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We investigate the blow-up properties of the positive solution of the Cauchy problem for a
quasilinear degenerate parabolic equation with strongly nonlinear source ut = div(|∇um|p−2∇ul) +
uq, (x, t) ∈ RN × (0, T), whereN ≥ 1, p > 2 , andm, l, q > 1, and give a secondary critical exponent
on the decay asymptotic behavior of an initial value at infinity for the existence and nonexistence
of global solutions of the Cauchy problem. Moreover, under some suitable conditions we prove
single-point blow-up for a large class of radial decreasing solutions.

1. Introduction

In this paper, we consider the following Cauchy problem to a quasilinear degenerate
parabolic equation with strongly nonlinear source

ut = div
(
|∇um|p−2∇ul

)
+ uq, (x, t) ∈ RN × (0, T),

u(x, 0) = u0(x), x ∈ RN,

(1.1)

where N ≥ 1, p > 2, m , l , q > 1, and the initial data u0(x) is nonnegative bounded and
continuous.

Equation (1.1) has been suggested as a mathematical model for a variety of physical
problems (see [1]). For instance, it appears in the non-Newtonian fluids and is a nonlinear
form of heat equation. Moreover, it can also be used to model the nonlinear heat propagation
in a reaction medium (see [2]).
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One of the particular features of problem (1.1) is that the equation is degenerate at
points where u = 0 or∇u = 0. Hence, there is no classical solution in general andwe introduce
the following definition of weak solution (see [3, 4]).

Definition 1.1. A nonnegative measurable function u(x, t) defined in RN × (0, T) is called a
weak solution of the Cauchy problem (1.1) if for every bounded open set Ω with smooth
boundary ∂Ω, u ∈ Cloc(Ω × (0, T)), um, ul ∈ Lploc(0, T ;W1,p(Ω)), and

∫

Ω
uϕdx +

∫ t
t0

∫

Ω

(
−uϕt + |∇um|p−2∇ul · ∇ϕ

)
dx dt =

∫ t
t0

∫

Ω
uqϕdx dt +

∫

Ω
u(x, t0)ϕ(x, t0)dx

(1.2)

for all 0 ≤ t0 ≤ t ≤ T and all test functions ϕ ∈ C1
0(Ω × (0, T)). Moreover,

lim
t→ t0

∫

Ω
u(x, t)η(x)dx =

∫

Ω
u(x, t0)η(x)dx (1.3)

for any η(x) ∈ C1
0(Ω).

Under some suitable assumptions, the existence, uniqueness and regularity of a weak
solution to the Cauchy problem (1.1) and their variants have been extensively investigated
by many authors (see [5–7] and the references therein).

The first goal of this paper is to study the blow-up behavior of solution u(x, t) of (1.1)
when the initial data u0(x) has slow decay near x = ∞. For instance, in the following case

u0(x) ∼=M|x|−a with M > 0, a ≥ 0, (1.4)

we investigate the existence of global and nonglobal solutions for the Cauchy problem (1.1)
in terms of M and a. In recent years, many authors have studied the properties of solutions
to the Cauchy problem (1.1) and their variants (see [8–17] and the references therein). In
particular, J.-S. Guo and Y. Y. Guo [18] obtained the secondary critical exponent for the
following porous medium type equation in high dimensions:

ut = Δum + up, (x, t) ∈ RN × (0, T),

u(x, 0) = u0(x), x ∈ RN,
(1.5)

where p > 1, m > 1 or max{0, 1 − (2/N)} < m < 1, u0(x) is nonnegative bounded and
continuous, and proved that for p > p∗m = m+(2/N), there exists a secondary critical exponent
a∗ = 2/(p −m) such that the solution u(x, t) of (1.5) blows up in finite time for the initial data
u0(x), which behaves like |x|−a at x = ∞ if a ∈ (0, a∗), and there exists a global solution for
the initial data u0(x), which behaves like |x|−a at x = ∞ if a ∈ (a∗,N). Here, we say that the
solution blows up in finite time; it means that there exists T ∈ (0,+∞) such that ‖u(·, t)‖L∞ <∞
for all t ∈ [0, T), but limt→ T− sup ‖u(., t)‖L∞ = ∞.
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Mu et al. [19] studied the secondary critical exponent for the following p-Laplacian
equation with slow decay initial values:

ut = div
(
|∇u|p−2∇u

)
+ uq, (x, t) ∈ RN × (0, T),

u(x, 0) = u0(x), x ∈ RN,
(1.6)

where p > 2, q > 1, and showed that, for q > q∗c = p − 1 + (p/N), there exists a secondary
critical exponent a∗c = (p/(q + 1 − p)) such that the solution u(x, t) of (1.6) blows up in finite
time for the initial data u0(x) which behaves like |x|−a at x = ∞ if a ∈ (0, a∗c), and there exists
a global solution for the initial data u0(x), which behaves like |x|−a at x = ∞ if a ∈ (a∗c,N).

Recently, Mu et al. [20] also investigated the secondary critical exponent for the doubly
degenerate parabolic equation with slow decay initial values and obtained similar results.

On the other hand, in this paper, we will also consider single-point blow-up for the
Cauchy problem (1.1). It is interesting to study the set of blow-up points and the behavior of
the solution u(x, t) at the blow-up point.

In order to investigate single-point blow-up for the Cauchy problem (1.1), we
introduce the concept of the blow-up point.

Definition 1.2. A point x ∈ Ω is called a blow-up point if there exists a sequence (xn, tn) such
that xn → x, tn → T− and u(xn, tn) → ∞ as n → ∞, where T is blow-up time.

In recent years, some authors also studied single-point blow-up for the Cauchy
problem to nonlinear parabolic equations (see [21, 22] and the references therein) by different
methods. In particular, when p = 2, l = 1 and N = 1, the Cauchy problem (1.1) has been
investigated by Weissler in [23], and the author obtained that the solution blows up only at a
single point. Galaktionov and Posashkov [24] studied the single-point blow-up and gave the
upper and lower bound near the blow-up point for the Cauchy problem (1.1)when p > 2 and
m = l = 1. Recently, when p > 2 andm = l, Mu and Zeng [25] extended Galaktionov’s results
to the doubly degenerate parabolic equation. For more works about single-point blow-up, we
refer to [26, 27], where the parabolic systems have been considered.

Motivated by the above works, based on a modification of the energy methods,
comparison principle, and regularization methods used in [15, 19, 21, 24], we investigate the
secondary critical exponent and single-point blow-up for the Cauchy problem (1.1). Before
stating the results of the secondary critical exponent, we start with some notations as follows.

Let Cb(RN) be the space of all bounded continuous functions in RN . For a ≥ 0, we
define

Φa =
{
φ(x) ∈ Cb

(
RN
)
| φ(x) ≥ 0, lim

|x|→∞
sup |x|aφ(x) <∞

}
,

Φa =
{
φ(x) ∈ Cb

(
RN
)
| φ(x) ≥ 0, lim

|x|→∞
inf |x|aφ(x) > 0

}
.

(1.7)

Moreover, we denote

q∗c = l +m
(
p − 2

)
+
p

N
, a∗c =

p

q − l −m(p − 2
) . (1.8)

Our main results of this paper are stated as follows.
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Theorem 1.3. For N ≥ 2, p > 2, m > 1, l > 1, and q > q∗c = l +m(p − 2) + (p/N), suppose that
u0(x) ∈ Φa for some a ∈ (0, a∗c); then the solution u(x, t) of the Cauchy problem (1.1) blows up in
finite time.

Theorem 1.4. For N ≥ 2, p > 2, m > 1, l > 1, and q > q∗c = l +m(p − 2) + (p/N), suppose that
u0(x) = λϕ(x) for some λ > 0 and ϕ(x) ∈ Φa for some a ∈ (a∗c,N); then there is λ0 = λ0(ϕ) > 0
such that the solution u(x, t) of the Cauchy problem (1.1) exists globally for all t > 0, and if λ < λ0,
one has

||u(x, t)||∞ ≤ Ct−aβ, ∀t > 0, (1.9)

where β = 1/(a(l +m(p − 2) − 1) + p), C > 0.

Remark 1.5. When p > 2,N ≥ 2 and q > q∗c , we have q∗c > 1 and 0 < a∗c < N.

Remark 1.6. It follows from Theorems 1.3 and 1.4 that the number a∗c = p/(q − l −m(p − 2))
gives another cut-off between the blow-up case and the global existence case. Therefore, the
number a∗c is a new secondary critical exponent of the Cauchy problem (1.1). Unfortunately,
in the critical case a = a∗c, we do not know whether the solution of (1.1) exists globally or
blows up in finite time.

Remark 1.7. When m = l = 1 or m = l > 1, the results of Theorems 1.3 and 1.4 are consistent
with those in [19, 20], respectively.

Remark 1.8. In [28], Afanas’eva and Tedeev also established the Fujita type results for (1.1)
withm = l. In particular, if u0(x) ∼ |x|−a, 0 < a < N, they obtained that if q < m(p− 1) + (p/a),
then every nontrivial solution blows up in finite time, and if q > m(p − 1) + (p/a), then the
solution exists globally for a small initial data u0(x). We note that when m = l in (1.1), if
q > m(p − 1) + (p/N) and 0 < a < p/(q −m(p − 1)), then 0 < a < N and q < m(p − 1) + (p/a),
while if q > m(p − 1) + (p/N) and p/(q − m(p − 1)) < a < N, then q > m(p − 1) + (p/a).
Therefore, the results of Theorems 1.3 and 1.4 coincide with those in [28].

Finally, we also consider single-point blow-up for a large number of radial decreasing
solutions of the Cauchy problem (1.1) and give upper bound of the radial solution u(r, t) in
a small neighborhood of the point (x, t), where x = 0, t = T . We assume that the initial data
u0(x) = u0(r) satisfies the following condition:

(H) u0(x) = u0(r) ≥ 0 for r > 0, u0(0) > 0, and u0(r) ∈ C1(R1
+), u

′
0(0) = 0, and u′0(r) ≤ 0

for r > 0,M0 = sup u0(r) < +∞, K0 = sup |u′0(r)| < +∞.

Theorem 1.9. LetN ≥ 1, p > 2, m > 1, l > 1, and q > l +m(p − 2), and let condition (H) hold. In
addition, assume that the initial function u0(x) = u0(r) satisfies

u
q

0(r) · rN = o(1) as r −→ ∞, (1.10)

λ0 = inf
r>0, u0(r)>0

⎧
⎪⎨
⎪⎩
−

∣∣∣(um0
)′∣∣∣

p−2(
ul0

)′

ru
q

0

⎫
⎪⎬
⎪⎭

∈
(
0,

p − 2(
p − 2

)
(N + 1) + 2

]
. (1.11)
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Let T be the blow-up time; then one has

u(r, t) ≤ Cr−p/(q−l−m(p−2)), (r, t) ∈ R1
+ × (0, T), (1.12)

where

C =

[
q − l −m(p − 2

)

(lmp−2)1/(p−1)p
λ
1/(p−1)
0

]−((p−1)/(q−l−m(p−2)))
> 0, (1.13)

that is, there is single-point blow-up at point x = 0.

Remark 1.10. By (1.11), the best upper estimate (1.12) obtained by our method has the
following form:

u(r, t) ≤
⎡
⎣q − l −m

(
p − 2

)

p
(
lmp−2)1/(p−1)

(
p − 2(

p − 2
)
(N + 1) + 2

)1/(p−1)⎤
⎦

−((p−1)/(q−l−m(p−2)))

· r−(p/(q−l−m(p−2)))

(1.14)

in R1
+ × (0, T). But, we do not give the lower bound estimate of the radial solution u(r, t) in a

small neighborhood of the point (x, t), where x = 0, t = T .

Remark 1.11. Whenm = l = 1 orm = l > 1, the results of Theorem 1.9 are consistent with those
in [24, 25], respectively. For 1 < q < l +m(p − 2), in [29], the authors obtained the results of
global blow-up to arbitrary compactly supported initial data.

Remark 1.12. From Theorem 1.9, we obtain the same decay exponent as that of Theorem 1.2
in [29] by different methods. Moreover, it is interesting to see that the decay exponent of the
upper estimate of Theorem 1.9 is also the same as the secondary critical exponent of Theorems
1.3 and 1.4.

This paper is organized as follows. In Section 2, by using the energy method, we
will obtain a blow-up condition and prove Theorem 1.3. In Section 3, using the comparison
principle, we can construct a global supersolution to prove Theorem 1.4. Finally, we consider
the single-point blow-up under some suitable conditions and prove Theorem 1.9 in Section 4.

2. Blow-Up Case

By using the energy method, we will obtain a blow-up condition corresponding to (1.1).
Therefore, we need to select a suitable test function as follows:

ψε(x) = Aεe
−ε|x|, Aε =

1∫
RN e

−ε|x|dx
=

εN∫
ωN

∫∞
0 e−rrN−1dr ds

, ∇ψε(x) = −εψε x|x| . (2.1)
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Proof of Theorem 1.3. Suppose that u(x, t) is the solution of the Cauchy problem (1.1) and T is
the blow-up time. Let

E(t) =
1
s

∫

RN
us(x, t)ψε(x)dx, t ∈ [0, T), (2.2)

where 0 < s < 1/p, p > 2, Then, E(t) ∈ C[0, T)⋂C1(0, T) and

E′(t) =
∫

RN
us−1ψεutdx =

∫

RN
us−1ψε div

(
|∇um|p−2∇ul

)
dx +

∫

RN
uq+s−1ψεdx

= − l(s − 1)
∫

RN
us+l−3ψε|∇um|p−2|∇u|2dx + ε

∫

RN
us−1ψε|∇um|p−2∇ul x|x|dx

+
∫

RN
uq+s−1ψεdx

≥ lmp−2(1 − s)
∫

RN
ul+m(p−2)+s−p−1ψε|∇u|pdx

− lmp−2ε
∫

RN
ul+m(p−2)+s−pψε|∇u|p−1dx +

∫

RN
uq+s−1ψεdx.

(2.3)

Using Young’s inequality, we have

ε

∫

RN
ul+m(p−2)+s−pψε|∇u|p−1dx ≤ p − 1

p

∫

RN
ul+m(p−2)+s−p−1ψε|∇u|pdx

+
εp

p

∫

RN
ul+m(p−2)+s−1ψεdx.

(2.4)

Since 0 < s < (1/p), it follows from (2.3) and (2.4) that

E′(t) ≥
∫

RN
uq+s−1ψεdx − lmp−2εp

p

∫

RN
ul+m(p−2)+s−1ψεdx. (2.5)

By q > q∗c = l +m(p − 2) + (p/N) > l +m(p − 2) > 1,
∫
RN ψε(x)dx = 1, and Hölder’s inequality,

we obtain

∫

RN
ul+m(p−2)+s−1ψεdx =

∫

RN
ul+m(p−2)+s−1ψ(l+m(p−2)+s−1)/(q+s−1)

ε ψ
q−[l+m(p−2)]/(q+s−1)
ε dx

≤
[∫

RN
uq+s−1ψεdx

](l+m(p−2)+s−1)/(q+s−1)
.

(2.6)
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Therefore, by (2.5) and (2.6), we have

dE

dt
≥
[∫

RN
uq+s−1ψεdx

](l+m(p−2)+s−1)/(q+s−1)

×
[(∫

RN
uq+s−1ψεdx

)(q−l−m(p−2))/(q+s−1)
− lmp−2εp

p

]
.

(2.7)

Applying Jensen’s inequality, we obtain

(∫

RN
uq+s−1ψεdx

)(q−l−m(p−2))/(q+s−1)
≥
(∫

RN
usψεdx

)(q−l−m(p−2))/s
. (2.8)

Thus, it follows from (2.7) and (2.8) that

dE

dt
≥ 1

2

(∫

RN
usψεdx

)(q+s−1)/s
=

1
2
s(q+s−1)/sE(q+s−1)/s(t) (2.9)

as long as

E(t) ≥ 1
s

(
2lmp−2εp

p

)s/(q−l−m(p−2))
∀t ∈ [0, T). (2.10)

Hence, if E(0) satisfies

E(0) ≥ 1
s

(
2lmp−2εp

p

)s/(q−l−m(p−2))
= C0, (2.11)

then E(t) increases and remains below C0 for all t ∈ [0, T).
And by (2.9) we have

E(t) ≥
(
Eq−1/s(0) − C1t

)−s/(q−1)
, where C1 =

q − 1
2

s(q−1)/s > 0. (2.12)

Therefore, from (2.11) and (2.12), we obtain that u(x, t) blows up in finite time T =
(1/C1)Eq−1/s(0): and get an estimate on the blow-up time T of the solution u(x, t) as follows:

T ≤ 2
q − 1

(
2lmp−2εp

p

)(1−q)/(q−l−m(p−2))
. (2.13)
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Finally, it remains to verify the blow-up condition (2.11). Since u0(x) ∈ Φa for some a ∈
(0, a∗c), there exist two positive constants M and R0 > 1 such that u0(x) ≥ M|x|−a for all
|x| ≥ R0, and we have

E(0) =
1
s

∫

RN
us0(x)ψε(x)dx

>
MsAε

s

∫

|x|≥R0

|x|−ase−ε|x|dx

=
MsAε

s
ε−N+as

∫

|y|≥εR0

∣∣y∣∣ase−|y|dy.

(2.14)

By the definition of Aε, 0 < a < a∗c, we can choose 0 < ε ≤ (1/R0) so small such that (2.11)
holds. The proof of Theorem 1.3 is complete.

3. Global Existence

In this section, we shall prove Theorem 1.4 by constructing a global supersolution. To do this,
we introduce the radially symmetric self-similar solution UM,a(x, t) to the following Cauchy
problem:

ut = div
(
|∇um|p−2∇ul

)
, (x, t) ∈ RN × (0,+∞), (3.1)

u(x, 0) = u0(x) =M|x|−a, x ∈ RN. (3.2)

It is well known that the existence and uniqueness of the solution of (3.1) have been well
established (see [7]). By symmetric properties of (3.1), the solutionUM,a(x, t) is given by the
following form

UM,a(x, t) = t−aβfM(r), with r =
|x|
tβ
, β =

1
a
(
l +m

(
p − 2

) − 1
)
+ p

, (3.3)

where the positive function fM is the solution of the problem

(∣∣∣(fmM
)′∣∣∣

p−2(
flM

)′)′
+
N − 1
r

∣∣∣(fmM
)′∣∣∣

p−2(
flM

)′
(r) + βrf ′

M(r) + aβfM(r) = 0, r > 0,

fM(r) ≥ 0, r ≥ 0, f ′
M(0) = 0, lim

r→+∞
rafM(r) =M.

(3.4)

We shall prove the existence of solution fM(r) to (3.4) by the following ordinary differential
equation, and furthermore we obtain the nonincreasing property of the solution fM(r).
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Firstly, given a fixed η > 0, we consider the following Cauchy problem:

(∣∣∣(gm)′
∣∣∣
p−2(

gl
)′)′

+
N − 1
r

∣∣∣(gm)′
∣∣∣
p−2(

gl
)′
(r) + βrg ′(r) + aβg(r) = 0, r > 0,

g(0) = η, g ′(0) = 0.

(3.5)

According to the standard of the Cauchy problem for ODE and the methods used in [7, 30],
we can obtain that the solution g(r) of the Cauchy problem (3.5) is positive, and g(r) → 0 as
r → ∞; moreover,

lim
r→+∞

rag(r) = M (3.6)

for someM =M(η) > 0.
Secondly, we shall prove that there exists a one-to-one correspondence between M ∈

(0,+∞) and η ∈ (0,+∞). Indeed, this can be seen from the following relation:

gη(r) = ηg1
(
ησr

)
, σ =

1 − l −m(p − 2
)

p
, (3.7)

where g1(r) is the solution of (3.5) for η = 1. Then,

M
(
η
)
= η1−aσM(1), with M(1) = lim

r→+∞
rag1(r). (3.8)

Therefore, we can deduce that, for each M > 0, there exists a positive, bounded, and global
solution fM(r) satisfying (3.4).

Finally, we shall prove that the solution g(r) is non-increasing, that is, fM(r) is also
non-increasing. To do this, we need the following lemmas.

Lemma 3.1. Let g(r) be the solution of (3.5); then

lim
r→ 0

N
∣∣∣(gm)′(r)

∣∣∣
p−2(

gl
)′
(r)

r
= − aβg(0). (3.9)

Proof. Integrating the (3.5) over (0, ε) with ε > 0, we have

(∣∣∣(gm)′
∣∣∣
p−2(

gl
)′)

(ε) +
∫ ε
0

N − 1
r

∣∣∣(gm)′
∣∣∣
p−2(

gl
)′
dr +

∫ ε
0
βrg ′dr +

∫ ε
0
aβg dr = 0. (3.10)

Dividing by ε and taking ε → 0 in (3.10), we obtain

lim
ε→ 0

⎡
⎢⎣

∣∣∣(gm)′(ε)
∣∣∣
p−2(

gl
)′
(ε)

ε
+
N − 1
ε

∣∣∣(gm)′(ε)
∣∣∣
p−2(

gl
)′
(ε)

⎤
⎥⎦ = − lim

ε→ 0
aβg(ε), (3.11)

which implies that (3.9) holds. The proof of Lemma 3.1 is complete.



10 Abstract and Applied Analysis

Lemma 3.2. If there exists r0 ∈ [0,+∞) such that g(r0) = 0, then g(r) = 0 for all r ≥ r0.

Proof. We shall prove by contradiction. Assuming that Lemma 3.2 does not hold, it is easy to
see that there exists ε > 0 such that

g(r) > 0, g ′(r) > 0 in (r0, r0 + ε). (3.12)

Multiplying (3.5) by rN−1 and integrating over (r0, r) with r ∈ (r0, r0 + ε), we obtain

rN−1
∣∣∣(gm)′

∣∣∣
p−2(

gl
)′

+ βrNg(r) =
∫ r
r0

NβrN−1g(r)dr −
∫ r
r0

aβrN−1g(r)dr. (3.13)

It follows from (3.12) and (3.13) that

βrNg(r) ≤
∫ r
r0

NβrN−1g(r)dr −
∫ r
r0

aβrN−1g(r)dr ≤ (N − a)β
N

g(r)
(
rN − rN0

)
, (3.14)

equivalently,

1 ≤ N − a
N

(
1 −

(
r0
r

)N
)
. (3.15)

Letting r → r0 in (3.15), we obtain the inequality 1 ≤ 0, which is a contradiction. The proof
of Lemma 3.2 is complete.

Lemma 3.3. The solution g(r) of (3.5) is monotone nonincreasing in [0,+∞).

Proof. Our method is based on the contradiction argument. Suppose that, for some r0 > 0,
g ′(r0) > 0, by Lemma 3.1, there exists r1 ∈ (0, r0) such that

g ′(r1) = 0 ,
(∣∣∣(gm)′

∣∣∣
p−2(

gl
)′)′

(r1) ≥ 0. (3.16)

By Lemma 3.2, we have g(r1) > 0. Using the similar argument in Lemma 3.1, we obtain

lim
r→ r1

N
∣∣∣(gm)′(r)

∣∣∣
p−2(

gl
)′
(r)

r − r1 = −aβg(r1) < 0, (3.17)

which is a contradiction with (3.14). The proof of Lemma 3.3 is complete.

Next, we apply the monotone properties of fM(r) to obtain the condition on the global
existence of the solution to (1.1).

Proof of Theorem 1.4. We prove Theorem 1.4 by the following steps.
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Step 1. Since ϕ(x) ∈ Φa, there exists a constant K > 0 such that

ϕ(x) ≤ K(1 + |x|)−a ∀x ∈ RN. (3.18)

Taking M > K and the self-similar solution UM,a(x, t) of (3.1) defined as (3.3), since
limr→+∞rafM(r) =M > K, there exists a positive constant R0 such that

rafM(r) > K for r ≥ R0. (3.19)

Setting γ = fM(R0) = min{fM(r) | r ∈ [0, R0]} > 0, it is easy to verify that ϕ(x) ≤ UM,a(x, t)
for all x ∈ RN , where t0 ∈ (0, 1) and t−aβ0 γ > ‖ϕ‖∞.

Let λ > 0; then w(x, t) = λUM,a(x, λl+m(p−2)−1t + t0) is the solution of the following
problem

wt = div
(
|∇wm|p−2∇wl

)
, (x, t) ∈ RN × (0,+∞),

w(x, 0) = λUM,a(x, t0) ≥ λϕ(x), x ∈ RN.

(3.20)

Taking η = fM(0) and noting that fM(r) is non-increasing, we have

‖w(x, t)‖∞ = ηλ
(
λl+m(p−2)−1t + t0

)−aβ
. (3.21)

Step 2. Set v(x, t) = A(t)w(x, B(t)), where A(t) and B(t) are solutions of the following
problem:

A′(t) = ηq−1λq−1
[
λl+m(p−2)−1B(t) + t0

]−(a(q−1)/(a(l+m(p−2)−1)+p))
Aq(t), t ∈ (0,+∞),

B′(t) = Al+m(p−2)−1(t) t ∈ (0,+∞),

A(0) = 1, B(0) = 0.

(3.22)

By a direct calculation, we obtain that v(x, t) satisfies

vt ≥ div
(
|∇vm|p−2∇vl

)
+ vq, (x, t) ∈ RN × (0,+∞),

v(x, 0) = w(x, 0) = λUM,a(x, t0) ≥ λϕ(x), x ∈ RN.

(3.23)

Step 3. We shall prove that there exists a positive constant λ0 = λ0(ϕ) such that the
problem (3.22) has a global solution (A(t), B(t)) with A(t) bounded in [0, T) if λ ∈ [0, λ0).
According to the standard theory of ODE, the local existence and uniqueness of solution
(A(t), B(t)) of (3.22) hold. By (3.22), we have A′(t) > 0, A(t) > 1 for t > 0; furthermore, the
solution is continuous as long as the solution exists and A(t) is finite.
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From (3.22), when A(t) exists in [0, t], then B(t) is uniquely defined by

B(t) =
∫ t
0
Al+m(p−2)−1(s)ds. (3.24)

Since p > 2 and A(t) is increasing, we obtain

B(s) =
∫ s
0
Al+m(p−2)−1(τ)dτ ≥ Al+m(p−2)−1(0)s = s ∀s ∈ [0, t]. (3.25)

By (3.22), (3.25), and a > a∗c = p/(q − l −m(p − 2)), it follows that

1 −A1−q(t) =
(
q − 1

)
ηq−1λq−1

∫ t
0

[
λl+m(p−2)−1B(s) + t0

]−(a(q−1)/(a(l+m(p−2)−1)+p))
ds

≤ (q − 1
)
ηq−1λq−1

∫ t
0

(
λl+m(p−2)−1s + t0

)−(a(q−1)/(a(l+m(p−2)−1)+p))
ds

≤
(
q − 1

)
ηq−1λq−l−m(p−2)

((
a
(
q − 1

))
/
(
a
(
l +m

(
p − 2

) − 1
)
+ p
)) − 1

t
1−(a(q−1)/(a(l+m(p−2)−1)+p))
0 .

(3.26)

Let λ0 = λ0(ϕ) be a positive constant defined by

(
q − 1

)[
a
(
l +m

(
p − 2

) − 1
)
+ p
]

a
(
q − l −m(p − 2

)) − p ηq−1λq−l−m(p−2)
0 t

1−(a(q−1)/(a(l+m(p−2)−1)+p))
0 =

1
2
. (3.27)

Then from (3.26), q > q∗c > l + m(p − 2) > 1 and a > a∗c = p/(q − l − m(p − 2)), we have
1 ≤ A(t) ≤ 21/q−1 for any λ ∈ (0, λ0], as long as A(t) exists globally.

On the other hand, by (3.22) and (3.25), we have

t ≤ B(t) ≤ 2(p−2)/(q−1)t ∀t ≥ 0. (3.28)

Therefore, B(t) is also global.
Step 4. For any λ ∈ (0, λ0], where λ0 = λ0(ϕ) is defined as (3.27), the solution u(x, t)

of (1.1) with initial value u0(x) = λϕ(x) exists globally, and u(x, t) ≤ v(x, t) in RN × (0,+∞).
Moreover, there exists a positive constant C such that

‖u(·, t)‖∞ ≤ ‖v(., t)‖∞ ≤ 21/(q−1)ηλ
(
λl+m(p−2)−1B(t) + t0

)−aβ ≤ Ct−aβ ∀t > 0. (3.29)

The proof of Theorem 1.4 is complete.



Abstract and Applied Analysis 13

4. Single Point Blow-Up

In this section, under some suitable assumptions, we shall prove that the blow-up set consists
of the single point x = 0. Moreover, we also give the upper estimate of the solution u(x, t) in
a small neighborhood of the point (x, t), where x = 0, t = T .

First, we suppose that the solution is radially symmetric, that is, depending only on
r = |x| at a given time t > 0. Therefore, we study the following problem:

ut = r−(N−1)
[
rN−1|(um)r |p−2

(
ul
)
r

]
r
+ uq, (r, t) ∈ (0,+∞) × (0,+∞),

u(r, 0) = u0(r), r ∈ (0,+∞),

rN−1|(um)r |p−2
(
ul
)
r
= 0, (r, t) ∈ {0} × [0,+∞).

(4.1)

Proof of Theorem 1.9. It is based on themethod in [21]. The main idea is to apply the maximum
principle to the auxiliary function ωi(r, t), which is defined in (4.7), and to show that ωi is
small enough in (0, i)× (0, T). Then by integrating the obtained inequality and taking limit as
i → ∞, one can get upper bound of the solution u(r, t). Therefore, we divide the proof into
the following steps.

Step 1. Since problem (1.1) has no classical solution, we will construct the weak
solution by means of regularization of the degenerate equation.

Now define a strictly monotone sequence {εi}, εi > 0 for all i = 1, 2, 3, . . ., such that

εi −→ 0, as i −→ +∞. (4.2)

Then, the weak solution u(r, t) is the limit function of the solution of the following regularized
problem (see [31]):

(ui)t = r
−(N−1)

[
rN−1

(((
umi
)
r

)2 + ε2i
)(p−2)/2((

uli

)
r
+ εi

)]

r

+ uqi , (r, t) ∈ (0, i) × (0, T),

ui(r, 0) = u0(r), r ∈ (0, i),

ui(i, t) = u0(i), t ∈ (0, T),

rN−1
(((

umi
)
r

)2 + ε2i
)(p−2)/2((

uli

)
r
+ εi

)
= 0, (r, t) ∈ {0} × (0, T).

(4.3)

By the standard methods used in [1, 32], the uniform estimates for the passage to the
limit which do not depend on εi are established. Therefore, for any fixed εi > 0, we may
assume that, for all sufficiently large i, the function ui(r, t) satisfies the following conditions:

|ui| ≤M1, |(ui)r | ≤M2 in Qi,T = (0, i) × (0, T), (4.4)

whereM1,M2 do not depend on i, and

(ui(r, t))r |r=0 = 0 ∀t ∈ (0, T). (4.5)
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Moreover, by using condition (H) and the maximum principle in [33], we have

(ui(r, t))r ≤ 0 in Qi,T . (4.6)

Step 2. Set

wi(r, t) = rN−1
(
(
(
umi
)
r)

2 + ε2i
)(p−2)/2(

uli

)
r
+ λ0rNu

q

i , (4.7)

where λ0 is given in (1.11).
By a direct calculation, we find that wi(r, t) satisfies the following parabolic equation:

(wi)t = ai(wi)rr + bi(wi)r + ciwi + di + ei, (4.8)

where

ai = lul−1i

(((
umi
)
r

)2 + ε2i
)(p−2)/2

+m
(
p − 2

)
um−1
i

(((
umi
)
r

)2 + ε2i
)(p−4)/2(

uli

)
r

(
umi
)
r , (4.9)

bi =
(((

umi
)
r

)2 + ε2i
)(p−2)/2[ l(1 −N)ul−1i

r
+ l(l − 1)ul−2i (ui)r

]
+
(
p − 2

)(
uli

)
r

(
umi
)
r

·
(((

umi
)
r

)2 + ε2i
)(p−4)/2[m(1 −N)um−1

i

r
+m(m − 1)um−2

i (ui)r

]
,

(4.10)

ci = qu
q−1
i

[(
p − 1

) − λ0
((
p − 2

)
(N + 1) + 2

)]
, (4.11)

di = AqrN−1[1 − λ0(N + 1)]uq−1i , with A ≡ −(p − 2
)
ε2i

(
uli

)
r

[((
umi
)
r

)2 + ε2i
](p−4)/2

, (4.12)

ei =
(
p − 2

)
rN−1

(((
umi
)
r

)2 + ε2i
)(p−4)/2(

uli

)
r

(
umi
)
r

×
[
−(m + q − 2

)
mqrλ0u

q+m−3
i ((ui)r)

2+
(
(m−1)(1−λ0N)+q(1−λ0(N+1))

)
muq+m−2(ui)r

]

+ rN−1
(((

umi
)
r

)2 + ε2i
)(p−2)/2[−(l + q − 2

)
lqrλ0u

q+l−3
i ((ui)r)

2

+
(
(l − 1)(1−λ0N)+q(1−λ0(N+1))

)
luq+l−2(ui)r

]

+ λ0q
[
λ0
((
p − 2

)
(N + 1) + 2

) − (p − 2
)]
rNu

2q−1
i .

(4.13)

Since N ≥ 1, p > 2, m > 1, l > 1, and q > l + m(p − 2), it follows from (1.11) and (4.6) that
ei ≤ 0.

Now we consider the coefficients ci and di in Qi,T . By (4.6) and p > 2, we have

A = − (p − 2
)
ε2i

(
uli

)
r

[((
umi
)
r

)2 + ε2i
](p−4)/2 ≥ 0. (4.14)
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It follows from (4.4) that |A| = O(ενi ) as i → ∞, where ν = min{2, p − 1}, and we obtain the
following estimate:

sup ci ≤ M3, supdi ≤M4i
N−1ενi in Qi,T , (4.15)

whereM3,M4 are positive constants, which are independent of i.
Therefore, we have the parabolic differential inequality

(wi)t ≤ ai(wi)rr + bi(wi)r + ciwi + di, in Qi,T , (4.16)

where ci, di satisfy (4.15).
Next, we consider the function wi(r, t) on the parabolic boundary of Qi,T . At first, it is

easy to see that wi(0, t) = 0 for all t ∈ (0, T). By (1.10), we have wi(i, t) ≤ λ0i
Nu

q

0(i) = o(1), as
i → ∞ for all t ∈ (0, T). Finally, it follows from (1.11) that

wi(r, 0) = rN−1
(((

um0
)
r

)2 + ε2i
)(p−2)/2(

ul0

)
r
+ λ0rNu

q

0

≤ rN−1
[∣∣(um0

)
r

∣∣p−2(ul0
)
r
+ λ0ru

q

0

]
≤ 0 ∀r ∈ [0, i].

(4.17)

Hence, for all sufficiently large i, there exists γi = supwi > 0 on the parabolic boundary
of Qi,T and γi = o(1) as i → ∞.

In order to estimate wi(r, t) in Qi,T , we study the following ODE:

dwi

dt
=M3wi +M4i

N−1ενi , t > 0,

wi(0) = γi,
(4.18)

which has the solution

wi(t) =

(
M4i

N−1ενi
M3

+ γi

)
eM3t − M4i

N−1

M3
ενi , t > 0. (4.19)

Taking the sequence εi such that

iN−1ενi −→ 0 as i −→ ∞, (4.20)

it is obvious that

wi(t) ≤ wi(T) = αi ∀t ∈ (0, T), (4.21)

where

αi −→ 0 as i −→ ∞. (4.22)
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Setting

z(r, t) = wi(r, t) −wi(t), (4.23)

we have z(r, t) ≤ 0 on the parabolic boundary, and z(r, t) satisfies the following parabolic
inequality:

zt ≤ aizrr + bizr + ciz − (M3 − ci)wi +
[
di −M4i

N−1ενi
]
, in Qi,T . (4.24)

It follows from (4.15) that

zt ≤ aizrr + bizr + ciz, in Qi,T . (4.25)

By the maximum principle (Chapter II, [33]), we obtain that z(r, t) ≤ 0 in Qi,T , that is,

wi(r, t) ≤ wi(t) ≤ wi(T) = αi in Qi,T . (4.26)

Step 3. For large i and (ui(r, t))r ∈ [−M2, 0], we have the following estimate

(((
umi
)
r

)2 + ε2i
)(p−2)/2(

uli

)
r
≥ ∣∣(umi

)
r

∣∣p−2(uli
)
r
− δi, (4.27)

where

0 < δi = O
(
ενi
) −→ 0 as i −→ ∞. (4.28)

By (4.7) and (4.26), we have

∣∣∣(umi
)
r

∣∣∣
p−2(

uli

)
r

u
q

i

≤ r1−Nαi + δi
u
q

i

− λ0r, (4.29)

namely,

lmp−2u(l−1)+(m−1)(p−2)−q
i (ui)r |(ui)r |p−2 ≤

r1−Nαi + δi
u
q

i

− λ0r. (4.30)

Letting F(b) = b|b|−((p−2)/(p−1)), we deduce that

(
lmp−2

)1/(p−1)
u
((l+m(p−2)−q−p+1)/(p−1))
i (ui)r ≤ F

[
r1−Nαi + δi

u
q

i

− λ0r
]
. (4.31)
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For arbitrary t0 ∈ (0, T), r0 ∈ suppu(r, t0) ≡ {r > 0 | u(r, t0) > 0}, we denote μ0 = u(x0, t0) > 0.
By (4.6) and the uniform convergence ui(r, t0) → u(r, t0) as i → ∞, r ∈ [0, r0], we have
ui(r, t0) ≥ (μ0/2), r ∈ [0, r0] for all sufficiently large i ≥ i0. Therefore, from (4.31)we obtainly
for t = t0, i > i0,

(
lmp−2

)1/(p−1)
u
((l+m(p−2)−q−p+1)/(p−1))
i (ui)r ≤ F

[
2q
(
r1−Nαi + δi

)

μ
q

0

− λ0r
]
. (4.32)

Integrating the above inequality over interval [r1, r0], where r1 > 0, we obtain

−
(
lmp−2)1/(p−1)(p − 1

)

q − l −m(p − 2
) u

−((q−l−m(p−2))/(p−1))
i |r0r1 ≤

∫ r0
r1

F

[
2q
(
r1−Nαi + δi

)

μ
q

0

− λ0r
]
dr. (4.33)

Letting i → ∞, by (4.22), (4.28), and the uniform convergence ui(r, t0) → u(r, t0) as i → ∞,
r ∈ [0, r0], we have the following estimate:

−
(
lmp−2)1/(p−1)(p − 1

)

q − l −m(p − 2
)

[
u−((q−l−m(p−2))/p−1)(r0, t0) − u−((q−l−m(p−2))/p−1)(r1, t0)

]

≤ lim
i→∞

∫ r0
r1

F

[
2q
(
r1−Nαi + δi

)

μ
q

0

− λ0r
]
dr

= − λ1/(p−1)0
p − 1
p

(
r
p/(p−1)
0 − rp/(p−1)1

)
.

(4.34)

Setting r1 → 0, from (4.34), we obtain the upper estimate

u(r0, t0) ≤
[
q − l −m(p − 2

)

p
(
lmp−2)1/p−1 λ

1/p−1
0

]−((p−1)/(q−l−m(p−2)))
r
−(p/(q−l−m(p−2)))
0 , (4.35)

where (r0, t0) ∈ R1
+ × (0, T). The proof of Theorem 1.9 is complete.
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