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We consider functionals derived from Petrović-type inequalities and establish their superaddi-
tivity, subadditivity, and monotonicity properties on the corresponding real n-tuples. By virtue
of established results we also define some related functionals and investigate their properties
regarding exponential convexity. Finally, the general results are then applied to some particular
settings.

1. Introduction

In this paper we prove some interesting properties of the functionals derived by virtue of the
Petrović and related inequalities (see, [1] pages 152–159). For the sake of simplicity these
inequalities will be referred to as the Petrović-type inequalities, while the corresponding
functionals will be referred to as the Petrović-type functionals.

Therefore, throughout this introduction, we present the above-mentioned Petrović-
type inequalities that will be the base in our research and also define the corresponding
functionals that will be the subject of our study. We start with the following inequality.

Theorem 1.1. Let I = (0, a] ⊆ R+ be an interval, (x1, . . . , xn) ∈ In, and let (p1, . . . , pn) ∈ R
n
+ be a

nonnegative real n-tuple such that

n∑

i=1

pixi ∈ I,
n∑

i=1

pixi ≥ xj for j = 1, . . . , n. (1.1)
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If f : I → R is such that the function f(x)/x is decreasing on I, then

f

(
n∑

i=1

pixi

)
≤

n∑

i=1

pif(xi). (1.2)

In addition, if f(x)/x is increasing on I, then the sign of inequality in (1.2) is reversed.

Remark 1.2. It should be noticed here that, if f(x)/x is strictly increasing function on I, then
the equality in (1.2) is valid if and only if we have equalities in (1.1) instead of inequalities,
that is, if x1 = · · · = xn and

∑n
i=1 pi = 1.

Motivated by the above theorem, we define the Petrović-type functional P1, as a
difference between the right-hand side and the left-hand side of inequality (1.2), that is,

P1
(
x,p; f

)
=

n∑

i=1

pif(xi) − f
(

n∑

i=1

pixi

)
, (1.3)

where x = (x1, . . . , xn) ∈ In, I = (0, a], p = (p1, . . . , pn) ∈ R
n
+, and f is defined on the interval I.

Remark 1.3. If (1.1) holds and f(x)/x is decreasing on I, then

P1
(
x,p; f

) ≥ 0. (1.4)

On the other hand, if (1.1) is valid and f(x)/x is increasing on I, then

P1
(
x,p; f

) ≤ 0. (1.5)

The above functional (1.3) will also be considered under slightly altered assumptions
on real n-tuples x and p. For that sake, the following result from [1] will be used in due
course.

Theorem 1.4. Suppose I = (0, a] ⊆ R+, (x1, . . . , xn) ∈ In is a real n-tuple such that 0 < x1 ≤ · · · ≤
xn, and let (p1, . . . , pn) ∈ R

n
+. Further, let f : I → R be such that f(x)/x is increasing on I.

(i) If there existsm (≤ n) such that

P 1 ≥ P 2 ≥ · · · ≥ Pm ≥ 1, Pm+1 = · · · = Pn = 0, (1.6)

where Pk =
∑k

i=1 pi, Pk = Pn − Pk−1, k = 2, . . . , n, and P 1 = Pn, then (1.2) holds.

(ii) If there existsm (≤ n) such that

0 ≤ P 1 ≤ P 2 ≤ · · · ≤ Pm ≤ 1, Pm+1 = · · · = Pn = 0, (1.7)

then the reverse inequality in (1.2) holds.
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Remark 1.5. If f(x)/x is increasing on I and (1.6) holds, then the Petrović-type functional P1

is nonnegative, that is, inequality (1.4) is valid. Conversely, if f(x)/x is increasing on I and
conditions as in (1.7) are fulfilled, then relation (1.5) holds.

In order to define another Petrović-type functional, we cite the following Petrović-type
inequality involving a convex function.

Theorem 1.6. Let I = [0, a] ⊆ R+, (x1, . . . , xn) ∈ In and let (p1, . . . , pn) ∈ R
n
+ fulfill conditions as

in (1.1). If f : I → R is a convex function, then

f

(
n∑

i=1

pixi

)
≥

n∑

i=1

pif(xi) +

(
1 −

n∑

i=1

pi

)
f(0). (1.8)

Remark 1.7. If f is a concave function then −f is convex, hence replacing f by −f in
Theorem 1.6, we obtain inequality

f

(
n∑

i=1

pixi

)
≤

n∑

i=1

pif(xi) +

(
1 −

n∑

i=1

pi

)
f(0). (1.9)

Remark 1.8. If the function f from Theorem 1.6 is strictly convex, then the inequality in (1.8)
is strict, if all xi’s are not equal or

∑n
i=1 pi /= 1.

Now, regarding inequality (1.8) we define another Petrović-type functional P2 by the
formula

P2
(
x,p; f

)
= f

(
n∑

i=1

pixi

)
−

n∑

i=1

pif(xi) −
(
1 −

n∑

i=1

pi

)
f(0), (1.10)

provided that x = (x1, . . . , xn) ∈ In, I = [0, a], p = (p1, . . . , pn) ∈ R
n
+, and f is defined on I.

Remark 1.9. If (1.1) holds and f : I → R is a convex function, then

P2
(
x,p; f

) ≥ 0. (1.11)

If (1.1) holds and f : I → R is a concave function, then

P2
(
x,p; f

) ≤ 0. (1.12)

Finally, wewill also be concernedwith an integral form of the Petrović-type functional,
based on the following integral Petrović-type inequality.
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Theorem 1.10. Let I ⊆ R be an interval, 0 ∈ I, and let f : I → R be a convex function. Further,
suppose h : [a, b] → I is continuous and monotone with h(t0) = 0, where t0 ∈ [a, b] is fixed, and g
is a function of bounded variation with

G(t) :=
∫ t

a

dg(x), G(t) :=
∫b

t

dg(x). (1.13)

(a) If
∫b
a h(t)dg(t) ∈ I and

0 ≤ G(t) ≤ 1 for a ≤ t ≤ t0, 0 ≤ G(t) ≤ 1 for t0 ≤ t ≤ b, (1.14)

then

∫b

a

f(h(t))dg(t) ≥ f
(∫b

a

h(t)dg(t)

)
+

(∫b

a

dg(t) − 1

)
f(0). (1.15)

(b) If
∫b
a h(t)dg(t) ∈ I and either

there exists an s ≤ t0 such that G(t) ≤ 0 for t < s,

G(t) ≥ 1 for s ≤ t ≤ t0, G(t) ≤ 0 for t > t0, (1.16)

or
there exists an s ≥ t0 such that G(t) ≤ 0 for t < t0,

G(t) ≥ 1 for t0 < t < s, G(t) ≤ 0 for t ≥ s, (1.17)

then the reverse inequality in (1.15) holds.

In view of Theorem 1.10, we define the functional

P3
(
h, g; f

)
=
∫b

a

f(h(t))dg(t) − f
(∫b

a

h(t)dg(t)

)

−
(∫b

a

dg(t) − 1

)
f(0),

(1.18)

which represents the integral form of the Petrović-type functional.

Remark 1.11. If the functions f , g, and h are defined as in the statement of Theorem 1.10 and
(1.14) holds, then the functional P3 is nonnegative, that is,

P3
(
h, g; f

) ≥ 0. (1.19)
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Moreover, if either (1.16) or (1.17) holds then

P3
(
h, g; f

) ≤ 0. (1.20)

For a comprehensive inspection on the Petrović-type inequalities including proofs and
diverse applications, the reader is referred to [1].

The paper is organized in the following way. After this introduction, in Section 2 we
prove superadditivity, subadditivity, and monotonicity properties of functionals P1,P2, and
P3. In addition, we also derive some bounds for the functional P1 via the nonweighted
functional of the same type. By virtue of results from Section 2, in Section 3 we study
some other classes of Petrović-type functionals and investigate their properties regarding
exponential convexity. Finally, in Section 4 we apply our general results to some particular
settings.

Convention 1. Throughout this paper R denotes the set of real numbers, while R+ denotes the
set of nonnegative numbers (including zero). Further, bold letters p, q, and x, respectively,
denote real n-tuples (p1, p2, . . . , pn), (q1, q2, . . . , qn), and (x1, x2, . . . , xn). Moreover, p ≥ q
means that pi ≥ qi for all i = 1, 2, . . . , n.

2. Main Results

In this section we derive some interesting properties of the Petrović-type functionals P1,P2,
and P3, defined in Section 1. More precisely, we establish the conditions under which the
appropriate functional is superadditive (subadditive) and increasing (decreasing), with
respect to the corresponding n-tuple of real numbers. Our first result refers to the Petrović-
type functional P1 defined by (1.3).

Theorem 2.1. Let I = (0, a] ⊆ R+, x ∈ In, and let nonnegative n-tuples p, q fulfill conditions as in
(1.1). If f : I → R is such that the function f(x)/x is decreasing on I, then the functional (1.3)
possess the following properties.

(i) P1(x, .; f) is superadditive on nonnegative n-tuples, that is,

P1
(
x,p + q; f

) ≥ P1
(
x,p; f

)
+ P1

(
x,q; f

)
, (2.1)

provided that
∑n

i=1(pi + qi)xi ∈ I.
(ii) If p,q ∈ R

n
+ are such that p ≥ q and

∑n
i=1(pi − qi)xi ≥ xj , j = 1, . . . , n, then

P1
(
x,p; f

) ≥ P1
(
x,q; f

) ≥ 0, (2.2)

that is, P1(x, .; f) is increasing on nonnegative n-tuples.

(iii) If f(x)/x is increasing on I, then the signs of inequalities in (2.1) and (2.2) are reversed,
that is, P1(x, .; f) is subadditive and decreasing on nonnegative n-tuples.
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Proof. (i) Using definition (1.3) of the Petrović-type functional P1 and utilizing the linearity
of the sum, we have

P1
(
x,p + q; f

)
=

n∑

i=1

(
pi + qi

)
f(xi) − f

(
n∑

i=1

(
pi + qi

)
xi

)

=
n∑

i=1

pif(xi) +
n∑

i=1

qif(xi) − f
(

n∑

i=1

pixi +
n∑

i=1

qixi

)
.

(2.3)

On the other hand, since f(x)/x is decreasing function, Theorem 1.1 in the nonweighted case
(for n = 2) yields inequality

f

(
n∑

i=1

pixi +
n∑

i=1

qixi

)
≤ f
(

n∑

i=1

pixi

)
+ f

(
n∑

i=1

qixi

)
. (2.4)

Finally, combining relations (2.3) and (2.4), we obtain

P1
(
x,p + q; f

) ≥
n∑

i=1

pif(xi) +
n∑

i=1

qif(xi) − f
(

n∑

i=1

pixi

)
− f
(

n∑

i=1

qixi

)
. (2.5)

Therefore we have

P1
(
x,p + q; f

) ≥ P1
(
x,p; f

)
+ P1

(
x,q; f

)
, (2.6)

as claimed.
(ii)Monotonicity follows easily from the superadditivity property. Since p ≥ q ≥ 0, we

can represent p as the sum of two nonnegative n-tuples, namely, p = (p − q) + q. Now, from
relation (2.1)we get

P1
(
x,p; f

)
= P1

(
x,p − q + q; f

) ≥ P1
(
x,p − q; f

)
+ P1

(
x,q; f

)
. (2.7)

Finally, if the conditions as in (ii) are fulfilled, then, taking into account Theorem 1.1 we have
that P1(x,p − q; f) ≥ 0, which implies that P1(x,p; f) ≥ P1(x,q; f).

(iii) The case of increasing function f(x)/x is treated in the same way as in (i) and (ii),
taking into account that the sign of the corresponding Petrović-type inequality is reversed.

By virtue of Theorem 1.4, the above properties of the functional P1 can also be derived
in a slightly different setting.

Theorem 2.2. Let I = (0, a] ⊆ R+, x ∈ In, and let real n-tuples p, q fulfill conditions as in (1.6).
If f : I → R is such that the function f(x)/x is increasing on I, then the functional P1 has the
following properties.
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(i) P1(x, .; f) is superadditive on real n-tuples, that is,

P1
(
x,p + q; f

) ≥ P1
(
x,p; f

)
+ P1

(
x,q; f

)
, (2.8)

provided that
∑n

i=1(pi + qi)xi ∈ I and 0 <
∑n

i=1 pixi ≤
∑n

i=1 qixi.

(ii) If 0 < x1 ≤ · · · ≤ xn, p ≥ q, and there existm (≤ n) such that

P 1 −Q1 ≥ P 2 −Q2 ≥ · · · ≥ Pm −Qm ≥ 1,

Pm+1 = Qm+1 = · · · = Pn = Qn = 0,
(2.9)

where Pk =
∑k

i=1 pi, Qk =
∑k

i=1 qi, Pk −Qk = (Pn +Qn) − (Pk−1 +Qk−1), k = 2, . . . , n,
P 1 = Pn, and Q1 = Qn, then

P1
(
x,p; f

) ≥ P1
(
x,q; f

) ≥ 0, (2.10)

that is, P1(x, .; f) is increasing on real n-tuples.

(iii) If real n-tuples p and q fulfill conditions as in (1.7), then the signs of inequalities in (2.8)
and (2.10) are reversed, that is, P1(x, ·; f) is subadditive and decreasing on real n-tuples.

Proof. (i) The proof follows the same lines as the proof of the previous theorem. Namely, the
left-hand side of (2.8) can be rewritten as

P1
(
x,p + q; f

)
=

n∑

i=1

(
pi + qi

)
f(xi) − f

(
n∑

i=1

(
pi + qi

)
xi

)

=
n∑

i=1

pif(xi) +
n∑

i=1

qif(xi) − f
(

n∑

i=1

pixi +
n∑

i=1

qixi

)
.

(2.11)

Moreover, f(x)/x is increasing, hence Theorem 1.4 for n = 2 yields inequality

f

(
n∑

i=1

pixi +
n∑

i=1

qixi

)
≤ f
(

n∑

i=1

pixi

)
+ f

(
n∑

i=1

qixi

)
. (2.12)

Finally, relations (2.11) and (2.12) imply inequality

P1
(
x,p + q; f

) ≥
n∑

i=1

pif(xi) +
n∑

i=1

qif(xi) − f
(

n∑

i=1

pixi

)
− f
(

n∑

i=1

qixi

)
, (2.13)

that is, we obtain (2.8).
(ii) Considering p ≥ q ≥ 0, the real n-tuple p can be rewritten as p = (p − q) + q. Now,

regarding relation (2.8)we have

P1
(
x,p; f

)
= P1

(
x,p − q + q; f

) ≥ P1
(
x,p − q; f

)
+ P1

(
x,q; f

)
. (2.14)
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Finally, taking into account conditions as in (2.9), it follows by Theorem 1.4 that P1(x,p −
q; f) ≥ 0, that is, P1(x,p; f) ≥ P1(x,q; f), which completes the proof.

(iii) This case is treated in the same way as in (i) and (ii), taking into account that the
sign of the corresponding Petrović-type inequality is reversed.

Superadditivity and monotonicity properties stated in Theorem 2.1 play an important
role in numerous applications of the Petrović-type inequalities. In the sequel we utilize the
monotonicity property of the Petrović-type functional P1. More precisely, we derive some
bounds for this functional, expressed in terms of the nonweighted functional of the same
type.

Corollary 2.3. Let I = (0, a] ⊆ R+, x ∈ In, and let f : I → R be such that f(x)/x is decreasing on
I. Further, suppose p ∈ R

n
+ is such that

∑n
i=1(pi−m)xi ≥ xj and

∑n
i=1(M−pi)xi ≥ xj , j = 1, 2, . . . , n,

wherem = min1≤i≤n{pi} andM = max1≤i≤n{pi}.
Ifm > 1 then the Petrović-type functional P1 fulfills inequality

P1
(
x,p; f

) ≥ mP0
1

(
x; f
)
, (2.15)

while forM < 1 one has

P1
(
x,p; f

) ≤MP0
1

(
x; f
)
, (2.16)

where

P0
1

(
x; f
)
=

n∑

i=1

f(xi) − f
(

n∑

i=1

xi

)
. (2.17)

Moreover, if f(x)/x is increasing on I, then the signs of inequalities in (2.15) and (2.16) are reversed.

Proof. Since p = (p1, . . . , pn) ≥ m = (m,m, . . . ,m), monotonicity of the Petrović-type
functional implies that P1(x,p; f) ≥ P1(x,m; f).

On the other hand, if f(x)/x is decreasing function, we have

f(au) ≤ af(u), a > 1, f(au) ≥ af(u), a < 1. (2.18)

Now, regarding (2.18)we have

P1
(
x,m; f

)
= m

n∑

i=1

f(xi) − f
(
m

n∑

i=1

xi

)
≥ m

n∑

i=1

f(xi) −mf
(

n∑

i=1

xi

)
, (2.19)

that is, we obtain (2.15). Inequality (2.16) is derived in a similar way, by using the second
inequality in (2.18).

Our next result provides superadditivity and monotonicity properties of the Petrović-
type functional defined by (1.10).
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Theorem 2.4. Let I = [0, a] ⊆ R+, x ∈ In, and let p,q ∈ R
n
+ fulfill conditions as in (1.1). If

f : I → R is a convex function, then the functional (1.10) has the following properties:

(i) P2(x, ·; f) is superadditive on nonnegative n-tuples, that is,

P2
(
x,p + q; f

) ≥ P2
(
x,p; f

)
+ P2

(
x,q; f

)
, (2.20)

provided that
∑n

i=1(pi + qi)xi ∈ I.
(ii) If p,q are such that p ≥ q and

∑n
i=1(pi − qi)xi ≥ xj , j = 1, . . . , n, then

P2
(
x,p; f

) ≥ P2
(
x,q; f

) ≥ 0, (2.21)

that is, P2(x, .; f) is increasing on nonnegative n-tuples.

(iii) If f : I → R is a concave function, then the signs of inequalities in (2.20) and (2.21) are
reversed, that is, P2(x, .; f) is subadditive and decreasing on nonnegative n-tuples.

Proof. (i) The left-hand side of inequality (2.20) can be rewritten as

P2
(
x,p + q; f

)
= f

(
n∑

i=1

(
pi + qi

)
xi

)
−

n∑

i=1

(
pi + qi

)
f(xi)

−
(
1 −

n∑

i=1

(
pi + qi

)
)
f(0)

= f

(
n∑

i=1

pixi +
n∑

i=1

qixi

)
−

n∑

i=1

pif(xi) −
n∑

i=1

qif(xi)

−
(
1 −
(

n∑

i=1

pi +
n∑

i=1

qi

))
f(0).

(2.22)

Further, Theorem 1.6 in the nonweighted case (for n = 2) yields inequality

f

(
n∑

i=1

pixi +
n∑

i=1

qixi

)
≥ f
(

n∑

i=1

pixi

)
+ f

(
n∑

i=1

qixi

)
− f(0), (2.23)

hence combining relations (2.22) and (2.23), we get

P2
(
x,p + q; f

) ≥ f
(

n∑

i=1

pixi

)
−

n∑

i=1

pif(xi) −
(
1 −

n∑

i=1

pi

)
f(0)

+ f

(
n∑

i=1

pixi

)
−

n∑

i=1

qif(xi) −
(
1 −

n∑

i=1

qi

)
f(0).

(2.24)

Thus, considering definition (1.10)we obtain (2.20), as claimed.
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(ii) Monotonicity property follows from the corresponding superadditivity property
(2.20), as in Theorem 2.2.

(iii) The case of concave function f follows from the fact that the sign of the
corresponding Petrović-type inequality is reversed.

To conclude this section we also derive the properties of the integral Petrović-type
functional, defined by (1.18).

Theorem 2.5. Suppose f : I = [0, a] → R is a convex function, h : [a, b] → I is continuous and
monotone with h(t0) = 0, where t0 ∈ [a, b] is fixed, and let g1, g2 be functions of bounded variation
with

Gi(t) :=
∫ t

a

dgi(x), Gi(t) :=
∫b

t

dgi(x) for i = 1, 2. (2.25)

Then the functional P3, defined by (1.18), has the following properties.

(i) P3(h, .; f) is subadditive with respect to functions of bounded variation, that is,

P3
(
h, g1 + g2; f

) ≤ P3
(
h, g1; f

)
+ P3

(
h, g2; f

)
, (2.26)

where
∫b
a h(t)dg1(t) ≥ 0,

∫b
a h(t)dg2(t) ≥ 0, and

∫b
a h(t)dg1(t) +

∫b
a h(t)dg2(t) ∈ I.

(ii) If
∫b
a h(t)d(g1)(t) −

∫b
a h(t)d(g2)(t) ∈ I and either there exists an s ≤ t0 such that G1(t) ≤

G2(t) for t < s, G1(t) − G2(t) ≥ 1 for s ≤ t ≤ t0, and G1(t) ≤ G2(t) for t > t0, or there
exists an s ≥ t0 such that G1(t) ≤ G2(t) for t < t0, G1(t) − G2(t) ≥ 1 for t0 < t < s, and
G1(t) ≤ G2(t) for t ≥ s, then

P3
(
h, g1; f

) ≤ P3
(
h, g2; f

)
. (2.27)

Proof. (i) Regarding definition (1.18) of the Petrović-type integral functional, we have

P3
(
h, g1 + g2; f

)
=
∫b

a

f(h(t))d
(
g1 + g2

)
(t) − f

(∫b

a

h(t)d
(
g1 + g2

)
(t)

)

−
(∫b

a

d
(
g1 + g2

)
(t) − 1

)
f(0),

(2.28)
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that is,

P3
(
h, g1 + g2; f

)
=
∫b

a

f(h(t))dg1(t) +
∫b

a

f(h(t))dg2(t)

− f
(∫b

a

h(t)dg1(t) +
∫b

a

h(t)dg2(t)

)

−
(∫b

a

dg1(t) +
∫b

a

dg2(t) − 1

)
f(0),

(2.29)

by the linearity of the differential. Now, applying inequality (1.8) to term f(
∫b
a h(t)dg1(t) +∫b

a h(t)dg2(t)), we obtain

f

(∫b

a

h(t)dg1(t) +
∫b

a

h(t)dg2(t)

)
≥ f
(∫b

a

h(t)dg1(t)

)
+ f

(∫b

a

h(t)dg2(t)

)
− f(0).

(2.30)

Further, inserting (2.30) in (2.29), we have

P3
(
h, g1 + g2; f

) ≤
∫b

a

f(h(t))dg1(t) +
∫b

a

f(h(t))dg2(t)

− f
(∫b

a

h(t)dg1(t)

)
− f
(∫b

a

h(t)dg2(t)

)
+ f(0)

−
(∫b

a

dg1(t) +
∫b

a

dg2(t) − 1

)
f(0),

(2.31)

that is, by rearranging,

P3
(
h, g1 + g2; f

) ≤ P3
(
h, g1; f

)
+ P3

(
h, g2; f

)
. (2.32)

(ii)Monotonicity follows from the subadditivity property (2.26). Namely, representing
g1 as g1 = (g1 − g2) + g2, we have

P3
(
h, g1; f

)
= P3

(
h,
(
g1 − g2

)
+ g2; f

) ≤ P3
(
h, g1 − g2; f

)
+ P3

(
h, g2; f

)
. (2.33)

Clearly, under assumptions as in the statement of theorem, we have P3(h, g1 − g2; f) ≤ 0 (see
also Remark 1.11), hence it follows that P3(h, g1; f) ≤ P3(h, g2; f), which completes the proof.
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3. n-Exponential Convexity and Exponential Convexity of
the Petrović-Type Functionals

By virtue of the results from Section 2, in this section we define several new classes of
Petrović-type functionals and investigate their properties regarding exponential convexity.

We start these issues by giving some definitions and notions concerning exponentially
convex functions which are frequently used in the results. This is a subclass of convex
functions introduced by Bernstein in [2] (see also [3–5]).

Definition 3.1. A function f : I → R is n-exponentially convex in the Jensen sense on an
interval I ⊆ R, if

n∑

i,j=1

ξiξjf
(
xi + xj

) ≥ 0 (3.1)

holds for all choices ξi ∈ R and xi+xj ∈ I, i, j = 1, . . . , n. Function f : I → R is n-exponentially
convex if it is n-exponentially convex in the Jensen sense and continuous on I.

The following remarks, propositions, and lemmas involving n-exponentially convex
functions are well known (see, e.g., papers [6, 7]).

Remark 3.2. It is clear from the definition that 1-exponentially convex functions in the Jensen
sense are in fact nonnegative functions. Also, n-exponentially convex functions in the Jensen
sense are k-exponentially convex in the Jensen sense for every k ∈ N, k ≤ n.

By using some linear algebra and definition of the positive semidefinite matrix, we
have the following proposition.

Proposition 3.3. If f is an n-exponentially convex in the Jensen sense then the matrix

[
f

(
xi + xj

2

)]k

i,j=1
(3.2)

is positive semi-definite for all k ∈ N, k ≤ n. In particular,

det
[
f

(
xi + xj

2

)]k

i,j=1
≥ 0 (3.3)

for all k ∈ N, k ≤ n.

Definition 3.4. A function f : I → R is exponentially convex in the Jensen sense on an interval
I ⊆ R, if it is n-exponentially convex in the Jensen sense for all n ∈ N. Moreover, function
f : I → R is exponentially convex if it is exponentially convex in the Jensen sense and
continuous on I.
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Remark 3.5. It is known (and easy to show) that f : I → R is a log-convex in the Jensen sense
if and only if

m2f(t) + 2mnf
(
t + r
2

)
+ n2f(r) ≥ 0 (3.4)

holds for eachm,n ∈ R and r, t ∈ I. It follows that a function is log-convex in the Jensen sense
if and only if it is 2-exponentially convex in the Jensen sense. Also, using the basic convexity
theory it follows that the function is log-convex if and only if it is 2-exponentially convex.

We will also need the following result (see, e.g., [1]).

Lemma 3.6. If Φ is a convex function on an interval I and if x1 ≤ y1, x2 ≤ y2, x1 /=x2, y1 /=y2,
then the following inequality is valid:

Φ(x2) −Φ(x1)
x2 − x1 ≤ Φ

(
y2
) −Φ

(
y1
)

y2 − y1 . (3.5)

If the function Φ is concave then the sign of the above inequality is reversed.

Divided differences are found to be very handy and interesting when we have to
operate with different functions having different degree of smoothness. Let f : I → R be
a function, I an interval in R. Then for distinct points ui ∈ I, i = 0, 1, 2 the divided differences
of first and second order are defined as follows:

[
ui; f

]
= f(ui) (i = 0, 1, 2),

[
ui, ui+1; f

]
=
f(ui+1) − f(ui)

ui+1 − ui (i = 0, 1),

[
u0, u1, u2; f

]
=

[
u1, u2; f

] − [u0, u1; f
]

u2 − u0 .

(3.6)

The values of the divided differences are independent of the order of the points
u0, u1, u2 and may be extended to include the cases when some or all points are equal, that is,

[
u0, u0; f

]
= lim

u1 →u0

[
u0, u1; f

]
= f ′(u0), (3.7)

provided that f ′ exists.
Now, passing through the limit u1 → u0 and replacing u2 by u in (3.6), we have [1,

page 16],

[
u0, u0, u; f

]
= lim

u1 →u0

[
u0, u1, u; f

]
=
f(u) − f(u0) − f ′(u0)(u − u0)

(u − u0)2
, u /=u0, (3.8)
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provided that f ′ exists. Also passing to the limit ui → u (i = 0, 1, 2) in (3.6), we have

[
u, u, u; f

]
= lim

ui →u

[
u0, u1, u2, f

]
=
f ′′(u)
2

, (3.9)

provided that f ′′ exists.

Remark 3.7. One can note that if for all u0, u1 ∈ I, [u0, u1, f] ≥ 0 then f is increasing on I and
if for all u0, u1, u2 ∈ I, [u0, u1, u2, f] ≥ 0 then f is convex on I.

Now, we are ready to study some new classes of Petrović-type functionals. For the
sake of simplicity and to avoid many notions, we first introduce the following definitions.

(M1) Under the assumptions of Theorem 1.1 equipped with conditions as in (1.1), we
define linear functional as

Φ1
(
f
)
= −P1

(
x,p; f

)
. (3.10)

(M2) Under the assumptions of Theorem 1.4 with conditions as in (1.6), we define linear
functional as

Φ2
(
f
)
= Φ1

(
f
)
. (3.11)

(M3) Under the assumptions of Theorem 1.4 with conditions as in (1.7), we define linear
functional as

Φ3
(
f
)
= −Φ1

(
f
)
. (3.12)

(M4) Under the assumptions of Theorem 2.1 with conditions as in (1.1), and provided
that

∑n
i=1(pi + qi)xi ∈ I, we define linear functional as

Φ4
(
f
)
= P1

(
x,p; f

)
+ P1

(
x,q; f

) − P1
(
x,p + q; f

)
. (3.13)

(M5) Under the assumptions of Theorem 2.2 with conditions as in (1.6), and provided
that

∑n
i=1(pi + qi)xi ∈ I, 0 <

∑n
i=1 pixi ≤

∑n
i=1 qixi, we define linear functional as

Φ5
(
f
)
= −Φ4

(
f
)
. (3.14)

(M6) Under the assumptions of Theorem 2.2 with conditions as in (1.7), and provided
that

∑n
i=1(pi + qi)xi ∈ I, 0 <

∑n
i=1 pixi ≤

∑n
i=1 qixi, we define linear functional as

Φ6
(
f
)
= Φ4

(
f
)
. (3.15)
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(M7) Under the assumptions of Theorem 1.6 with conditions as in (1.1), we define linear
functional as

Φ7
(
f
)
= P2

(
x,p; f

)
. (3.16)

(M8) Under the assumptions of Theorem 1.10 with conditions as in (1.14), we define
linear functional as

Φ8
(
f
)
= P3

(
h, g; f

)
. (3.17)

(M9) Under the assumptions of Theorem 1.10 equipped with conditions (1.16) or (1.17),
we define linear functional as

Φ9
(
f
)
= −P3

(
h, g; f

)
. (3.18)

(M10) Under the assumptions of Theorem 2.4 with conditions as in (1.1), and provided
that

∑n
i=1(pi + qi)xi ∈ I, we define linear functional as

Φ10
(
f
)
= P2

(
x,p + q; f

) − P2
(
x,p; f

) − P2
(
x,q; f

)
. (3.19)

(M11) Under the assumptions of Theorem 2.5, and provided that

∫b
a h(t)dg1(t) ≥ 0,

∫b
a h(t)dg2(t) ≥ 0,

∫b
a h(t)dg1(t) +

∫b
a h(t)dg2(t) ∈ I, we define linear

functional as

Φ11
(
f
)
= P3

(
h, g1; f

)
+ P3

(
h, g2; f

) − P3
(
h, g1 + g2; f

)
. (3.20)

Remark 3.8. Considering the assumptions as in (Mk), k = 1, . . . , 6, if f(u)/u is increasing
function on I then

Φk

(
f
) ≥ 0, for k = 1, . . . , 6. (3.21)

Remark 3.9. Considering the assumptions as in (Mk), k = 7, . . . , 11, if f is convex function on
I then

Φk

(
f
) ≥ 0 for k = 7, . . . , 11. (3.22)

In order to obtain our main results regarding the exponential convexity, we define
different families of functions. Let I, J ⊆ R be intervals. For distinct points u0, u1, u2 ∈ I, we
define the following.

E1 = {ft : I → R | t ∈ J and t �→ [u0, u1, Ft] is n-exponentially convex in the Jensen
sense on J , where Ft(u) = ft(u)/u}.
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E2 = {ft : I → R | t ∈ J and t �→ [u0, u1, u2; ft] is n-exponentially convex in the
Jensen sense on J}.
E3 = {ft : I → R | t ∈ J and t �→ [u0, u1, Ft] is exponentially convex in the Jensen
sense on J , where Ft(u) = ft(u)/u}.
E4 = {ft : I → R | t ∈ J and t �→ [u0, u1, u2; ft] is exponentially convex in the Jensen
sense on J}.
E5 = {ft : I → R | t ∈ J and t �→ [u0, u1, Ft] is 2-exponentially convex in the Jensen
sense on J , where Ft(u) = ft(u)/u}.
E6 = {ft : I → R | t ∈ J and t �→ [u0, u1, u2; ft] is 2-exponentially convex in the
Jensen sense on J}.

Theorem 3.10. Let Φk(ft) be linear functionals defined as in (Mk), associated with families E1 and
E2 in such a way that, ft ∈ E1, for k = 1, . . . , 6, and ft ∈ E2, for k = 7, . . . , 11. Then t �→ Φk(ft) is
n-exponentially convex function in the Jensen sense on J . If the function t �→ Φk(ft) is continuous on
J , then it is n-exponentially convex on J .

Proof. (a) We first prove n-exponential convexity in the Jensen sense of the function t �→
Φk(ft), for k = 1, . . . , 6. To do this, as we have considered the families of functions defined in
E1, for ξi ∈ R, i = 1, . . . , n, and ti ∈ J , i = 1, . . . , n, we define the function

h(u) =
n∑

i,j=1

ξiξjf(ti+tj )/2(u). (3.23)

Clearly, we have

[u0, u1,H] =
n∑

i,j=1

ξiξj
[
u0, u1, F(ti+tj )/2

]
, (3.24)

whereH(u) = h(u)/u and Ft(u) = ft(u)/u.
Since the function t �→ [u0, u1, Ft] is n-exponentially convex in the Jensen sense,

the right-hand side of the above expression is nonnegative which implies that h(u)/u is
increasing on I (see Remark 3.7).

Hence, taking into account Remark 3.8, we have

Φk(h) ≥ 0, for k = 1, . . . , 6, (3.25)

that is,

n∑

i,j=1

ξiξjΦk

(
f(ti+tj )/2

)
≥ 0. (3.26)

Therefore, we conclude that the functions t �→ Φk(ft), k = 1, 2, . . . , 6, are n-exponentially
convex on J in the Jensen sense.
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It remains to prove the n-exponential convexity in the Jensen sense of the functions
t �→ Φk(ft), k = 7, . . . , 11. For that sake, we consider the families of functions defined in E2.
For each ξi ∈ R, i = 1, . . . , n, and ti ∈ J , i = 1, . . . , n, we consider the function

h(u) =
n∑

i,j=1

ξiξjf(ti+tj )/2(u). (3.27)

Obviously,

[u0, u1, u2, h] =
n∑

i,j=1

ξiξj
[
u0, u1, u2, f(ti+tj )/2

]
. (3.28)

Since t �→ [u0, u1, u2, ft] is n-exponentially convex, the right-hand side of the above expression
is nonnegative which implies that h(u) is convex on I. Moreover, taking into account
Remark 3.9, we have

Φk(h) ≥ 0 for k = 7, . . . , 11, (3.29)

that is,

n∑

i,j=1

ξiξjΦk

(
f(ti+tj )/2

)
≥ 0. (3.30)

Hence, t �→ Φk(ft) is n-exponentially convex for k = 7, . . . , 11, and the proof is completed.

The following corollary is an immediate consequence of the above theorem.

Corollary 3.11. Let Φk(ft) be linear functionals defined as in (Mk), associated with families E3 and
E4 in such a way that ft ∈ E3, k = 1, . . . , 6, and ft ∈ E4, k = 7, . . . , 11. Then t �→ Φk(ft) is
exponentially convex function in the Jensen sense on J . If t �→ Φk(ft) is continuous on J then it is
exponentially convex on J .

Proof. It follows from the previous theorem.

Corollary 3.12. Let Φk(ft) be linear functionals defined as in (Mk), associated with families E5 and
E6 in such a way that ft ∈ E5, k = 1, . . . , 6, and ft ∈ E6, k = 7, . . . , 11. Then the following statements
hold.

(i) If the function t �→ Φk(ft) is continuous on J then it is 2-exponentially convex on J and,
thus, log-convex.

(ii) If the function t �→ Φk(ft) is strictly positive and differentiable on J , then for all t, r, u, v ∈
J such that t ≤ u, r ≤ v, one has

B
(
t, r;Φk

(
ft
)) ≤ B

(
u, v;Φk

(
ft
))
, k = 1, . . . , 11, (3.31)
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where

B
(
t, r;Φk

(
ft
))

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
Φk

(
ft
)

Φk

(
fr
)
)(1/(t−r))

, t /= r,

exp

(
(d/dt)

(
Φk

(
ft
))

Φk

(
ft
)

)
, t = r.

(3.32)

Proof. (i) This is an immediate consequence of Theorem 3.10 and Remark 3.2.
(ii) By (i), the function t �→ Φk(ft) is log-convex on J , which means that the function

t �→ logΦk(ft) is convex on J . Hence, by using Lemma 3.6 with t ≤ u, r ≤ v, t /= r, u/=v, we
obtain

logΦk

(
ft
) − logΦk

(
fr
)

t − r ≤ logΦk

(
fu
)) − logΦk

(
fv
)

u − v , (3.33)

that is,

B
(
t, r;Φk

(
ft
)) ≤ B

(
u, v;Φk

(
ft
))
. (3.34)

Finally, if t = r ≤ u, by taking the limit limr→ t, we have

B
(
t, t;Φk

(
ft
)) ≤ B

(
u, v;Φk

(
ft
))
. (3.35)

Other possible cases are treated similarly.

Remark 3.13. The results given in Theorem 3.10, Corollaries 3.11, and 3.12 are still valid when
the points u0, u1 ∈ I coincide, for a family of differentiable functions ft such that the function
t �→ [u0, u1, ft] is n-exponentially convex in the Jensen sense (exponentially convex in the
Jensen sense, log-convex in the Jensen sense). Note also that the results given in Theorem 3.10,
Corollaries 3.11, and 3.12 hold when two of the points u0, u1, u2 ∈ I coincide, say u1 = u0,
for a family of differentiable functions ft such that the function t �→ [u0, u1, u2, ft] is n-
exponentially convex in the Jensen sense (exponentially convex in the Jensen sense, log-
convex in the Jensen sense). Moreover, the above results also hold when all three points
coincide for a family of twice differentiable functions with the same property. These results
can be proved easily by using the definition of divided differences and Remark 3.7.

4. Examples

We conclude this paper with several examples related to the results from the previous section.

Example 4.1. Let t > 0, and let ζt : (0,∞) → R be the function defined by

ζt(u) =

⎧
⎪⎨

⎪⎩

ut−u

− log t
, t /= 1,

u2, t = 1.
(4.1)
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Obviously, a family of functions ζt(u)/u is increasing for all t > 0, hence, by virtue of
Theorem 2.1, we obtain that the functional P1(x, .; ζt) is subadditive and decreasing on
nonnegative n-tuples.

Moreover, since (ζt(u)/u)′ = t−u, the mapping t �→ (ζt(u)/u)
′ is exponentially convex

(see [8]). Now, regarding Corollary 3.11 and Remark 3.13, we get exponential convexity of
the functionals Φk(ζt) for k = 1, . . . , 6.

In addition, Corollary 3.12 provides the log-convexity of these functionals andwe have

B(t, r;Φk(ζt)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Φk(ζt)
Φk(ζr)

)(1/(t−r))
, t /= r,

exp
( −1
t log t

− Φk(uζt)
t(Φk(ζt)

)
, t = r /= 1,

exp
(

Φk(uζ1)
−2(Φk(ζ1))

)
, t = r = 1,

(4.2)

for k = 1, 2, . . . , 6.

Example 4.2. Suppose that t > 0 and λt : (0,∞) → R is the function defined by

λt(u) =
u exp

(
−u√t

)

−√t . (4.3)

Since the function λt(u)/u is increasing for every t > 0, utilizing Theorem 2.1, we obtain that
the functional P1(x, .;λt) is subadditive and decreasing on nonnegative n-tuples.

Further, since (λt(u)/u)′ = exp(−u√t), the mapping t �→ (λt(u)/u)′ is exponentially
convex (see [8]). Now, by using Corollary 3.11 and Remark 3.13, we get exponential
convexity of the functionals Φk(λt) for k = 1, . . . , 6.

In addition, Corollary 3.12 implies the log-convexity of these functionals and we have

B(t, r;Φk(λt)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
Φk(λt)
Φk(λr)

)(1/(t−r))
, t /= r,

exp

(
−1
2t

− Φk(uλt)
2
√
t(Φk(λt))

)
, t = r,

(4.4)

for k = 1, 2, . . . , 6.

Example 4.3. Consider the family of functions ψt : R+ → R, t ∈ R+, defined by

ψt(u) =

⎧
⎪⎨

⎪⎩

u exp(ut)
t

, t /= 0,

u2, t = 0.
(4.5)
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It is easy to see that the function ψt(u)/u is increasing on R+ for all t ∈ R+. Hence, by virtue
of Theorem 2.1, the functional P1(x, .;ψt) is subadditive and decreasing on nonnegative n-
tuples.

In addition, (ψt(u)/u)′ = exp(ut) and the mapping t �→ (ψt(u)/u)
′ is exponentially

convex (see [8]). Similarly as in the previous examples, Corollary 3.11 and Remark 3.13
provide exponential convexity of the functionals Φk(ψt) for k = 1, . . . , 6.

Also, by Corollary 3.12, we get log-convexity of these functionals and we have

B
(
t, r;Φk

(
ψt
))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Φk

(
ψt
)

Φk

(
ψr
)
)(1/(t−r))

, t /= r,

exp

(
−1
t

+
Φk

(
uψt
)

(
Φk

(
ψt
)
)
, t = r /= 0,

exp

(
Φk

(
uψ0
)

2
(
Φk

(
ψ0
))
)
, t = r = 0,

(4.6)

for k = 1, 2, . . . , 6.

Example 4.4. Let t > 0, and let βt : (0,∞) → R be the function defined by

βt(u) =

⎧
⎪⎨

⎪⎩

ut

t − 1
, t /= 1,

u logu, t = 1.
(4.7)

Obviously, a family of functions βt(u)/u is increasing for t > 0, hence, by virtue of
Theorem 2.1, we obtain that the functional P1(x, ·; βt) is subadditive and decreasing on
nonnegative n-tuples.

Further, since (βt(u)/u)′ = ut−2 = exp((t − 2) logu), the mapping t �→ (βt(u)/u)′

is exponentially convex (see [8]). Similarly as in the previous examples, regarding
Corollary 3.11 and Remark 3.13, we get exponential convexity of the functionals Φk(βt) for
k = 1, . . . , 6.

In addition, Corollary 3.12 provides the log-convexity of these functionals andwe have

B
(
t, r;Φk

(
βt
))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Φk

(
βt
)

Φk

(
βr
)
)(1/(t−r))

, t /= r,

exp

(
1

1 − t +
Φk

(
loguβt

)
(
Φk

(
βt
)
)
, t = r /= 1,

exp

(
Φk

(
loguβ1

)

2
(
Φk

(
β1
))
)
, t = r = 1,

(4.8)

for k = 1, 2, . . . , 6.
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