence propagation family (k-regularized C2-unique-ness propagation family, k-regularized C-
resolvent propagation family) for (1.1), and let b ∈ L1

loc([0, τ)) be a kernel. Then the tuple(((b ∗
R0)(t))t∈[0,τ), . . . , ((b ∗ Rmn−1)(t))t∈[0,τ)) is a locally equicontinuous (k ∗ b)-regularized C1-existence
propagation family ((k ∗ b)-regularized C2-uniqueness propagation family, (k ∗ b)-regularized C-
resolvent propagation family) for (1.1).



Abstract and Applied Analysis 13

Suppose now E is complete, (1.1) is C-wellposed,
⋂n−1
j=0 D(Aj) is dense in E and 0 ≤

i ≤ mn − 1. Set Ri(t)x := u(t; 0, . . . , Cx, . . . , 0)(t), t ≥ 0, x ∈ ⋂n−1
j=0 D(Aj), where 0 ≤ i ≤ mn − 1

and Cx appears in the ith place in the preceding expression. Since we have assumed that E is
complete, the operator Ri(t) (t ≥ 0) can be uniquely extended (cf. also (ii) of Definition 2.1) to
a bounded linear operator on E. It can be easily proved that ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ))
is a locally equicontinuous C-uniqueness propagation family for (1.1), and that the
assumption CAj ⊆ AjC, j ∈ N

0
n−1 implies Ri(t)C = CRi(t), t ≥ 0. In case that Aj = cjI,

where cj ∈ C for 1 ≤ j ≤ n − 1, one can apply the arguments given in the proof of [29,
Proposition 1.1, page 32] in order to see that ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) is a locally
equicontinuous C-resolvent propagation family for (1.1). Regrettably, it is not clear how one
can prove in general case that Ri(t)Aj ⊆ AjRi(t), j ∈ N

0
n−1, t ≥ 0.

The following definition also appears in [15].

Definition 2.7. Let T > 0 and f ∈ C([0, T] : E). Consider the following inhomogeneous equa-
tion:

u(t) +
n−1∑

j=1

(
gαn−αj ∗Aju

)
(t) = f(t) +

(
gαn−α ∗Au

)
(t), t ∈ [0, T]. (2.15)

A function u ∈ C([0, T] : E) is said to be

(i) a strong solution of (2.15) if and only if Aju ∈ C([0, T] : E), j ∈ N
0
n−1 and (2.15)

holds for every t ∈ [0, T];

(ii) a mild solution of (2.15) if and only if (gαn−αj ∗u)(t) ∈ D(Aj), t ∈ [0, T], j ∈ N
0
n−1 and

u(t) +
n−1∑

j=1

Aj

(
gαn−αj ∗ u

)
(t) = f(t) +A

(
gαn−α ∗ u

)
(t), t ∈ [0, T]. (2.16)

It is clear that every strong solution of (2.15) is also a mild solution of the same prob-
lem. The converse statement is not true, in general. One can similarly define the notion of a
strong (mild) solution of the problem (2.2).

Let 0 < τ ≤ ∞, and let T ∈ (0, τ). Then the following holds:

(a) if ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) is a C1-existence propagation family for (1.1),
then the function u(t) =

∑mn−1
i=0 Ri(t)xi, t ∈ [0, T], is a mild solution of (2.2)with ui =

C1xi for 0 ≤ i ≤ mn − 1;

(b) if ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) is aC2-uniqueness propagation family for (1.1),
and AjRi(t)x = Ri(t)Ajx, t ∈ [0, T], x ∈ ⋂n−1

j=0 D(Aj), i ∈ N
0
mn−1, j ∈ N

0
n−1, then the

function u(t) =
∑mn−1

i=0 Ri(t)C−1
2 ui, t ∈ [0, T], is a strong solution of (2.2), provided

ui ∈ C2(
⋂n−1
j=0 D(Aj)) for 0 ≤ i ≤ mn − 1.
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Theorem 2.8. Suppose ((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) is a locally equicontinuous k-regularized
C2-uniqueness propagation family for (1.1), (2.5) holds, T ∈ (0, τ) and f ∈ C([0, T] : E). Then the
following holds:

(i) ifm − 1 < i, then any strong solution u(t) of (2.15) satisfies the equality:

(
Ri ∗ f

)
(t) =

(
k ∗ gi ∗ C2u

)
(t) +

∑

j∈Di

(
gαn−αj+i ∗ k ∗ C2Aju

)
(t), (2.17)

for any t ∈ [0, T]. Therefore, there is at most one strong (mild) solution for (2.15), provided
that (�) holds,

(ii) ifm − 1 ≥ i, then any strong solution u(t) of (2.15) satisfies the equality:

(
Ri ∗ f

)
(t) = −

∑

j∈Nn−1\Di

(
gαn−αj+i ∗ k ∗ C2Aju

)
(t), t ∈ [0, T]. (2.18)

Therefore, there is at most one strong (mild) solution for (2.15), provided that Nn−1 \Di /= ∅
and that (��) holds.

Proof. Wewill only prove the second part of theorem. Letm−1 ≥ i. Taking into account (2.6),
we get:

[
Ri −

(
k ∗ giC

)] ∗ f =
[
Ri −

(
k ∗ giC

)] ∗
⎧
⎨

⎩
u +

n−1∑

j=1

(
gαn−αj ∗Aju

)
− (gαn−α ∗Au

)

⎫
⎬

⎭

=
[
Ri −

(
k ∗ giC

)] ∗
⎛

⎝u +
n−1∑

j=1

(
gαn−αj ∗Aju

)
⎞

⎠

−
⎧
⎨

⎩

[
Ri −

(
k ∗ giC

)]
+
∑

j∈Di

[
gαn−αj ∗

(
Ri(·)Ajx − (k ∗ gi

)
(·)C2Ajx

)]

+
∑

j/∈Di

(
gαn−αj ∗ Ri(·)Ajx

)
⎫
⎬

⎭
∗ u

= −
∑

Nn−1\Di

(
gαn−αj+i ∗ k ∗ C2Aju

)
(t), t ∈ [0, T].

(2.19)

This implies the uniqueness of strong solutions to (2.15), provided that Nn−1 \Di /= ∅ and that
(��) holds. The uniqueness of mild solutions in the above case follows from the fact that,
for every such a solution u(t), there exists a sufficiently large ζ > 0 such that the function
(gζ ∗ u)(·) is a strong solution of (2.15), with f(·) replaced by (gζ ∗ f)(·) therein.

If ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) is a (local) k-regularized C-resolvent propagation fam-
ily for (1.1), then Theorem 2.8 shows that there exist certain relations between single operator
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families (R0(t))t≥0, . . ., and (Rmn−1(t))t≥0 (cf. also [15] and [28, page 116]). It would take too
long to analyze such relations in detail.

The subsequent theorems can be shown by modifying the arguments given in the
proof of [30, Theorem 2.2.1].

Theorem 2.9. Suppose k(t) satisfies (P1), ω ≥ max(0, abs(k)), (Ri(t))t≥0 is strongly continuous,
and the family {e−ωtRi(t) : t ≥ 0} is equicontinuous, provided 0 ≤ i ≤ mn − 1. LetA be a closed linear
operator on E, let C1, C2 ∈ L(E), and let C2 be injective. Set Pλ := λαn−α +

∑n−1
j=1 λ

αj−αAj − A,
λ ∈ C \ {0}.

(i) Suppose Aj ∈ L(E), j ∈ Nn−1. Then ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) is a global k-regula-
rized C1-existence propagation family for (1.1) if and only if the following conditions hold.

(a) The equality

Pλ

∫∞

0
e−λtRi(t)xdt = λαn−α−ik̃(λ)C1x +

∑

j∈Di

λαj−α−ik̃(λ)AjC1x, (2.20)

holds provided x ∈ E, i ∈ N
0
mn−1,m − 1 < i and �λ > ω.

(b) The equality

Pλ

∫∞

0
e−λt
[
Ri(t)x − (k ∗ gi

)
(t)C1x

]
dt = −

∑

j∈Nn−1\Di

λαj−α−ik̃(λ)AjC1x, (2.21)

holds provided x ∈ E, i ∈ N
0
mn−1,m − 1 ≥ i and �λ > ω.

(ii) Suppose Ri(0) = (k∗gi)(0)C2x, x ∈ E\⋂0≤j≤n−1D(Aj), i ∈ N
0
mn−1. Then ((R0(t))t≥0, . . . ,

(Rmn−1(t))t≥0) is a global k-regularized C2-uniqueness propagation family for (1.1) if and
only if, for every λ ∈ C with �λ > ω, and for every x ∈ ⋂0≤j≤n−1D(Aj), the following
equality holds:

∫∞

0
e−λt
[
Ri(t)x − (k ∗ gi

)
(t)C2x

]
dt

+
∑

j∈Di

λαj−αn
∫∞

0
e−λt
[
Ri(t)x − (k ∗ gi

)
(t)C2Ajx

]
dt

+
∑

j∈Nn−1\Di

λαj−αn
∫∞

0
e−λtRi(t)Ajx dt

=

{
λα−αn

∫∞
0 e−λtRi(t)Ax dt, m − 1 < i,

λα−αn
∫∞
0 e−λt

[
Ri(t)Ax − (k ∗ gi

)
(t)C2Ax

]
dt, m − 1 ≥ i.

(2.22)

Theorem 2.10. Suppose k(t) satisfies (P1), ω ≥ max(0, abs(k)), (Ri(t))t≥0 is strongly continuous,
and the family {e−ωtRi(t) : t ≥ 0} is equicontinuous, provided 0 ≤ i ≤ mn − 1. Let CAj ⊆ AjC,
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j ∈ N
0
n−1,Aj ∈ L(E), j ∈ Nn−1,AiAj = AjAi, i, j ∈ Nn−1 andAjA ⊆ AAj , j ∈ Nn−1. Assume, addi-

tionally, that the operator λαn−i +
∑

j∈Di
λαj−iAj is injective for every i ∈ N

0
mn−1 withm− 1 < i and for

every λ ∈ C with �λ > ω and k̃(λ)/= 0, and that the operator
∑

j∈Nn−1\Di
λαj−iAj is injective for every

i ∈ N
0
mn−1 with m − 1 ≥ i and for every λ ∈ C with �λ > ω and k̃(λ)/= 0. Then ((R0(t))t≥0, . . . ,

(Rmn−1(t))t≥0) is a global k-regularized C-resolvent propagation family for (1.1), and (2.5) holds, if
and only if the equalities (2.20)-(2.21) are fulfilled.

Keeping inmind Theorem 2.10, one can simply clarify themost important Hille-Yosida
type theorems for exponentially equicontinuous k-regularized C-resolvent propagation
families (cf. also [15] and [26, Theorem 2.8] for further information in this direction). Notice
also that the preceding theorem can be slightly reformulated for k-regularized (C1, C2)-
existence and uniqueness resolvent propagation families.

The analytical properties of k-regularized C-resolvent propagation families are stated
in the following two theorems whose proofs are omitted (cf. [14, Theorems 2.16-2.17] and
[26, Lemma 3.3, Theorems 3.4, 3.6, and 3.7]).

Theorem 2.11. Suppose β ∈ (0, π/2], ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) is an analytic k-regularized
C-resolvent propagation family for (1.1), k(t) satisfies (P1), (2.5) holds, and k̃(λ) can be analytically
continued to a function k̂ : ω + Σ(π/2)+β → C, where ω ≥ max(0, abs(k)). Suppose CAj ⊆ AjC,
j ∈ N

0
n−1, Aj ∈ L(E), j ∈ Nn−1, AiAj = AjAi, i, j ∈ Nn−1 and AjA ⊆ AAj , j ∈ Nn−1. Let the family

{
e−ωzRi(z) : z ∈ Σγ

}
be equicontinuous, provided i ∈ N

0
mn−1 and γ ∈ (0, β), (2.23)

and let the set

{
(λ −ω)k̂(λ)λ−i : λ ∈ ω + Σ(π/2)+γ

}
(2.24)

be bounded provided γ ∈ (0, β) andm − 1 ≥ i. Set

Ni :=

⎧
⎨

⎩
λ ∈ ω + Σ(π/2)+β : k̂(λ)

⎛

⎝λαn +
∑

j∈Di

λαjAj

⎞

⎠ is injective

⎫
⎬

⎭
, (2.25)

providedm − 1 < i, and

Ni :=

⎧
⎨

⎩
λ ∈ ω + Σ(π/2)+β : k̂(λ)

⎛

⎝λαn +
∑

j∈Nn−1\Di

λαjAj

⎞

⎠ is injective

⎫
⎬

⎭
, (2.26)

providedm − 1 ≥ i. SupposeNi is an open connected subset of C, and the setNi ∩ {λ ∈ C : �λ > ω}
has a limit point in {λ ∈ C : �λ > ω}, for any i ∈ N

0
mn−1. Then the operator Pλ is injective for every

λ ∈Ni and i ∈ N
0
mn−1,

lim
λ→+∞,λ∈Ni

λk̃(λ)P−1
λ

⎛

⎝λαn−α−i +
∑

j∈Di

λαj−α−iAj

⎞

⎠Cx =
(
k ∗ gi

)
(0)Cx, (2.27)
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providedm − 1 < i and x ∈ E, and

lim
λ→+∞,λ∈Ni

λk̃(λ)P−1
λ

∑

j∈Nn−1\Di

λαj−α−iAjCx = 0, (2.28)

providedm − 1 ≥ i and x ∈ E. Suppose, additionally, that there exists μ ∈ C such that P−1
μ C ∈ L(E).

Then the family

⎧
⎪⎨

⎪⎩
(λ −ω)k̂(λ)

⎛

⎝λαn−α +
n−1∑

j=1

λαj−αAj − C−1AC

⎞

⎠

−1

×
⎛

⎝λαn−α−iC +
∑

j∈Di

λαj−α−iAjC

⎞

⎠ : λ ∈Ni ∩
(
ω + Σ(π/2)+γ

)

⎫
⎬

⎭
is equicontinuous,

(2.29)

providedm − 1 < i and γ ∈ (0, β), respectively, the family

⎧
⎪⎨

⎪⎩
(λ −ω)k̂(λ)

⎛

⎝λαn−α +
n−1∑

j=1

λαj−αAj − C−1AC

⎞

⎠

−1
∑

j∈Nn−1\Di

λαj−α−iAjC

: λ ∈ Ni ∩
(
ω + Σ(π/2)+γ

)

⎫
⎪⎬

⎪⎭
is equicontinuous,

(2.30)

providedm − 1 ≥ i and γ ∈ (0, β), the mapping

λ �−→
⎛

⎝λαn−α +
n−1∑

j=1

λαj−αAj − C−1AC

⎞

⎠

−1⎛

⎝λαn−α−iC +
∑

j∈Di

λαj−α−iAjC

⎞

⎠x, (2.31)

defined for λ ∈Ni, is analytic, providedm − 1 < i and x ∈ E, and the mapping

λ �−→
⎛

⎝λαn−α +
n−1∑

j=1

λαj−αAj − C−1AC

⎞

⎠

−1
∑

j∈Nn−1\Di

λαj−α−iAjCx, λ ∈Ni, (2.32)

is analytic, providedm − 1 ≥ i and x ∈ E.

Theorem 2.12. Assume k(t) satisfies (P1), ω ≥ max(0, abs(k)), β ∈ (0, π/2] and, for every i ∈
N

0
mn−1 withm − 1 ≥ i, the function (k ∗ gi)(t) can be analytically extended to a function ki : Σβ → C

satisfying that, for every γ ∈ (0, β), the set {e−ωzki(z) : z ∈ Σγ} is bounded. Let CAj ⊆ AjC,
j ∈ N

0
n−1, Aj ∈ L(E), j ∈ Nn−1, AiAj = AjAi, i, j ∈ Nn−1 and AjA ⊆ AAj , j ∈ Nn−1. Assume,

additionally, that for each i ∈ N
0
mn−1 the set Vi := Ni ∩ {λ ∈ C : �λ > ω} contains the set {λ ∈

C : �λ > ω, k̃(λ)/= 0}, and that R(λαnC +
∑

j∈Di
λαjAjC) ⊆ R(Pλ), provided m − 1 < i and λ ∈ Vi,
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respectively,R(λαnC+
∑

j∈Nn−1\Di
λαjAjC) ⊆ R(Pλ), providedm−1 ≥ i and λ ∈ Vi (cf. the formulation

of preceding theorem). Suppose also that the operator λαnI+
∑

j∈Di
λαjAj is injective, providedm−1 < i

and λ ∈ Vi, and that the operator λαnI +
∑

j∈Nn−1\Di
λαjAj is injective, providedm − 1 ≥ i and λ ∈ Vi.

Let qi : ω+Σ(π/2)+β → L(E) (0 ≤ i ≤ mn−1) satisfy that, for every x ∈ E, the mapping λ �→ qi(λ)x,
λ ∈ ω + Σ(π/2)+β is analytic as well as that:

qi(λ)x = k̃(λ)P−1
λ

⎛

⎝λαn−α−iC +
∑

j∈Di

λαj−α−iAjC

⎞

⎠x, x ∈ E, λ ∈ Vi, (2.33)

providedm − 1 < i,

qi(λ)x = −k̃(λ)P−1
λ

∑

j∈Nn−1\Di

λαj−α−iAjCx, x ∈ E, λ ∈ Vi, (2.34)

providedm − 1 ≥ i,

the family
{
(λ −ω)qi(λ) : λ ∈ ω + Σ(π/2)+γ

}
is equicontinuous ∀γ ∈ (0, β), (2.35)

and, in the case D(A)/=E,

lim
λ→+∞

λqi(λ)x =

⎧
⎨

⎩

(
k ∗ gi

)
(0)Cx, x /∈ D(A), m − 1 < i,

0, x /∈ D(A), m − 1 ≥ i.
(2.36)

Then there exists an exponentially equicontinuous, analytic k-regularized C-resolvent propagation
family ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) for (1.1). Furthermore, the family {e−ωzRi(z) : z ∈ Σγ} is equi-
continuous for all i ∈ N

0
mn−1 and γ ∈ (0, β), (2.5) holds, and Ri(z)Aj ⊆ AjRi(z), z ∈ Σβ, j ∈ N

0
n−1.

In this paper, we will not consider differential properties of k-regularized C-resolvent
(propagation) families. For more details, the interested reader may consult [30], and espe-
cially, [26, Theorems 3.18–3.20]. Notice also that the assertion of [26, Proposition 3.12] can be
reformulated for k-regularized C-resolvent (propagation) families.

In the following theorem, which possesses several obvious consequences, we consider
q-exponentially equicontinuous k-regularized I-resolvent propagation families in complete
locally convex spaces.

Theorem 2.13. (i) Suppose k(0)/= 0, ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) is a q-exponentially equicontin-
uous k-regularized I-resolvent propagation family for (1.1), Aj ∈ L�(E), j ∈ Nn−1, and for every
p ∈ �, there existMp ≥ 1 and ωp ≥ 0 such that

p(Ri(t)x) ≤Mpe
ωptp(x), t ≥ 0, x ∈ E, 0 ≤ i ≤ mn − 1. (2.37)

Then A is a compartmentalized operator and, for every seminorm p ∈ �, ((R0,p(t))t≥0, . . . ,
(Rmn−1,p(t))t≥0) is an exponentially bounded k-regularized Ip-resolvent propagation family for (1.1),
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in Ep, with Aj replaced by Aj,p (0 ≤ j ≤ n − 1). Furthermore,

∥
∥
∥Ri,p(t)

∥
∥
∥ ≤Mpe

ωpt, t ≥ 0, 0 ≤ i ≤ mn − 1, (2.38)

and ((R0,p(t))t≥0, . . . , (Rmn−1,p(t))t≥0) is a q-exponentially equicontinuous, analytic k-regularized Ip-
resolvent propagation family of angle β ∈ (0, π], provided that ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) is.
Assume additionally that (2.5) holds. Then, for every p ∈ �, (2.5) holds withAj and ((R0(t))t≥0, . . . ,
(Rmn−1(t))t≥0) replaced by Aj,p and ((R0,p(t))t≥0, . . . , (Rmn−1,p(t))t≥0).

(ii) Suppose k(t) satisfies (P1), E is complete,A is a compartmentalized operator in E,Aj = cjI
for some cj ∈ C (1 ≤ j ≤ n − 1) and, for every p ∈ �, Ap is a subgenerator (the integral generator,
in fact) of an exponentially bounded k-regularized Ip-resolvent propaga-tion family ((R0,p(t))t≥0,
. . . , (Rmn−1,p(t))t≥0) in Ep satisfying (2.38), and (2.5) with A and ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0)
replaced, respectively, byAp and ((R0,p(t))t≥0, . . . , (Rmn−1,p(t))t≥0). Suppose, additionally, that Nn−1 \
Di /= ∅ and

∑
j∈Nn−1\Di

|cj |2 > 0, provided m − 1 ≥ i. Then, for every p ∈ �, (2.37) holds (0 ≤ i ≤
mn − 1) and A is a subgenerator (the integral generator, in fact) of a q-exponentially equicontinuous
k-regularized I-resolvent propagation family ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) satisfying (2.5). Further-
more, ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) is a q-exponentially equicontinuous, analytic k-regularized I-
resolvent propagation family of angle β ∈ (0, π] provided that, for every p ∈ �, ((R0,p(t))t≥0, . . . ,
(Rmn−1,p(t))t≥0) is a q-exponentially bounded, analytic k-regularized Ip-resolvent propagation family
of angle β.

Proof. The proof is almost completely similar to that of [20, Theorem 3.1], and we will only
outline a few relevant facts needed for the proof of (i). Suppose x, y ∈ D(A) and p(x) = p(y)
for some p ∈ �. Then (2.6) in combination with (2.37) implies that Ψp(Ri(t)A(x − y)) = 0,
t ≥ 0, provided m − 1 < i, and Ψp(Ri(t)A(x − y) − (k ∗ gi)(t)(x − y)) = 0, t ≥ 0, provided
m − 1 ≥ i. In any case, Ψp(Ri(t)A(x − y)) = 0, t ≥ 0, which implies p(Ri(t)A(x − y)) = 0,
t ≥ 0, and in particular p(k(0)A(x − y)) = 0. Since k(0)/= 0, we obtain p(Ax − Ay) = 0 and
p(Ax) = p(Ay). Therefore, A is a compartmentalized operator. It is clear that (2.38) holds
and that the mapping t �→ Ri,p(t)xp, t ≥ 0 is continuous for any xp ∈ Ep. This implies by the
standard limit procedure that the mapping t �→ Ri,p(t)xp, t ≥ 0 is continuous for any xp ∈ Ep.
Now we will prove that, for every p ∈ �, the operator Ap is closable for the topology of
Ep. In order to do that, suppose (xn) is a sequence in D(A) with limn→∞Ψp(xn) = 0 and
limn→∞Ψp(Axn) = y, in Ep. Using the dominated convergence theorem, (2.6) and (2.37), we
get that

∫ t
0 gαn−α(t − s)Ri,p(s)yds = limn→∞

∫ t
0 gαn−α(t − s)Ri,p(s)Ψp(Axn)ds = 0, for any t ≥ 0.

Taking the Laplace transform, one obtains Ri,p(t)y = 0, t ≥ 0. Since Ri,p(0) = k(0)Ip, we get
that y = 0 and that Ap is closable, as claimed. Suppose 0 ≤ i ≤ mn − 1. It is checked at once
that Ri,p(t)Aj,p ⊆ Aj,pRi,p(t), t ≥ 0, i ∈ N

0
mn−1, j ∈ Nn−1. The functional equation (2.6) for the

operators Aj,p, 0 ≤ j ≤ n − 1 and ((R0,p(t))t≥0, . . . , (Rmn−1,p(t))t≥0) can be trivially verified,
which also holds for the functional equation (2.6) in case of its validity for the operators
Aj , 0 ≤ j ≤ n − 1, and ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0). The remaining part of the proof can be
obtained by copying the final part of the proof of [20, Theorem 3.1(i)].
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Remark 2.14. In the second part of Theorem 2.13, we must restrict ourselves to the case in
which Aj = cjI for some cj ∈ C (1 ≤ j ≤ n − 1). As a matter of fact, it is not clear how one
can prove that the operator λαnIp +

∑
j∈Di

λαjAj,p is injective, provided m − 1 < i, �λ > ω and

k̃(λ)/= 0, as well as that the operator
∑

j∈Nn−1\Di
λαjAj,p is injective, providedm − 1 ≥ i, �λ > ω

and k̃(λ)/= 0. Then Theorem 2.10 is inapplicable, which implies that the argumentation used
in the proof of [20, Theorem 3.1(ii)] does not work for the proof of fact that, for every i ∈
N

0
mn−1 and t > 0, {Ri,p(t) : p ∈ �} is a projective family of operators.

3. k-Regularized (C1, C2)-Existence and Uniqueness Families for (1.1)

Throughout this section, we will always assume that X and Y are sequentially complete
locally convex spaces. By L(Y,X) is denoted the space which consists of all bounded linear
operators from Y into X. The fundamental system of seminorms which defines the topology
onX, respectively, Y , is denoted by�X , respectively, �Y . The symbol I designates the identity
operator on X.

Let 0 < τ ≤ ∞. A strongly continuous operator family (W(t))t∈[0,τ) ⊆ L(Y,X) is said to
be locally equicontinuous if and only if, for every T ∈ (0, τ) and for every p ∈ �X , there
exist qp ∈ �Y and cp > 0 such that p(W(t)y) ≤ cpqp(y), y ∈ Y , t ∈ [0, T]; the notion of equi-
continuity of (W(t))t∈[0,τ) is defined similarly. Notice that (W(t))t∈[0,τ) is automatically locally
equicontinuous in case that the space Y is barreled.

Following Xiao and Liang [24], we introduce the following definition.

Definition 3.1. Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), C1 ∈ L(Y,X), and C2 ∈ L(X) is injective.

(i) A strongly continuous operator family (E(t))t∈[0,τ) ⊆ L(Y,X) is said to be a (local, if
τ < ∞) k-regularized C1-existence family for (1.1) if and only if, for every y ∈ Y ,
the following holds: E(·)y ∈ Cmn−1([0, τ) : X), E(i)(0)y = 0 for every i ∈ N0 with
i < mn − 1, Aj(gαn−αj ∗ E(mn−1))(·)y ∈ C([0, τ) : X) for 0 ≤ j ≤ n − 1, and

E(mn−1)(t)y +
n−1∑

j=1

Aj

(
gαn−αj ∗ E(mn−1)

)
(t)y −A

(
gαn−α ∗ E(mn−1)

)
(t)y = k(t)C1y, (3.1)

for any t ∈ [0, τ).

(ii) A strongly continuous operator family (U(t))t∈[0,τ) ⊆ L(X) is said to be a (local, if
τ < ∞) k-regularized C2-uniqueness family for (1.1) if and only if, for every τ ∈
[0, τ) and x ∈ ⋂0≤j≤n−1D(Aj), the following holds:

U(t)x +
n−1∑

j=1

(
gαn−αj ∗U(·)Ajx

)
(t) − (gαn−α ∗U(·)Ax)(t)y =

(
k ∗ gmn−1

)
(t)C2x. (3.2)

(iii) A strongly continuous family ((E(t))t∈[0,τ), (U(t))t∈[0,τ)) ⊆ L(Y,X) × L(X) is said to
be a (local, if τ < ∞) k-regularized (C1, C2)-existence and uniqueness family for
(1.1) if and only if (E(t))t∈[0,τ) is a k-regularized C1-existence family for (1.1), and
(U(t))t∈[0,τ) is a k-regularized C2-uniqueness family for (1.1).
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(iv) Suppose Y = X and C = C1 = C2. Then a strongly continuous operator family
(R(t))t∈[0,τ) ⊆ L(X) is said to be a (local, if τ < ∞) k-regularized C-resolvent family
for (1.1) if and only if (R(t))t∈[0,τ) is a k-regularized C-uniqueness family for (1.1),
R(t)Aj ⊆ AjR(t), for 0 ≤ j ≤ n − 1 and t ∈ [0, τ), as well as R(t)C = CR(t), t ∈ [0, τ),
and CAj ⊆ AjC, for 0 ≤ j ≤ n − 1.

In case k(t) = gζ+1(t), where ζ ≥ 0, it is also said that (E(t))t∈[0,τ) is a ζ-times integrated
C1-existence family for (1.1); 0-times integrated C1-existence family for (1.1) is also said to be
aC1-existence family for (1.1). The notion of (exponential) analyticity ofC1-existence families
for (1.1) is taken in the sense of Definition 1.2(ii); the above terminological agreement can be
simply understood for all other classes of uniqueness and resolvent families introduced in
Definition 3.1.

Integrating both sides of (3.1) sufficiently many times, we easily infer that (cf. [24,
Definition 2.1, page 151; and (2.8), page 153]):

E(l)(t)y +
n−1∑

j=1

Aj

(
gαn−αj ∗ E(l)

)
(t)y −A

(
gαn−α ∗ E(l)

)
(t)y =

(
k ∗ gmn−1−l

)
(t)C1y, (3.3)

for any t ∈ [0, τ), y ∈ Y and l ∈ N
0
mn−1. In this place, it is worth noting that the identity (3.3),

with k(t) = 1, l = 0, τ = ∞ and αj = j (0 ≤ j ≤ n − 1), has been used in [24] for the definition
of a C1-existence family for (ACPn). It can be simply proved that this definition is equivalent
with the corresponding one given by Definition 3.1.

Proposition 3.2. Let ((E(t))t∈[0,τ), (U(t))t∈[0,τ)) be a k-regularized (C1, C2)-existence and unique-
ness family for (1.1), and let (U(t))t∈[0,τ) be locally equicontinuous. If Aj ∈ L(X), j ∈ Nn−1 or
α ≤ min(α1, . . . , αn−1), then C2E(t)y = U(t)C1y, t ∈ [0, τ), y ∈ Y .

Proof. Let y ∈ Y be fixed. Using the local equicontinuity of (U(t))t∈[0,τ), we easily infer that
the mappings t �→ ((gαn−α ∗U) ∗ E(·)y)(t), t ∈ [0, τ) and t �→ (U ∗ (gαn−α ∗ E(·)y))(t), t ∈ [0, τ)
are continuous and coincide. The prescribed assumptions also imply that, for every j ∈ Nn−1,
t ∈ [0, τ) and y ∈ Y ,

(
gαn−α ∗U ∗Aj

(
gαn−αj ∗ E(·)y

))
(t)y =

(
gαn−α ∗UAj ∗ gαn−α ∗ E(·)y

)
(t)y. (3.4)

Keeping in mind (3.2)-(3.3) and the foregoing arguments, we get that

gαn−α ∗U ∗
⎡

⎣E(·)y +
n−1∑

j=1

Aj

(
gαn−αj ∗ E

)
(·)y − k(·)C1y

⎤

⎦

= gαn−α ∗UA ∗ [gαn−α ∗ E
]
(·)y

=

⎡

⎣U(·) +
n−1∑

j=1

(
gαn−αj ∗U(·)Aj

)
− k(·)C2

⎤

⎦ ∗ gαn−α ∗ E(·)y.

(3.5)

This, in turn, implies the required equality C2E(t)y = U(t)C1y, t ∈ [0, τ).
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Definition 3.3. Suppose 0 ≤ i ≤ mn − 1. Then we define D′
i := {j ∈ N

0
n−1 : mj − 1 ≥ i}, D′′

i :=
N

0
n−1 \D′

i and

Di :=

⎧
⎨

⎩
x ∈

⋂

j∈D′′
i

D
(
Aj

)
: Ajui ∈ R(C1), j ∈ D′′

i

⎫
⎬

⎭
. (3.6)

In the first part of subsequent theorem (cf. also [24, Remark 2.2, Example 2.5,
Remark 2.6]), we will consider the most important case k(t) = 1. The analysis is similar if
k(t) = gn+1(t) for some n ∈ N.

Theorem 3.4. (i) Suppose (E(t))t∈[0,τ) is a C1-existence family for (1.1), T ∈ (0, τ), and ui ∈ Di for
0 ≤ i ≤ mn − 1. Then the function

u(t) =
mn−1∑

i=0

uigi+1(t) −
mn−1∑

i=0

∑

j∈Nn−1\Di

(
gαn−αj ∗ E(mn−1−i)

)
(t)vi,j

+
mn−1∑

i=m

(
gαn−α ∗ E(mn−1−i)

)
(t)vi,0, 0 ≤ t ≤ T,

(3.7)

is a strong solution of the problem (2.2) on [0, T], where vi,j ∈ Y satisfyAjui = C1vi,j for 0 ≤ j ≤ n−1.
(ii) Suppose (U(t))t∈[0,τ) is a locally equicontinuous k-regularized C2-uniqueness family for

(1.1), and T ∈ (0, τ). Then there exists at most one strong (mild) solution of (2.2) on [0, T], with
ui = 0, i ∈ N

0
mn−1.

Proof. A straightforward computation involving (3.3) shows that

u(·) −
mn−1∑

i=0

uigi+1(·) +
n−1∑

j=1

Aj

⎛

⎝gαn−αj ∗
⎡

⎣u(·) −
mj−1∑

i=0

uigi+1(·)
⎤

⎦

⎞

⎠

= −
mn−1∑

i=0

∑

j∈Nn−1\Di

(
gαn−αj ∗ R(mn−1−i)

)
(·)vi,j +

mn−1∑

i=m

(
gαn−α ∗ R(mn−1−i)

)
(·)vi,0

+
n−1∑

j=1

Aj

⎛

⎝gαn−αj ∗
⎧
⎨

⎩

mn−1∑

i=mj

gi+1(·)ui −
mn−1∑

i=0

∑

l∈Nn−1\Di

(
gαn−αl ∗ R(mn−1−i)

)
(·)vi,l

+
mn−1∑

i=m

(
gαn−α ∗ R(mn−1−i)

)
(·)vi,0

}⎞

⎠

= −
mn−1∑

i=0

∑

j∈Nn−1\Di

(
gαn−αj ∗ R(mn−1−i)

)
(·)vi,j +

mn−1∑

i=m

(
gαn−α ∗ R(mn−1−i)

)
(·)vi,0

+
n−1∑

j=1

mn−1∑

i=mj

C1vi,jgαn−αj+i+1(·) −
mn−1∑

i=0

∑

l∈Nn−1\Di

gαn−αl
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∗
[
−R(mn−1−i)(·)vi,l +A

(
gαn−α ∗ R(mn−1−i)

)
(·)vi,l + gi+1(·)C1vi,l

]

+
mn−1∑

i=m

gαn−α ∗
[
−R(mn−1−i)(·)vi,0 +A

(
gαn−α ∗ R(mn−1−i)

)
(·)vi,0 + gi+1(·)C1vi,0

]

= gαn−α ∗A
[

u(·) −
m−1∑

i=0

uigi+1(·)
]

,

(3.8)

since

n−1∑

j=1

mn−1∑

i=mj

C1vi,jgαn−αj+i+1(·) =
mn−1∑

i=0

∑

j∈Nn−1\Di

C1vi,jgαn−αj+i+1(·). (3.9)

This implies that u(t) is a mild solution of (2.2) on [0, T]. In order to complete the proof of
(i), it suffices to show that Dαn

t u(t) ∈ C([0, T] : X) and AiD
αi
t u ∈ C([0, T] : X) for all i ∈ N

0
n−1.

Towards this end, notice that the partial integration implies that, for every t ∈ [0, T],

gmn−αn ∗
[

u(·) −
mn−1∑

i=0

uigi+1(·)
]

(t) =
mn−1∑

i=m

(
gmn−α+i ∗ E(mn−1)

)
(t)vi,0

−
mn−1∑

i=0

∑

j∈Nn−1\Di

(
gmn−αj+i ∗ E(mn−1)

)
(t)vi,j .

(3.10)

Therefore, Dαn
t u ∈ C([0, T] : X) and

Dαn
t u(t) =

dmn

dtmn

{

gmn−αn ∗
[

u(·) −
mn−1∑

i=0

uigi+1(·)
]

(t)

}

=
mn−1∑

i=m

(
gi−α ∗ E(mn−1)

)
(t)vi,0 −

mn−1∑

i=0

∑

j∈Nn−1\Di

(
gi−αj ∗ E(mn−1)

)
(t)vi,j .

(3.11)

Suppose, for the time being, i ∈ N
0
n−1. Then Aiuj ∈ R(C1) for j ≥ mi. Moreover, the inequality

l ≥ αj holds provided 0 ≤ l ≤ mn−1 and j ∈ Nn−1\Dl, andAj(gαn−αj ∗E(mn−1))(·)y ∈ C([0, T] : X)
for 0 ≤ j ≤ n − 1 and y ∈ Y . Now it is not difficult to prove that

AiD
αi
t u(·) =

mn−1∑

j=mi

gj+1−αi(·)Aiuj −
mn−1∑

l=0

∑

j∈Nn−1\Dl

[
gl−αj ∗Ai

(
gαn−αi ∗ E(mn−1)

)]
(·)vl,j

+
mn−1∑

l=m

[
gl−α ∗Ai

(
gαn−αi ∗ E(mn−1)

)]
(·)vl,0 ∈ C([0, T] : X),

(3.12)
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finishing the proof of (i). The second part of theorem can be proved as follows. Suppose u(t)
is a strong solution of (2.2) on [0, T], with ui = 0, i ∈ N

0
mn−1. Using this fact and the equality

∫ t

0

∫ t−s

0
gαn−αj (r)U(t − s − r)Aju(s)drds =

∫ t

0

∫s

0
gαn−αj (r)U(t − s)Aju(s − r)drds, (3.13)

for any t ∈ [0, T] and j ∈ N
0
n−1, we easily infer that (for more general results, see [31, Propo-

sition 2.4(i)], and [29, page 155]):

(U ∗ u)(t) = (k ∗ gmn−1C2 ∗ u
)
(t)

+
∫ t

0

∫ t−s

0

[
gαn−αj (r)U(t − s − r)Aju(s) − gαn−α(r)U(t − s − r)Au(s)

]
drds

=
(
k ∗ gmn−1C2 ∗ u

)
(t) + (U ∗ u)(t), t ∈ [0, T].

(3.14)

Therefore, (k ∗ gmn−1C2 ∗ u)(t) = 0, t ∈ [0, T] and u(t) = 0, t ∈ [0, T].

Before proceeding further, wewould like to notice that the solution u(t), given by (3.7),
need not to be of class C1([0, T] : X), in general. Using integration by parts, it is checked at
once that (3.7) is an extension of the formula [24, (2.5); Theorem 2.4, page 152]. Notice, finally,
that the proof of Theorem 3.4(ii) is much simpler than that of [24, Theorem 2.4(ii)].

The standard proof of following theorem is omitted (cf. also [24, Theorem 2.7,
Remark 2.8, Theorem 2.9] and [28, Chapter 1]).

Theorem 3.5. Suppose k(t) satisfies (P1), (E(t))t≥0 ⊆ L(Y,X), (U(t))t≥0 ⊆ L(X), ω ≥ max(0,
abs(k)), C1 ∈ L(Y,X) and C2 ∈ L(X) is injective. Set Pλ := I +

∑n−1
j=1 λ

αj−αnAj − λα−αnA, �λ > 0.

(i) (a) Let (E(t))t≥0 be a k-regularized C1-existence family for (1.1), let the family {e−ωtE(t) :
t ≥ 0} be equicontinuous, and let the family {e−ωtAj(gαn−αj ∗ E)(t) : t ≥ 0} be equicon-
tinuous (0 ≤ j ≤ n − 1). Then the following holds:

Pλ

∫∞

0
e−λtE(t)ydt = k̃(λ)λ1−mnC1y, y ∈ Y, �λ > ω. (3.15)

(b) Let the operator Pλ be injective for every λ > ωwith k̃(λ)/= 0. Suppose, additionally, that
there exist strongly continuous operator families (W(t))t≥0 ⊆ L(Y,X) and (Wj(t))t≥0 ⊆
L(Y,X) such that {e−ωtW(t) : t ≥ 0} and {e−ωtWj(t) : t ≥ 0} are equicontinuous (0 ≤ j ≤
n − 1) as well as that

∫∞

0
e−λtW(t)ydt = k̃(λ)P−1

λ C1y,

∫∞

0
e−λtWj(t)ydt = k̃(λ)λαj−αnAjP−1

λ C1y,

(3.16)
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for every λ ∈ C with �λ > ω and k̃(λ)/= 0, y ∈ Y and j ∈ N
0
n−1. Then there exists a k-

regularized C1-existence family for (1.1), denoted by (E(t))t≥0. Furthermore, E(mn−1)(t)y =
W(t)y, t ≥ 0, y ∈ Y and Aj(gαn−αj ∗ E(mn−1))(t)y =Wj(t)y, t ≥ 0, y ∈ Y , j ∈ N

0
n−1.

(ii) Let the assumptions of (i) hold with k(t) = 1. Ifmn > 1, then one suppose additionally that,
for every j ∈ N

0
n−1, there exists a strongly continuous operator family (Vj(t))t≥0 ⊆ L(Y,X)

such that {e−ωtVj(t) : t ≥ 0} is equicontinuous as well as that

∫∞

0
e−λtVj(t)ydt = λαj−αn−1P−1

λ AjC1y, (3.17)

for every λ ∈ C with �λ > ω, and y ∈ D(AjC1). Let ui ∈ Di, and let C1vi = ui for some
vi ∈ Y (0 ≤ i ≤ mn − 1). Then, for every p ∈ �X , there exist cp > 0 and qp ∈ �Y such that
the corresponding solution u(t) satisfies the following estimate:

p(u(t)) ≤ cpeωt
mn−1∑

i=0

qp(vi), t ≥ 0, if ω > 0, (3.18)

p(u(t)) ≤ cpgmn(t)
mn−1∑

i=0

qp(vi), t ≥ 0, if ω = 0. (3.19)

(iii) Suppose (U(t))t≥0 is strongly continuous and the operator family {e−ωtU(t) : t ≥ 0} is
equicontinuous. Then (U(t))t≥0 is a k-regularized C2-uniqueness family for (1.1) if and
only if, for every x ∈ ⋂n−1

j=0 D(Aj), the following holds:

∫∞

0
e−λtU(t)Pλx dt = k̃(λ)λ1−mnC2x, �λ > ω. (3.20)

TheHausdorff locally convex topology on E∗ defines the system (|·|B)B∈B of seminorms
on E∗, where |x∗|B := supx∈B|〈x∗, x〉|, x∗ ∈ E∗, B ∈ B. Let us recall that E∗ is sequentially com-
plete provided that E is barreled. Following Wu and Zhang [32], we also define on E∗ the
topology of uniform convergence on compacts of E, denoted by C(E∗, E); more precisely,
given a functional x∗

0 ∈ E∗, the basis of open neighborhoods of x∗
0 with respect to C(E∗, E) is

given byN(x∗
0 : K, ε) := {x∗ ∈ E∗ : supx∈K|〈x∗ − x∗

0, x〉| < ε}, where K runs over all compacts
of E and ε > 0. Then (E∗,C(E∗, E)) is locally convex, complete and the topology C(E∗, E) is
finer than the topology induced by the calibration (| · |B)B∈B.

Now we focus our attention to the adjoint type theorems for (local) k-regularized C-
resolvent families. The proof of following theorem follows from the arguments given in the
proofs of [26, Theorems 2.14 and 2.15]; because of that, we will omit it.

Theorem 3.6. (i) Suppose X is barreled, ζ > 0, (R(t))t∈[0,τ) is a k-regularized C-resolvent family

for (1.1), and
⋂n−1
j=0 D(Aj) = R(C) = X. Then ((gζ ∗ R(·)∗)(t))t∈[0,τ) is a k-regularized C∗-resolvent

family for (1.1), with Aj replaced by A∗
j (0 ≤ j ≤ n − 1).
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(ii) Suppose X is barreled, (R(t))t∈[0,τ) is a (local, global exponentially equicontinuous) k-

regularized C-resolvent family for (1.1), and
⋂n−1
j=0 D(Aj) = R(C) = X. Put Z :=

⋂n−1
j=0 D(A∗

j ). Then
(R(t)∗|Z)t∈[0,τ), is a (local, global exponentially equicontinuous) k-regularized C

∗
|Z-resolvent family for

(1.1), in Z.
(iii) Suppose (R(t))t∈[0,τ) is a locally equicontinuous k-regularized C-resolvent family for

(1.1), and
⋂n−1
j=0 D(Aj) = R(C) = X. Then (R(t)∗)t∈[0,τ) is a locally equicontinuous k-regularized

C∗-resolvent family for (1.1), in (X∗,C(X∗, X)), withAj replaced byA∗
j (0 ≤ j ≤ n−1). Furthermore,

if (R(t))t≥0 is exponentially equicontinuous, then (R(t)∗)t≥0 is also exponentially equicontinuous.

Notice here that a similar theorem can be proved for the class of k-regularized C-resol-
vent propagation families.

Let f ∈ C([0, T] : X). Convoluting both sides of (1.1) with gαn(t), we get that

u(·) −
mn−1∑

k=0

ukgk+1(·) +
n−1∑

j=1

gαn−αj ∗Aj

⎡

⎣u(·) −
mj−1∑

k=0

ukgk+1(·)
⎤

⎦

= gαn−α ∗A
[

u(·) −
m−1∑

k=0

ukgk+1(·)
]

+
(
gαn ∗ f

)
(·), t ∈ [0, T].

(3.21)

In the subsequent theorem, whose proof follows from a slight modification of the proof
of [24, Theorem 3.1(i)], we will analyze inhomogeneous Cauchy problem (3.21) in more
detail.

Theorem 3.7. Suppose (E(t))t∈[0,τ) is a locally equicontinuous C1-existence family for (1.1), T ∈
(0, τ), and ui ∈ Di for 0 ≤ i ≤ mn − 1. Let f ∈ C([0, T] : X), let g ∈ C([0, T] : Y ) satisfy C1g(t) =
f(t), t ∈ [0, T], and let G ∈ C([0, T] : Y ) satisfy (gαn−mn+1 ∗ g)(t) = (g1 ∗G)(t), t ∈ [0, T]. Then the
function

u(t) =
mn−1∑

i=0

uigi+1(t) −
mn−1∑

i=0

∑

j∈Nn−1\Di

(
gαn−αj ∗ E(mn−1−i)

)
(t)vi,j

+
mn−1∑

i=m

(
gαn−α ∗ E(mn−1−i)

)
(t)vi,0 +

∫ t

0
E(t − s)G(s)ds, 0 ≤ t ≤ T

(3.22)

is a mild solution of the problem (3.21) on [0, T], where vi,j ∈ Y satisfyAjui = C1vi,j for 0 ≤ j ≤ n−1.
If, additionally, g ∈ C1([0, T] : Y ) and (E(mn−1)(t))t∈[0,τ) ⊆ L(Y,X) is locally equicontinuous, then
the solution u(t), given by (3.22), is a strong solution of (1.1) on [0, T].

Remark 3.8. Suppose that all conditions quoted in the first part of the above theorem hold,
and the family (E(mn−1)(t))t∈[0,τ) ⊆ L(Y,X) is locally equicontinuous. We assume, instead of
condition g ∈ C1([0, T] : Y ), that there exists a locally equicontinuous C2-uniqueness family
for (1.1) on [0, τ), as well as that there exist functions hj ∈ L1([0, T] : Y ) such that Ajf(t) =
C1hj(t), t ∈ [0, T], 0 ≤ j ≤ n − 1 (cf. also the formulation of [24, Theorem 3.1(ii)]). Using



Abstract and Applied Analysis 27

the functional equation for (E(t))t∈[0,τ), one can simply prove that, for every σ ∈ [0, T], the
function

rσ(·) = E(·)g(σ) − gmn(·)f(σ)

+
n−1∑

j=1

(
gαn−αj ∗ E(·)hj(σ)

)
(·) − (gαn−α ∗ E(·)h0(σ)

)
(·)

(3.23)

is a mild solution of the problem

u(t) +
n−1∑

j=1

Aj

(
gαn−αj ∗ u

)
(t) −A(gαn−α ∗ u

)
(t) = 0, t ∈ [0, T]. (3.24)

By the uniqueness of solutions, we have that the following holds:

E(t − σ)g(σ) − gmn(t − σ)f(σ) +
n−1∑

l=1

(
gαn−αl ∗ E(·)hl(σ)

)
(t − σ)(gαn−α ∗ E(·)h0(σ)

)
(t − σ) = 0,

(3.25)

provided 0 ≤ t, σ ≤ T and σ ≤ t. Fix i ∈ N
0
n−1. Then the above equality implies that, for every

j ∈ N
0
mn−1 with j ≤ min(αi +mn − αn−1 − 1�, αi +mn − α − 1�), one has:

AiE
(j)(t − σ)g(σ) − gmn−j(t − σ)C1hi(σ) +

n−1∑

l=1

Ai

(
gαn−αl ∗ E(j)(·)hl(σ)

)
(t − σ)

−Ai

(
gαn−α ∗ E(j)(·)h0(σ)

)
(t − σ) = 0,

(3.26)

provided 0 ≤ t, σ ≤ T and σ ≤ t. For such an index j, we conclude from (3.26) that the
mapping t �→ ∫ t0AiE

(j)(t − σ)g(σ)dσ, t ∈ [0, T] is continuous. Observe now that the condition

αn − αi −mn +min(αi +mn − αn−1 − 1�, αi +mn − α − 1�) ≥ 0, i ∈ N
0
n−1, (3.27)

which holds in the case of abstract Cauchy problem (ACPn), shows that the mapping t �→
Ai[gαn−αi−mn+j ∗ E(j) ∗ g](t), t ∈ [0, T] is continuous as well as that the mapping t �→
(d/dt)[E(mn−1) ∗ g](t), t ∈ [0, T] is continuous. Hence, the validity of condition (3.27) implies
that the function u(t), given by (3.22), is a strong solution of (1.1) on [0, T].

4. Subordination Principles

The proof of following theorem can be derived by using Theorem 3.5 and the argumentation
given in [10, Section 3].
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Theorem 4.1. Suppose C1 ∈ L(Y,X), C2 ∈ L(X) is injective and γ ∈ (0, 1).

(i) Let ω ≥ max(0, abs(k)), and let the assumptions of Theorem 3.5(i)-(b) hold. Put

Wγ(t) :=
∫∞

0
t−γΦγ

(
t−γs
)
W(s)y ds, t > 0, y ∈ Y, Wγ(0) :=W(0). (4.1)

Define, for every j ∈ N
0
n−1 and t ≥ 0, Wj,γ(t) by replacing W(t) in (4.1) with Wj(t).

Suppose that there exist a number ν > 0 and a continuous kernel kγ(t) satisfying (P1)
and k̃γ(λ) = λγ−1k̃(λγ), λ > ν. Then there exists an exponentially bounded kγ -regularized
C1-existence family (Eγ(t))t≥0 for (1.1), with αj replaced by αjγ therein (0 ≤ j ≤ n − 1).
Furthermore, the family {(1 + t�αnγ�−2)−1e−ω1/γ tEγ(t) : t ≥ 0} is equicontinuous.

(ii) Let ω ≥ 0, let the assumptions of Theorem 3.5(ii) hold, and let k(t) = kγ(t) = 1. Define,
for every j ∈ N

0
n−1 and t ≥ 0, Vj,γ(t) by replacingW(t) in (4.1) with Vj(t). Then, for every

j ∈ N
0
n−1, the family {e−ω1/γ tVj,γ(t) : t ≥ 0} is equicontinuous,

∫∞

0
e−λtVj,γ(t)ydt = λαjγ−αnγ−1P−1

λγ AjC1y, (4.2)

for every λ ∈ C with �(λγ) > ω, and y ∈ D(AjC1). Let ui ∈ Di,γ (defined in the obvious
way), and let C1vi = ui for some vi ∈ Y (0 ≤ i ≤ �αnγ� − 1). Then, for every p ∈ �X , there
exist cp > 0 and qp ∈ �Y such that the corresponding solution u(t) satisfies the following
estimate:

p(u(t)) ≤ cpe
ω1/γ t

�αnγ�−1∑

i=0

qp(vi), t ≥ 0, if ω > 0,

p(u(t)) ≤ cpg�αnγ�(t)
�αnγ�−1∑

i=0

qp(vi), t ≥ 0, if ω = 0.

(4.3)

(iii) Suppose (U(t))t≥0 is a k-regularized C2-uniqueness family for (1.1), and the family
{e−ωtU(t) : t ≥ 0} is equicontinuous. Define, for every t ≥ 0, Uγ(t) by replacing W(t)
in (4.1) with U(t). Suppose that there exist a number ν > 0 and a continuous kernel kγ(t)
satisfying (P1) and k̃γ(λ) = λγ(2−mn)−2+�αnγ�k̃(λγ), λ > ν. Then there exists a kγ -regularized
C2-uniqueness family for (1.1), with αj replaced by αjγ therein (0 ≤ j ≤ n−1). Furthermore,
the family {e−ω1/γ tUγ(t) : t ≥ 0} is equicontinuous.

Remark 4.2. (i) Consider the situation of Theorem 4.1(iii). Then we have the obvious equality
(k ∗ gmn−1)(0) = (kγ ∗ g�αnγ�−1)(0). If σ ≥ 1, k(t) = gσ(t) and (σ − 1 +mn − 1)γ + 1 − �αnγ� ≥ 0
(this inequality holds provided σ ≥ 2), then kγ(t) = g(σ−1+mn−1)γ+2−�αnγ�(t).

(ii) Let b ∈ L1
loc([0,∞)) be a kernel, and let (U(t))t∈[0,τ) be a (local) k-regularized C2-

uniqueness family for (1.1). Then ((b ∗ U)(t))t∈[0,τ) is a (b ∗ k)-regularized C2-uniqueness
family for (1.1).

(iii) Concerning the analytical properties of kγ -regularized C1-existence families in
Theorem 4.1(i), the following facts should be stated.
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(a) The mapping t �→ Eγ(t), t > 0 admits an extension to Σmin(((1/γ)−1)(π/2),π) and, for
every y ∈ Y , the mapping z �→ Eγ(z)y, z ∈ Σmin(((1/γ)−1)(π/2),π) is analytic.

(b) Let ε ∈ (0,min(((1/γ) − 1)(π/2), π)), and let (W(t))t≥0 be equicontinuous. Then
(Eγ(t))t≥0 is an exponentially equicontinuous, analytic kγ -regularized C1-existence
family of angle min(((1/γ)−1)(π/2), π), and for every p ∈ �X , there existMp,ε > 0
and qp,ε ∈ �Y such that

p
(
Eγ(z)y

) ≤Mp,εqp,ε
(
y
)(

1 + |z|�αnγ�−1
)
, z ∈ Σmin(((1/γ)−1)(π/2),π)−ε. (4.4)

(c) (Eγ(t))t≥0 is an exponentially equicontinuous, analytic kγ -regularizedC1-exis-tence
family of angle min(((1/γ) − 1)(π/2), π/2).

The similar statements hold for the kγ -regularized C2-uniqueness family (Uγ(t))t≥0 in
Theorem 4.1(iii).

The results on k-regularized (C1, C2)-existence and uniqueness families can be applied
in the study of following abstract Volterra equation:

u(t) = f(t) +
n−1∑

j=0

(
aj ∗Aju

)
(t), t ∈ [0, τ), (4.5)

where 0 < τ ≤ ∞, f ∈ C([0, τ) : X), a0, . . . , an−1 ∈ L1
loc([0, τ)), and A0, . . . , An−1 are closed

linear operators on X. As in Definition 2.7, by a mild solution, respectively, strong solution,
of (4.5), wemean any function u ∈ C([0, τ) : X) such thatAj(aj ∗u)(t) ∈ C([0, τ) : X), j ∈ N

0
n−1

and that

u(t) = f(t) +
n−1∑

j=0

Aj

(
aj ∗ u

)
(t), t ∈ [0, τ), (4.6)

respectively, any function u ∈ C([0, τ) : X) such that u(t) ∈ ⋂n−1
j=0 D(Aj), t ∈ [0, τ) and that

(4.5) holds.
We need the following definition.

Definition 4.3. Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), C1 ∈ L(Y,X), and C2 ∈ L(X) is injective.

(i) A strongly continuous operator family (E(t))t∈[0,τ) ⊆ L(Y,X) is said to be a (local, if
τ <∞) k-regularized C1-existence family for (4.5) if and only if

E(t)y = k(t)C1y +
n−1∑

j=0

Aj

(
aj ∗ E

)
(t)y, t ∈ [0, τ), y ∈ Y. (4.7)

(ii) A strongly continuous operator family (U(t))t∈[0,τ) ⊆ L(X) is said to be a (local, if
τ <∞) k-regularized C2-uniqueness family for (4.5) if and only if

U(t)x = k(t)C2x +
n−1∑

j=0

(
aj ∗AjU

)
(t)x, t ∈ [0, τ), x ∈

n−1⋂

j=0

D
(
Aj

)
. (4.8)
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Notice also that one can introduce the classes of k-regularized (C1, C2)-existence
and uniqueness families as well as k-regularized C-resolvent families for (4.5); compare
Definition 3.1. The full analysis of k-regularized (C1, C2)-existence and uniqueness families
for (4.5) falls out from the framework of this paper.

The following facts are clear.

(i) Suppose (E(t))t∈[0,τ) is a k-regularized C1-existence family for (4.5). Then, for every
y ∈ Y , the function u(t) = E(t)y, t ∈ [0, τ), is a mild solution of (4.5) with f(t) =
k(t)C1y, t ∈ [0, τ).

(ii) Let (U(t))t∈[0,τ) be a locally equicontinuous k-regularized C2-uniqueness family for
(4.5). Then there exists at most one mild (strong) solution of (4.5).

The proof of following subordination principle is standard and therefore omitted (cf.
the proofs of [29, Theorem 4.1, page 101] and [24, Theorem 2.7]).

Theorem 4.4. (i) Suppose there is an exponentially equicontinuous k-regularizedC1-existence family
for (1.1). Let c(t) be completely positive, let c(t), k(t) and k1(t) satisfy (P1), and let ω0 > 0 be such
that, for every λ > ω0 with c̃(λ)/= 0 and k̃(1/c̃(λ))/= 0, the following holds:

ãj(λ) = −k̃1(λ)c̃(λ)1+αn−αj λ

k̃(1/c̃(λ))
, j ∈ Nn−1,

ã0(λ) = −k̃1(λ)c̃(λ)1+αn−α λ

k̃(1/c̃(λ))
.

(4.9)

Assume, additionally, that there exist a number z ∈ C and a function k2(t) satisfying (P1) so that, for
every λ > ω0 with c̃(λ)/= 0 and k̃(1/c̃(λ))/= 0, one has:

k̃1(λ)

k̃(1/c̃(λ))
= z + k̃2(λ). (4.10)

Then there exists an exponentially equicontinuous k1-regularized C1-existence family for (4.5).
(ii) Suppose there is an exponentially equicontinuous k-regularized C2-uniqueness family for

(1.1). Let c(t) be completely positive, let c(t), k(t) and k1(t) satisfy (P1), and let ω0 > 0 be such that,
for every λ > ω0 with c̃(λ)/= 0 and k̃(1/c̃(λ))/= 0, the following holds:

ãj(λ) = c̃(λ)
αn−αj , j ∈ N

0
n−1, k̃1(λ) = λ−1c̃(λ)

mn−2k̃
(

1
c̃(λ)

)

. (4.11)

Then there exists an exponentially equicontinuous k1-regularized C2-uniqueness family for (4.5).
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It is not difficult to reformulate Theorem 4.4 for the class of strong C-propagation
families (cf. also Example 5.3 below).

Although our analysis tends to be exhaustive, we cannot cover, in this limited space,
many interested subjects. For example, the characterizations of some special classes of q-
exponentially equicontinuous k-regularized (C1, C2)-existence and uniqueness families in
complete locally convex spaces. We also leave to the interested reader the problem of clari-
fying the Trotter-Kato type theorems for introduced classes.

5. Examples and Applications

We start this section with the following example.

Example 5.1. Suppose cj ∈ C (1 ≤ j ≤ n − 1) and, for every i ∈ N
0
mn−1 with m − 1 ≥ i, one has

Nn−1 \Di /= ∅ and∑j∈Nn−1\Di
|cj |2 > 0. Let Aj = cjI for 1 ≤ j ≤ n − 1.

(i) (a) Suppose 0 < δ ≤ 2, σ ≥ 1, (πδ/2(αn − α)) − (π/2) > 0, and A is a subgenerator
of an exponentially equicontinuous (gδ, gσ)-regularized C-resolvent family
(Rδ(t))t≥0 which satisfies the following equality:

A

∫ t

0
gδ(t − s)Rδ(s)x ds = Rδ(t)x − gσ(t)Cx, x ∈ E, t ≥ 0. (5.1)

Put σ ′ := max(1, 1+(αn−α)(σ−1)δ−1) and θ := min(π/2, πδ/2(αn−α)−(π/2)).
By [26, Theorem 2.7], we have that, for every sufficiently small ε > 0, there
exists ωε > 0 such that ωε + Σ(π/2)δ−ε ⊆ ρC(A) and the family {|λ|(δ−σ)/δ(1 +
|λ|1/δ)(λ −A)−1C : λ ∈ ωε + Σ(π/2)α−ε} is equicontinuous. Notice also that

arg

⎛

⎝λαn−α +
n−1∑

j=1

cjλ
αj−α

⎞

⎠

= arg

⎛

⎝λαn−α|λ|α−((αn−1+αn)/2) +
n−1∑

j=1

cjλ
αj−α|λ|α−((αn−1+αn)/2)

⎞

⎠

≈ arg
(
λαn−α|λ|α−((αn−1+αn)/2)

)

= (αn − α) arg(λ), λ −→ ∞, arg(λ) <
π

αn − α.

(5.2)

Due to the choice of θ, we have that, for every sufficiently small ε > 0, there
exists ωε > 0 such that, for every λ ∈ ωε + Σ(π/2)+θ−ε, one has:

arg

⎛

⎝λαn−α +
n−1∑

j=1

cjλ
αj−α

⎞

⎠ <
π

2
δ − ε. (5.3)
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Therefore, we have the following: if the operator A is densely defined, then
the above inequality in combination with Theorem 2.12 indicates that A is a
subgenerator of an exponentially equicontinuous, analytic (σ ′ − 1)-times inte-
grated C-resolvent propagation family ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) for (1.1),
with θ being the angle of analyticity; if the operator A is not densely defined,
then the above conclusion continues to hold with σ ′ replaced by any number
σ ′′ > σ ′.

(a′) Suppose 0 < δ ≤ 2, σ ≥ 1, (δ((π/2) + γ)/(αn − α)) − (π/2) > 0, A is a
subgenerator of an exponentially equicontinuous, analytic (gδ, gσ)-regulari-
zed C-resolvent family (Rδ(t))t≥0 of angle γ ∈ (0, π/2], and (5.1) holds.
Put σ1 := σ ′ and θ1 := min(π/2, (δ((π/2) + γ)/(αn − α)) − (π/2)). If the
operator A is densely defined, then it follows from [26, Theorem 3.6] and
the above analysis that the operator C−1AC is the integral generator of an
exponentially equicontinuous, analytic (σ1 − 1)-times integrated C-resolvent
propagation family ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) for (1.1), with θ1 being the
angle of analyticity; if the operator A is not densely defined, then the above
conclusion continues to hold with σ1 replaced by any number σ2 > σ1. Now
we will apply this result to the following fractional analogue of the telegraph
equation:

Dα2
t u(t, x) + c1D

α1
t u(t, x) = DΔxu(t, x), t > 0, x ∈ R

n, (5.4)

where c1 > 0, D > 0 and 0 < α1 ≤ α2 < 2. Let E be one of the spaces Lp(Rn)
(1 ≤ p ≤ ∞), C0(Rn), Cb(Rn), BUC(Rn) and 0 ≤ l ≤ n. Put N

l
0 := {α ∈ N

n
0 :

αl+1 = · · · = αn = 0} and recall that the space El (0 ≤ l ≤ n) is defined
by El := {f ∈ E : f (α) ∈ E for all α ∈ N

l
0}. The totality of seminorms

(qα(f) := ||f (α)||E, f ∈ El; α ∈ N
l
0) induces a Fréchet topology on El. Let Tl

possess the same meaning as in [33], and let A := DΔ act with its maximal
distributional domain. Suppose first E/=L∞(Rn) and E/=Cb(Rn). Then the
operator A is the integral generator of an exponentially equicontinuous,
analytic C0-semigroup of angle π/2, which implies thatA is the integral gene-
rator of an exponentially equicontinuous, analytic I-regularized resolvent pro-
pagation family (R0(t))t≥0, if α2 ≤ 1, respectively, ((R0(t))t≥0, (R1(t))t≥0) if
α2 > 1, of angle ζ = min(π/2, (π/α2) − (π/2)); the established conclusion also
holds in the Fréchet nuclear space Ξ which consists of those smooth functions
on R

n with period 1 along each coordinate axis [26]. In this place, we would
like to observe that it is not clear whether the angle of analyticity of constructed
I-regularized resolvent propagation families, in the case that α1 < α2 < 1,
can be improved by allowing that ζ takes the value min(π, (π/α2) − (π/2)).
Suppose now E = L∞(Rn) or E = Cb(Rn). Then, for every σ ′ > 1, the operatorA
is the integral generator of an exponentially equicontinuous, analytic (σ ′ − 1)-
times integrated I-regularized resolvent propagation family (R0(t))t≥0, if α2 ≤
1, respectively, ((R0(t))t≥0, (R1(t))t≥0) if α2 > 1, of angle min(π/2, (π/α2) −
(π/2)).

(b) Suppose 0 < δ ≤ 2, σ ≥ 1, (πδ/2(αn − α)) − (π/2) > 0, a > 0, b ∈ (0, 1),
ka,b(t) := L−1(exp(−aλb))(t), t ≥ 0 and A is a subgenerator of an exponentially
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equicontinuous (gδ, ka,b)-regularized C-resolvent family (Ra,b(t))t≥0 which
satisfies the following equality:

A

∫ t

0
gδ(t − s)Ra,b(s)x ds = Ra,k(t)x − ka,b(t)Cx, x ∈ E, t ≥ 0. (5.5)

Let θ be defined as in (a). Then it is checked at once that (αn − α)bδ−1 < 1
and (αn − α)bδ−1((π/2) + θ) < π/2. Put k1(t) := ka1,b1(t), t ≥ 0, where b1 :=
(αn − α)bδ−1 and a1 > a(cos((αn − α)bδ−1((π/2) + θ)))−1. It is clear that, for
every θ′ ∈ (0, θ), there exists a sufficiently large ωθ′ > 0 such that, for every
λ ∈ ωθ′ + Σ(π/2)+θ′ ,

∣
∣
∣k̃1(λ)

∣
∣
∣

∣
∣
∣
∣k̃

((
λαn−α +

∑n−1
j=1 cjλ

αj−α
)1/δ
)∣
∣
∣
∣

≤
∣
∣
∣k̃1(λ)

∣
∣
∣ exp

⎛

⎝a|λ|b1 +
n−1∑

j=1

∣
∣cj
∣
∣|λ|(αj−α)b/δ

⎞

⎠.

(5.6)

Arguing as in (a), we reveal that A is a subgenerator of an exponen-
tially equicontinuous, analytic k1-regularized C-resolvent propagation family
((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) for (1.1), with θ being the angle of analyticity.

(b′) Suppose 0 < δ ≤ 2, σ ≥ 1, δ(((π/2) + γ)/(αn − α)) − (π/2) > 0, Aj = cjI
(1 ≤ j ≤ n − 1), a > 0, b ∈ (0, 1), A is a subgenerator of an exponentially equi-
continuous, analytic (gδ, ka,b)-regularized C-resolvent family (Ra,b(t))t≥0 of
angle γ ∈ (0, π/2], and (5.5) holds. Assume, additionally, that b(1 + (2γ/π)) ≤
1. Define θ1 as in (a)

′
, and k2(t) := ka2,b2(t), t ≥ 0, where b2 := (αn − α)bδ−1

and a2 > a(cos((αn − α)bδ−1((π/2) + θ1)))−1. Then one can simply verify that
(αn − α)b < δ and (αn − α)bδ−1((π/2) + γ) ≤ π/2. Making use of [26, Theo-
rem 3.6] and the foregoing arguments, we obtain that the operator C−1AC is
the integral generator of an exponentially equicontinuous, analytic k2-regula-
rized C-resolvent propagation family ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) for (1.1),
with θ being the angle of analyticity. Before proceeding further, we would
like to recommend for the reader [14, 20, 21, 26, 30, 34] for some examples
of (nondensely defined, in general) differential operators generating various
types of (gσ, ka,b)-regularized C-resolvent families.

(ii) Suppose E is complete, 0 < δ ≤ 2, (πδ/2(αn − α)) − (π/2) > 0, and A is the
densely defined generator of a q-exponentially equicontinuous (gδ, g1)-regularized
I-resolvent family (Rδ(t))t≥0 which satisfies that, for every p ∈ �, there existMp ≥ 1
and ωp ≥ 0 such that p(Rδ(t)x) ≤ Mpe

ωptp(x), t ≥ 0, x ∈ E. By [20, Theorem 3.1],
we infer that A is a compartmentalized operator and that, for every p ∈ �,
the operator Ap is the integral generator of an exponentially bounded (gδ, g1)-
regularized Ip-resolvent family in Ep. Then the first part of this example shows
that Ap is the integral generator of an exponentially bounded, analytic Ip-resolvent
propagation family, with min(π/2, (πδ/2(αn − α)) − (π/2)) being the angle
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of analyticity. By Theorem 2.13(ii), we obtain that A is the integral generator
of a q-exponentially equicontinuous, analytic I-resolvent propagation family
((R0(t))t∈[0,τ), . . . , (Rmn−1(t))t∈[0,τ)) for (1.1), and that the corresponding angle of
analyticity is min(π/2, (πδ/2(αn − α)) − (π/2)). It can be simply shown that, for
every p ∈ � and i ∈ N

0
mn−1, there exist Mp,i ≥ 1 and ωp,i ≥ 0 such that p(Ri(t)x) ≤

Mp,ie
ωp,itp(x), t ≥ 0, x ∈ E. In the continuation, we will also present some

other applications of (a, k)-regularized C-resolvent families in the analysis of some
special cases of (1.1); as already mentioned, this theory is inapplicable if some
of initial values u0, . . . , umn−1 is a non-zero element of E. Consider the abstract
Basset-Boussinesq-Oseen equation (1.2) and assume that E is complete. Set aα(t) :=
L−1(λα/(λ + 1))(t), t ≥ 0, kα(t) := e−t, t ≥ 0 and δα := min(π/2, (πα/2(1 − α))).
Suppose A is the integral generator of a q-exponentially equicontinuous (g1, g1)-
regularized I-resolvent family (R(t))t≥0 satisfying (2.37); cf. [20, 25] for important
examples of differential operators generating q-exponentially equicontinuous
(gδ, g1)-regularized I-resolvent families. Then it has been proved in [20] that A is
the integral generator of a q-exponentially equicontinuous, analytic (aα, kα)-regu-
larized resolvent family of angle δα. Notice, finally, that the choice of function aα(t)
instead of g1(t) has some advantages.

Example 5.2. Suppose 1 ≤ p ≤ ∞, E := Lp(R), m : R → C is measurable, aj ∈ L∞(R),
(Ajf)(x) := aj(x)f(x), x ∈ R, f ∈ E (1 ≤ j ≤ n − 1) and (Af)(x) := m(x)f(x), x ∈ R, with
maximal domain. Assume s ∈ (1, 2), δ = 1/s, Mp = p!s and kδ(t) = L−1(e−λ

δ
)(t), t ≥ 0.

Denote byM(t) the associated function of the sequence (Mp) [30] and put Λα′,β′,γ ′ := {λ ∈ C :
Reλ ≥ γ ′−1M(α′λ) + β′}, α′ > 0, β′ > 0, γ ′ > 0. Clearly, there exists a constant Cs > 0 such that
M(λ) ≤ Cs|λ|1/s, λ ∈ C. Hereafter we assume that the following condition holds:

(H) for every τ > 0, there exist α′ > 0, β′ > 0 and d > 0 such that τ ≤ cos(δπ/2)/Csα
′1/s

and

∣
∣
∣
∣
∣
∣
λαn−α +

n−1∑

j=1

λαj−αaj(x) −m(x)

∣
∣
∣
∣
∣
∣
≥ d, x ∈ R, λ ∈ Λα′,β′,1. (5.7)

Notice that the above condition holds provided n = 2, α2 − α = 2, α2 − α1 = 1 and m(x) =
(1/4)a21(x) − (1/16)a41(x) − 1, x ∈ R (cf. [31]), and that the validity of condition (H) does
not imply, in general, the essential boundedness of the function m(·). We will prove that A
is the integral generator of a global (not exponentially bounded, in general) kδ-regularized
I-resolvent propagation family ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0) for (1.1). Clearly, it suffices to
show that, for every τ ∈ (0,∞),A is the integral generator of a local kδ-regularized I-resolvent
propagation family for (1.1) on [0, τ). Suppose that τ > 0 is given in advance, and that α′ > 0,
β′ > 0 and d > 0 satisfy (H), for this τ . Let Γ denote the upwards oriented boundary of
ultralogarithmic region Λα′,β′,1. Put, for every t ∈ [0, τ), f ∈ E and x ∈ R,

(
Ri(t)f

)
(x) :=

1
2πi

∫

Γ
eλt−λ

δ

[
λαn−α−i +

∑
j∈Di

λαj−α−iaj(x)
]
f(x)

λαn−α +
∑n−1

j=1 λ
αj−αaj(x) −m(x)

dλ, (5.8)
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ifm − 1 < i, and

(
Ri(t)f

)
(x) :=

(−1)
2πi

∫

Γ
eλt−λ

δ λαj−α−iaj(x)

λαn−α +
∑n−1

j=1 λ
αj−αaj(x) −m(x)

dλ +
(
kδ ∗ gi

)
(t)f(x), (5.9)

if m − 1 ≥ i. It is clear that, for every i ∈ N
0
mn−1, Ri(t)Aj ⊆ AjRi(t), t ∈ [0, τ), j ∈ N

0
n−1 and that

(Ri(t))t∈[0,τ) ⊆ L(E) is strongly continuous. Furthermore, the Cauchy theorem implies that
Ri(0) = 0 = kδ(0), i ∈ N

0
mn−1. Now we will prove that the identity (2.6) holds provided

m − 1 < i and C2 = I. Let f ∈ D(A). Then a straightforward computation involving Cauchy
theorem shows that (2.6) holds, with x replaced by f(·) therein, if and only if:

1
2πi

∫

Γ
eλt−λ

δ

[
λαn−α−i +

∑
j∈Di

λαj−α−iaj(x)
]
f(x)

λαn−α +
∑n−1

j=1 λ
αj−αaj(x) −m(x)

dλ

+
n−1∑

j=1

1
2πi

∫

Γ

(∫ t

0
gαn−αj (t − s)eλs ds

)

e−λ
δ

[
λαn−α−i +

∑
l∈Di

λαl−α−igl(x)
]
f(x)

λαn−α +
∑n−1

l=1 λ
αl−αal(x) −m(x)

dλ

− 1
2πi

∫

Γ

(∫ t

0
gαn−α(t − s)eλs ds

)

e−λ
δ

[
λαn−α−i +

∑
j∈Di

λαj−α−iaj(x)
]
m(x)f(x)

λαn−α +
∑n−1

j=1 λ
αj−αaj(x) −m(x)

dλ

=
1

2πi

∫

Γ
eλt−λ

δ

⎡

⎣λ−if(x) +
∑

j∈Di

λαj−αn−iaj(x)f(x)

⎤

⎦dλ.

(5.10)

Using [28, Lemma 5.5, page 23] and the Cauchy theorem, the above equality is equivalent
with:

1
2πi

∫

Γ
eλt−λ

δ

[
λαn−α−i +

∑
j∈Di

λαj−α−iaj(x)
]
f(x)

λαn−α +
∑n−1

j=1 λ
αj−αaj(x) −m(x)

dλ

+
n−1∑

j=1

1
2πi

∫

Γ

eλt−λ
δ

λαn−αj

[
λαn−α−i +

∑
l∈Di

λαl−α−igl(x)
]
f(x)

λαn−α +
∑n−1

l=1 λ
αl−αal(x) −m(x)

dλ

− 1
2πi

∫

Γ

eλt−λ
δ

λαn−α

[
λαn−α−i +

∑
j∈Di

λαj−α−iaj(x)
]
m(x)f(x)

λαn−α +
∑n−1

j=1 λ
αj−αaj(x) −m(x)

dλ

=
1

2πi

∫

Γ
eλt−λ

δ

⎡

⎣λ−if(x) +
∑

j∈Di

λαj−αn−iaj(x)f(x)

⎤

⎦dλ,

(5.11)

which is true because the integrands appearing on both sides of this equality are equal
identically. One can similarly prove that the identity (2.6) holds provided m − 1 ≥ i and
C2 = I, so that ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0), defined in the obvious way, is a kδ-regularized
I-resolvent propagation family for (1.1), with subgenerator A. Notice that the condition (H)
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impliesm(·)/(λαn−α +∑n−1
j=1 λ

αj−αaj(·)−m(·)) ∈ L∞(R) for all λ ∈ Λα′,β′,1, which has as a further
consequence that R(Ri(t)) ⊆ D(A), provided t ≥ 0 and m − 1 < i, and that R(Ri(t) − (kδ ∗
gi)(t)) ⊆ D(A), provided t ≥ 0 and m − 1 ≥ i. The equality (2.5) holds for ((R0(t))t≥0, . . . ,
(Rmn−1(t))t≥0), the integral generator of ((R0(t))t≥0, . . . , (Rmn−1(t))t≥0), defined similarly as in
the second section, coincides with the operator A, which is the unique subgenerator of
((R0(t))t≥0, . . . , (Rmn−1(t))t≥0). Notice that, for every compact setK ⊆ [0,∞), there exists hK > 0
such that

sup
t∈K,p∈N0,i∈N

0
mn−1

∥
∥
∥h

p

k(d
p/dtp)Ri(t)

∥
∥
∥

p!s
<∞, (5.12)

and that one can similarly consider the generation of local k1/2-regularized I-resolvent
propagation families which oblige a modification of the property stated above with s = 2.
Now we would like to give an example of kδ-regularized I-resolvent propagation family for
(1.1) in whichAj /∈ L(E) for some j ∈ Nn−1. Assume n = 2, α2 −α = 2, α2 −α1 = 1, a1(x) = −2x,
x ∈ R and m(x) = x2 − x4 − 1, x ∈ R. Define A1, A and Ri(·) as before (i = 0, 1). Then the
established conclusions continue to hold since, for every τ > 0, there exist α′ > 0, β′ > 0 and
d > 0 such that (H) holds as well as that:

x2 +
(
x4 − x2 + 1

)|λ|−2
∣
∣λ2 − 2xλ +

(
x4 − x2 + 1

)∣
∣
≤ d, x ∈ R, λ ∈ Λα′,β′,1. (5.13)

Notice, finally, that it is not so difficult to construct examples of local k-regularized C-
resolvent propagation families which cannot be extended beyond its maximal interval of
existence.

Example 5.3. Suppose 1 ≤ p ≤ ∞, X := Lp(R), a ∈ R, r > 0, ϑ(·) ∈ W1,∞(R), 1/2 < γ ≤ 1,
T > 0, f ∈ C([0, T] : X), and (d/dt)(g2γ−1 ∗ (d/dx)f(t, ·)) ∈ C([0, T] : X). Put A1 := ad/dx
andAu := rΔu−ϑ(·)uwith maximal distributional domain. Now we will focus our attention
to the following fractional analogue of damped Klein-Gordon equation:

D2γ
t u(t, x) + a

∂

∂x
Dγ
t u(t, x) − rΔxu(t, x) + ϑ(x)u(t, x) = f(t, x), t > 0, x ∈ R,

u(0, x) = φ(x), ut(0, x) = ψ(x), x ∈ R.

(5.14)

The case γ = 1 has been analyzed in [24, Example 4.1], showing that there exists an expo-
nentially bounded I-uniqueness family for (5.14) and that, for every μ0 ∈ ρ(A1), there exists
an exponentially bounded (μ0−A1)

−1-existence family for (5.14)with Y = X. It is worth noting
that the estimates obtained in cited example enables one to simply verify that the conditions
of Theorem 4.1(i)-(ii) hold with k(t) = 1 and C1 = (μ0 − A1)

−1, and that the conditions of
Theorem 4.1(iii) hold with k(t) = t and C2 = I. This implies that there exists an exponentially
bounded g2γ -regularized I-uniqueness family (Uγ(t))t≥0 for (5.14)with αj = jγ , j = 0, 1, 2, and
that there exists an exponentially bounded (μ0 − A1)

−1-existence family (Eγ(t))t≥0 for (5.14)
with αj = jγ , j = 0, 1, 2. Applying Theorem 3.7, we obtain that, for every φ ∈ W3,p(R) and
ψ ∈ W3,p(R), there exists a unique mild solution u(t, x) of the corresponding problem (3.21)
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as well as that there exist M ≥ 1 and ω ≥ 0 such that the following estimate holds for each
t ≥ 0:

‖u(t, x)‖Lp(R) ≤ Meωt
[
∥
∥φ
∥
∥
W1,p(R) +

∥
∥ψ
∥
∥
W1,p(R) +

∫ t

0
(t − s)2γ−2∥∥f(s, ·)∥∥Lp(R)ds

+
∫ t

0

∥
∥
∥
∥
d

ds

(

g2γ−1 ∗ d

dx
f(s, ·)

)∥
∥
∥
∥
Lp(R)

ds

]

.

(5.15)

It is checked at once that the solution u(t, x) is analytically extensible to the sector
Σ((1/γ)−1)(π/2), provided that f(t, x) ≡ 0. Suppose now ϑ(x) ≡ ϑ > 0, κ ≥ |1/2 − 1/p|, provided
1 < p <∞, respectively, κ > 1/2, provided p ∈ {1,∞}, C := (1 −Δ)−(1/2)κ and f(t, x) ≡ 0. Then
there exists a strong C-propagation family {(S0(t))t≥0, (S1(t))t≥0} for the problem (5.14) with
γ = 1 (cf. [28, Example 5.8, page 130]). Using [10, (1.23), page 12; Theorems 3.1–3.3, pages
40–42] and [28, Proposition 5.3(iii), page 116], it readily follows that, for every φ ∈ Wp,2(R)
and ψ ∈Wp,2(R), the function uγ(t, ·), t > 0, given by

uγ(t, ·) :=
∫∞

0
t−γΦ

(
st−γ
)[
S1(s)φ + S′

1(s)φ
]
ds

+
∫ t

0
g1−γ(t − s)

∫∞

0
s−γΦ

(
rs−γ
)
S1(r)ψdrds,

(5.16)

is a unique strong solution of the corresponding integral equation (3.21) with u0 = Cφ
and u1 = Cψ; obviously, this solution is analytically extensible to the sector Σ((1/γ)−1)(π/2).
Notice also that one can similarly consider (cf. [24, Example 4.2] for more details) the results
concerning the existence and uniqueness of mild solutions of the following time-fractional
equation:

D2γ
t u(t, x) +

(

ρ1
∂3

∂x3
− ρ2 ∂

2

∂x2

)

Dγ
t u(t, x) +

(

c
∂2

∂x2
+ a(x)

)

u(t, x) = f(t, x), (5.17)

u(0, x) = φ(x), ut(0, x) = ψ(x), (5.18)

and that Theorem 4.4 can be applied in the analysis of the following integral equation:

u(t, x) = a
∫ t

0
a1(t − s) ∂

∂x
u(s, x)ds +

∫ t

0
a2(t − s)[rΔxu(s, x) − ϑ(x)u(s, x)]ds + f(t, x),

(5.19)

for certain kernels a1(t) and a2(t). We leave details to the interested reader.
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Consider now the following slight modification of (5.14):

D2γ
t u(t, x) + a

∂

∂x
Dγ
t u(t, x) − rei(2−2γ)(π/2)Δxu(t, x) + ϑ(x)u(t, x) = f(t, x), t > 0, x ∈ R,

u(0, x) = φ(x),
(
Dγ
t u(t, x)

)

|t=0
= ψ(x), x ∈ R.

(5.20)

Suppose now that a/= 0 (for further information concerning the case a = 0, [21, 23] may be
of some importance). Although the equality D2γ

t u(t, x) = Dγ
t u(t, x)D

γ
t u(t, x) does not hold in

general, we would like to point out that the existence and uniqueness of mild solutions to the
homogeneous counterpart of (5.20) cannot be so easily proved for initial values belonging to
the Sobolev spaceWk,p(R), for some k ∈ N. In order to better explain this, we will introduce
the new function v(t, x) by v(t, x) := Dγ

t u(t, x). Then (5.20) can be rewritten in the following
equivalent matricial form:

Dγ
t

[
u(t, x) v(t, x)

]T
=
[

0 1
−rei(2−2γ)π/2 −aix

]

(A)
[
u(t, x) v(t, x)

]T
, t ≥ 0, (5.21)

where A = −id/dx; see, for example, [35, 36]. The characteristic values of associated
polynomial matrix P(x) := [ 0 1

−rei(2−2γ)(π/2) −aix ] are λ1,2(x) = (1/2)(−aix ±
√
a2 + 4rei(2−2γ)(π/2)),

x ∈ R, which implies that the condition of Petrovskii for systems of abstract time-fractional
equations, that is, supx∈R

�((λ1,2(x))
1/γ) < ∞, is not satisfied [36]. Notice, finally, that (1.1)

cannot be converted to an equivalent matrix form, except for some very special values of
α0, . . . , αn.

Before proceeding further, we would like to observe that several examples of k-times
integrated (C1, C2)-existence and uniqueness families, acting on products of possibly dif-
ferent Banach spaces (k ∈ N), can be constructed following the consideration given in [37,
Section 7].

Example 5.4. Let s′ > 1,

E :=

{

f ∈ C∞[0, 1];
∥
∥f
∥
∥ := sup

p≥0

∥
∥f (p)

∥
∥
∞

p!s
′ <∞

}

,

A := − d

ds
, D(A) :=

{
f ∈ E; f ′ ∈ E, f(0) = 0

}
.

(5.22)

Then ρ(A) = C, and for every η > 1, ||R(λ : A)|| = O(eη|λ|), λ ∈ C [21]. Consider now the
complex non-zero polynomials Pj(z) =

∑nj
l=0 aj,lz

l, z ∈ C, aj,nj /= 0 (0 ≤ j ≤ n − 1), and
define, for every λ ∈ C and j ∈ N

0
n−1, the operator Pj(A) by D(Pj(A)) := D(Anj ) and

Pj(A)f :=
∑nj

l=0 aj,lA
lf , f ∈ D(Pj(A)). Our intention is to analyze the smoothing properties

of solutions of the equation (3.21) with Aj := pj(A), j ∈ N
0
n−1, uk = 0, k ∈ N

0
mn−1, and

a suitable chosen function f(t). In order to do that, set N := max(dg (P0), . . . , dg (Pn−1)),
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Pλ(z) := 1+
∑n−1

j=1 λ
αj−αnPj(z)−λα−αnP0(z) (λ ∈ C\{0}, z ∈ C), and after that,Φ := {λ ∈ C\{0} :

dg (Pλ(·)) = N,Pλ(0)/= 0}. Then it is not difficult to prove (cf. [21, Example 2.10]) that, for
every λ ∈ C \ {0}, P−1

λ
= (I +

∑n−1
j=1 λ

αj−αnAj − λα−αnA)−1 ∈ L(E) and that

P−1
λ = (−1)Ng(λ)−1R(z1,λ : A) · · ·R(zN,λ : A), λ ∈ Φ, (5.23)

where z1,λ, . . . , zN,λ denote the zeroes of Pλ(z) and g(λ) :=N!−1P(N)
λ (0), λ ∈ Φ. Suppose now

that the following condition holds:

(H) there exist σ ∈ (0, 1), ω > 0 and m > 0 such that, for every j ∈ N
0
n−1, one has:

|zj,λ| ≤ m|λ|σ , λ ∈ Φ, �λ > ω.
It is well known from the elementary courses of numerical analysis [38] that the
condition:

(H1) there exist σ ∈ (0, 1), ω > 0 andm > 0 such that, for every j ∈ N
0
n−1, one has:

∣
∣
∣
∣
∣
∣

N!P(j)
λ (0)

j!P(N)
λ (0)

∣
∣
∣
∣
∣
∣

1/(N−j)

≤ 1
2
m|λ|σ, λ ∈ Φ, �λ > ω, (5.24)

implies (H). The validity of last condition can be simply verified in many concrete situations,
and it seems that slightly better estimates can be obtained only in the case of very special
equations of the form (1.1). We would also like to point out that the condition (H) need
not to be satisfied, in general. Using (5.23), the inequality ||AlR(μ1 : A) · · ·R(μl : A)|| ≤
(1 + |μ1|||R(μ1 : A)||) · · · (1 + |μl|||R(μl : A)||) (l ∈ N, μ1, . . . , μl ∈ C), as well as the continuity of
mappings λ �→ P−1

λ
, �λ > ω and λ �→ AjP−1

λ
, �λ > ω, for 0 ≤ j ≤ n − 1, we obtain the existence

of a positive polynomial p(·) such that

∥
∥
∥P−1

λ

∥
∥
∥ +

n−1∑

j=0

∥
∥
∥AjP−1

λ

∥
∥
∥ ≤ p(|λ|)emN|λ|σ , �λ > ω. (5.25)

In what follows, we will use the following family of kernels. Define, for every l > 0, the entire
function ωl(·) by ωl(λ) :=

∏∞
p=1(1 + (lλ/ps)), λ ∈ C, where s := σ−1. Then it is clear that

|ωl(λ)| ≥ supk∈N

∏k
p=1|1 + (lλ/ps)| ≥ supk∈N

∏k
p=1l|λ|/ps ≥ supk∈N

(l|λ|)k/p!s, λ ∈ C, �λ ≥ 0.
Hence, |ωl(λ)| ≥ eM(l|λ|), λ ∈ C, �λ ≥ 0, where M(λ) := supp∈N0

ln |λ|p/p!s, λ ∈ C \ {0} and
M(0) := 0. It is also worth noting that, for every ζ ∈ (0, π/2), p ∈ N0 and λ ∈ Σ(π/2)+ζ, we have
|1 + (lλ/ps)| ≥ l|�λ|/ps ≥ l(1 + tan ζ)−1|λ|/ps, and

|ωl(λ)| ≥ eM(l(1+tan ζ)−1|λ|), ζ ∈
(
0,
π

2

)
, l > 0, λ ∈ Σ(π/2)+ζ. (5.26)

Put now Kl(t) := L−1(1/ωl(λ))(t), t ≥ 0, l > 0. Then, for every l > 0, 0 ∈ suppKl, Kl(0) = 0
and Kl(t) is infinitely differentiable for t ≥ 0. By Theorem 3.5(i)-(b) and (iii), we easily infer
from (5.25) that there exists k > 0 such that, for every l > k, there exists an exponentially
bounded Kl-regularized I-resolvent family (El(t))t≥0 for (1.1), with Y = X = E. Furthermore,
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the mapping t �→ El(t), t ≥ 0 is infinitely differentiable in the uniform operator topology of
L(E) and, for every compact set K ⊆ [0,∞) and for every l > k, there exists hK,l > 0 such that

sup
p≥0,t∈K

h
p

K,l

∥
∥
∥E

(p)
l (t)

∥
∥
∥

p!s
<∞. (5.27)

One can similarly construct examples of exponentially bounded, analytic Kl-regularized I-
resolvent families.
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