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Splitting methods have recently received much attention due to the fact that many nonlinear
problems arising in applied areas such as image recovery, signal processing, and machine learning
are mathematically modeled as a nonlinear operator equation and this operator is decomposed
as the sum of two (possibly simpler) nonlinear operators. Most of the investigation on splitting
methods is however carried out in the framework of Hilbert spaces. In this paper, we consider
these methods in the setting of Banach spaces. We shall introduce two iterative forward-backward
splitting methods with relaxations and errors to find zeros of the sum of two accretive operators
in the Banach spaces. We shall prove the weak and strong convergence of these methods under
mild conditions. We also discuss applications of these methods to variational inequalities, the split
feasibility problem, and a constrained convex minimization problem.

1. Introduction

Splitting methods have recently received much attention due to the fact that many nonlinear
problems arising in applied areas such as image recovery, signal processing, and machine
learning are mathematically modeled as a nonlinear operator equation and this operator is
decomposed as the sum of two (possibly simpler) nonlinear operators. Splitting methods for
linear equations were introduced by Peaceman and Rachford [1] and Douglas and Rachford
[2]. Extensions to nonlinear equations in Hilbert spaces were carried out by Kellogg [3] and
Lions and Mercier [4] (see also [5–7]). The central problem is to iteratively find a zero of
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the sum of two monotone operators A and B in a Hilbert space H, namely, a solution to the
inclusion problem

0 ∈ (A + B)x. (1.1)

Many problems can be formulated as a problem of form (1.1). For instance, a stationary
solution to the initial value problem of the evolution equation

∂u

∂t
+ Fu � 0, u(0) = u0 (1.2)

can be recast as (1.1) when the governing maximal monotone F is of the form F = A + B [4].
In optimization, it often needs [8] to solve a minimization problem of the form

min
x∈H

f(x) + g(Tx), (1.3)

where f, g are proper lower semicontinuous convex functions from H to the extended real
line R := (−∞,∞], and T is a bounded linear operator on H. As a matter of fact, (1.3) is
equivalent to (1.1) (assuming that f and g ◦ T have a common point of continuity) with
A := ∂f and B := T ∗ ◦ ∂g ◦ T . Here T ∗ is the adjoint of T and ∂f is the subdifferential operator
of f in the sense of convex analysis. It is known [8, 9] that the minimization problem (1.3) is
widely used in image recovery, signal processing, and machine learning.

A splitting method for (1.1) means an iterative method for which each iteration
involves only with the individual operators A and B, but not the sum A + B. To solve (1.1),
Lions and Mercier [4] introduced the nonlinear Peaceman-Rachford and Douglas-Rachford
splitting iterative algorithms which generate a sequence {υn} by the recursion

υn+1 =
(
2JAλ − I

)(
2JBλ − I

)
υn (1.4)

and respectively, a sequence {υn} by the recursion

υn+1 = JAλ

(
2JBλ − I

)
υn +

(
I − JBλ

)
υn. (1.5)

Here we use JT
λ
to denote the resolvent of a monotone operator T ; that is, JT

λ
= (I + λT)−1.

The nonlinear Peaceman-Rachford algorithm (1.4) fails, in general, to converge (even
in the weak topology in the infinite-dimensional setting). This is due to the fact that the
generating operator (2JA

λ
− I)(2JB

λ
− I) for the algorithm (1.4) is merely nonexpansive.

However, the mean averages of {un} can be weakly convergent [5]. The nonlinear Douglas-
Rachford algorithm (1.5) always converges in the weak topology to a point u and u = JBλ υ is
a solution to (1.1), since the generating operator JAλ (2J

B
λ − I) + (I − JBλ ) for this algorithm is

firmly nonexpansive, namely, the operator is of the form (I + T)/2, where T is nonexpansive.
There is, however, little work in the existing literature on splitting methods for

nonlinear operator equations in the setting of Banach spaces (though there was some work
on finding a common zero of a finite family of accretive operators [10–12]).
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The main difficulties are due to the fact that the inner product structure of a Hilbert
space fails to be true in a Banach space. We shall in this paper use the technique of duality
maps to carry out certain initiative investigations on splitting methods for accretive operators
in Banach spaces. Namely, we will study splitting iterative methods for solving the inclusion
problem (1.1), where A and B are accretive operators in a Banach space X.

We will consider the case where A is single-valued accretive and B is possibly
multivalued m-accretive operators in a Banach space X and assume that the inclusion (1.1)
has a solution. We introduce the following two iterative methods which we call Mann-type
and respectively, Halpern-type forward-backward methods with errors and which generate
a sequence {xn} by the recursions

xn+1 = (1 − αn)xn + αn

(
JBrn(xn − rn(Axn + an)) + bn

)
, (1.6)

xn+1 = αnu + (1 − αn)
(
JBrn(xn − rn(Axn + αn)) + bn

)
, (1.7)

where JBr is the resolvent of the operator B of order r (i.e., JBr = (I + rB)−1), and {αn} is a
sequence in (0, 1]. We will prove weak convergence of (1.6) and strong convergence of (1.7)
to a solution to (1.1) in some class of Banach spaces which will be made clear in Section 3.

The paper is organized as follows. In the next section we introduce the class of
Banach spaces in which we shall study our splitting methods for solving (1.1). We also
introduce the concept of accretive and m-accretive operators in a Banach space. In Section 3,
we discuss the splitting algorithms (1.6) and (1.7) and prove their weak and strong
convergence, respectively. In Section 4, we discuss applications of both algorithms (1.6) and
(1.7) to variational inequalities, fixed points of pseudocontractions, convexly constrained
minimization problems, the split feasibility problem, and linear inverse problems.

2. Preliminaries

Throughout the paper,X is a real Banach space with norm ‖ ·‖, distance d, and dual spaceX∗.
The symbol 〈x∗, x〉 denotes the pairing between X∗ and X, that is, 〈x∗, x〉 = x∗(x), the value
of x∗ at x. C will denote a nonempty closed convex subset of X, unless otherwise stated, and
Br the closed ball with center zero and radius r. The expressions xn → x and xn ⇀ x denote
the strong and weak convergence of the sequence {xn}, respectively, and ωw(xn) stands for
the set of weak limit points of the sequence {xn}.

The modulus of convexity of X is the function δX(ε) : (0, 2] → [0, 1] defined by

δX(ε) = inf

{
1 −

∥∥x + y
∥∥

2
: ‖x‖ =

∥∥y∥∥ = 1,
∥∥x − y

∥∥ ≥ ε

}
. (2.1)

Recall thatX is said to be uniformly convex if δX(ε) > 0 for any ε ∈ (0, 2]. Let p > 1. We say that
X is p-uniformly convex if there exists a constant cp > 0 so that δX(ε) ≥ cpε

p for any ε ∈ (0, 2].
The modulus of smoothness of X is the function ρX(τ) : R+ → R+ defined by

ρX(τ) = sup

{∥∥x + τy
∥∥ +

∥∥x − τy
∥∥

2
− 1 : ‖x‖ =

∥∥y∥∥ = 1

}
. (2.2)
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Recall that X is called uniformly smooth if limτ → 0ρX(τ)/τ = 0. Let 1 < q ≤ 2. We say that X
is q-uniformly smooth if there is a cq > 0 so that ρX(τ) ≤ cqτ

q for τ > 0. It is known that X
is p-uniformly convex if and only if X∗ is q-uniformly smooth, where (1/p + 1/q = 1). For
instance, Lp spaces are 2-uniformly convex and p-uniformly smooth if 1 < p ≤ 2, whereas
p-uniformly convex and 2-uniformly smooth if p ≥ 2.

The norm of X is said to be the Fréchet differentiable if, for each x ∈ X,

lim
λ→ 0

∥∥x + λy
∥∥ − ‖x‖
λ

(2.3)

exists and is attained uniformly for all y such that ‖y‖ = 1. It can be proved thatX is uniformly
smooth if the limit (2.3) exists and is attained uniformly for all (x, y) such that ‖x‖ = ‖y‖ = 1.
So it is trivial that a uniformly smooth Banach space has a Fréchet differentiable norm.

The subdifferential of a proper convex function f : X → (−∞,+∞] is the set-valued
operator ∂f : X → 2X defined as

∂f(x) =
{
x∗ ∈ X∗ :

〈
x∗, y − x

〉
+ f(x) ≤ f

(
y
)}

. (2.4)

If f is proper, convex, and lower semicontinuous, the subdifferential ∂f(x)/= ∅ for any x ∈
intD(f), the interior of the domain of f . The generalized duality mapping Jp : X → 2X

∗
is

defined by

Jp(x) =
{
j(x) ∈ X∗ :

〈
j(x), x

〉
= ‖x‖p, ∥∥j(x)∥∥ = ‖x‖p−1

}
. (2.5)

If p = 2, the corresponding duality mapping is called the normalized duality mapping and
denoted by J. It can be proved that, for any x ∈ X,

Jp(x) = ∂

(
1
p
‖x‖p

)
. (2.6)

Thus we have the following subdifferential inequality, for any x, y ∈ X:

∥∥x + y
∥∥p ≤ ‖x‖p + p

〈
y, j

(
x + y

)〉
, j

(
x + y

) ∈ Jp

(
x + y

)
. (2.7)

In particular, we have, for x, y ∈ X,

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, j

(
x + y

)〉
, j

(
x + y

) ∈ J(
x + y

)
. (2.8)

Some properties of the duality mappings are collected as follows.

Proposition 2.1 (see Cioranescu [13]). Let 1 < p < ∞.

(i) The Banach space X is smooth if and only if the duality mapping Jp is single valued.

(ii) The Banach space X is uniformly smooth if and only if the duality mapping Jp is single-
valued and norm-to-norm uniformly continuous on bounded sets of X.
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Among the estimates satisfied by p-uniformly convex and p-uniformly smooth spaces,
the following ones will come in handy.

Lemma 2.2 (see Xu [14]). Let 1 < p < ∞, q ∈ (1, 2], r > 0 be given.

(i) If X is uniformly convex, then there exists a continuous, strictly increasing and convex
function ϕ : R

+ → R
+ with ϕ(0) = 0 such that

∥∥λx + (1 − λ)y
∥∥p ≤ λ‖x‖p + λ

∥∥y∥∥p −Wp(λ)ϕ
(∥∥x − y

∥∥), x, y ∈ Br , 0 ≤ λ ≤ 1, (2.9)

whereWp(λ) = λp(1 − λ) + (1 − λ)λp.

(ii) If X is q-uniformly smooth, then there exists a constant κq > 0 such that

∥∥x + y
∥∥q ≤ ‖x‖q + q

〈Jq(x), y
〉
+ κq

∥∥y∥∥q
, x, y ∈ X. (2.10)

The best constant κq satisfying (2.10) will be called the q-uniform smoothness coefficient of X.
For instance [14], for 2 ≤ p < ∞, Lp is 2-uniformly smooth with κ2 = p − 1, and for 1 < p ≤ 2, Lp is
p-uniformly smooth with κp = (1 + t

p−1
p )(1 + tp)

1−p, where tp is the unique solution to the equation

(
p − 2

)
tp−1 +

(
p − 1

)
tp−2 − 1 = 0, 0 < t < 1. (2.11)

In a Banach space X with the Fréchet differentiable norm, there exists a function h :
[0,∞) → [0,∞) such that limt→ 0h(t)/t = 0 and for all x, u ∈ X

1
2
‖x‖2 + 〈u,J(x)〉 ≤ 1

2
‖x + u‖2 ≤ 1

2
‖x‖2 + 〈u,J(x)〉 + h(‖u‖). (2.12)

Recall that T : C → C is a nonexpansive mapping if ‖Tx − Ty‖ ≤ ‖x − y‖, for all
x, y ∈ C. From now on, Fix(T) denotes the fixed point set of T . The following lemma claims
that the demiclosedness principle for nonexpansive mappings holds in uniformly convex
Banach spaces.

Lemma 2.3 (see Browder [15]). Let C be a nonempty closed convex subset of a uniformly convex
space X and T a nonexpansive mapping with Fix(T)/= ∅. If {xn} is a sequence in C such that xn ⇀ x
and (I − T)xn → y, then (I − T)x = y. In particular, if y = 0, then x ∈ Fix(T).

A set-valued operator A : X → 2X , with domain D(A) and range R(A), is said to be
accretive if, for all t > 0 and every x, y ∈ D(A),

∥∥x − y
∥∥ ≤ ∥∥x − y + t(u − υ)

∥∥, u ∈ Ax, υ ∈ Ay. (2.13)

It follows from Lemma 1.1 of Kato [16] thatA is accretive if and only if, for each x, y ∈ D(A),
there exists j(x − y) ∈ J(x − y) such that

〈
u − υ, j

(
x − y

)〉 ≥ 0, u ∈ Ax, υ ∈ Ay. (2.14)
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An accretive operator A is said to be m-accretive if the range R(I + λA) = X for some λ > 0. It
can be shown that an accretive operator A is m-accretive if and only if R(I + λA) = X for all
λ > 0.

Given α > 0 and q ∈ (1,∞), we say that an accretive operator A is α-inverse strong-
ly accretive (α-isa) of order q if, for each x, y ∈ D(A), there exists jq(x − y) ∈ Jq(x − y) such
that

〈
u − υ, jq

(
x − y

)〉 ≥ α‖u − υ‖q, u ∈ Ax, υ ∈ Ay. (2.15)

When q = 2, we simply say α-isa, instead of α-isa of order 2; that is, T is α-isa if, for each
x, y ∈ D(A), there exists j(x − y) ∈ J(x − y) such that

〈
u − υ, j

(
x − y

)〉 ≥ α‖u − υ‖2, u ∈ Ax, υ ∈ Ay. (2.16)

Given a subsetK of C and a mapping T : C → K, recall that T is a retraction of C onto
K if Tx = x for all x ∈ K. We say that T is sunny if, for each x ∈ C and t ≥ 0, we have

T(tx + (1 − t)Tx) = Tx, (2.17)

whenever tx + (1 − t)Tx ∈ C.
The first result regarding the existence of sunny nonexpansive retractions onto the

fixed point set of a nonexpansive mapping is due to Bruck.

Theorem 2.4 (see Bruck [17]). If X is strictly convex and uniformly smooth and if T : C →
C is a nonexpansive mapping having a nonempty fixed point set Fix(T), then there exists a sunny
nonexpansive retraction of C onto Fix(T).

The following technical lemma regarding convergence of real sequences will be used
when we discuss convergence of algorithms (1.6) and (1.7) in the next section.

Lemma 2.5 (see [18, 19]). Let {an}, {cn} ⊂ R
+, {αn} ⊂ (0, 1), and {bn} ⊂ R be sequences such that

an+1 ≤ (1 − αn)an + bn + cn, ∀n ≥ 0. (2.18)

Assume
∑∞

n=0 cn < ∞. Then the following results hold:
(i) If bn ≤ αnM whereM ≥ 0, then {an} is a bounded sequence.
(ii) If

∑∞
n=0 αn = ∞ and lim supn→∞bn/αn ≤ 0, then liman = 0.

3. Splitting Methods for Accretive Operators

In this section we assume that X is a real Banach space and C is a nonempty closed subset
of X. We also assume that A is a single-valued and α-isa operator for some α > 0 and B is
an m-accretive operator in X, with D(A) ⊃ C and D(B) ⊃ C. Moreover, we always use Jr to
denote the resolvent of B of order r > 0; that is,

Jr ≡ JBr = (I + rB)−1. (3.1)



Abstract and Applied Analysis 7

It is known that the m-accretiveness of B implies that Jr is single valued, defined on
the entire X, and firmly nonexpansive; that is,

∥∥Jrx − Jry
∥∥ ≤ ∥∥s(x − y

)
+ (1 − s)

(
Jrx − Jry

)∥∥, x, y ∈ X, 0 ≤ s ≤ 1. (3.2)

Below we fix the following notation:

Tr := Jr(I − rA) = (I + rB)−1(I − rA). (3.3)

Lemma 3.1. For r > 0, Fix(Tr) = (A + B)−1(0).

Proof. From the definition of Tr , it follows that

x = Trx ⇐⇒ x = (I + rB)−1(x − rAx)

⇐⇒ x − rAx ∈ x + rBx

⇐⇒ 0 ∈ Ax + Bx.

(3.4)

This lemma alludes to the fact that in order to solve the inclusion problem (1.1), it
suffices to find a fixed point of Tr . Since Tr is already “split,” an iterative algorithm for Tr
corresponds to a splitting algorithm for (1.1). However, to guarantee convergence (weak
or strong) of an iterative algorithm for Tr , we need good metric properties of Tr such as
nonexpansivity. To this end, we need geometric conditions on the underlying space X (see
Lemma 3.3).

Lemma 3.2. Given 0 < s ≤ r and x ∈ X, there holds the relation

‖x − Tsx‖ ≤ 2‖x − Trx‖. (3.5)

Proof. Note that ((x−Trx)/r)−Ax ∈ B(Trx). By the accretivity of B, we have js,r ∈ J(Tsx−Trx)
such that

〈
x − Tsx

s
− x − Trx

r
, js,r

〉
≥ 0. (3.6)

It turns out that

‖Tsx − Trx‖2 ≤ r − s

r

〈
x − Trx, js,r

〉

≤
∣∣∣∣1 −

s

r

∣∣∣∣‖x − Trx‖‖Tsx − Trx‖.
(3.7)
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This along with the triangle inequality yields that

‖x − Tsx‖ ≤ ‖x − Trx‖ + ‖Trx − Tsx‖

≤ ‖x − Trx‖ +
∣∣∣∣1 −

s

r

∣∣∣∣‖x − Trx‖

≤ 2‖x − Trx‖.

(3.8)

We notice that though the resolvent of an accretive operator is always firmly
nonexpansive in a general Banach space, firm nonexpansiveness is however insufficient to
estimate useful bounds which are required to prove convergence of iterative algorithms for
solving nonlinear equations governed by accretive operations. To overcome this difficulty, we
need to impose additional properties on the underlying Banach space X. Lemma 3.3 below
establishes a sharper estimate than nonexpansiveness of the mapping Tr , which is useful for
us to prove the weak and strong convergence of algorithms (1.6) and (1.7).

Lemma 3.3. Let X be a uniformly convex and q-uniformly smooth Banach space for some q ∈ (1, 2].
Assume that A is a single-valued α-isa of order q in X. Then, given s > 0, there exists a continuous,
strictly increasing and convex function φq : R

+ → R
+ with φq(0) = 0 such that, for all x, y ∈ Bs,

∥∥Trx − Try
∥∥q ≤ ∥∥x − y

∥∥q − r
(
αq − rq−1κq

)∥∥Ax −Ay
∥∥q

− φq

(∥∥(I − Jr)(I − rA)x − (I − Jr)(I − rA)y
∥∥),

(3.9)

where κq is the q-uniform smoothness coefficient of X (see Lemma 2.2).

Proof. Put x̂ = x − rAx and ŷ = y − rAy. Since (x̂ − Jrx̂)/r ∈ B(Jrx̂), it follows from the
accretiveness of B that

∥∥Jrx̂ − Jrŷ
∥∥ ≤

∥∥∥∥
(
Jrx̂ − Jrŷ

)
+
r

2

(
x̂ − Jrx̂

r
− ŷ − Jrŷ

r

)∥∥∥∥

=
∥∥∥∥
1
2
(
x̂ − ŷ

)
+
1
2
(
Jrx̂ − Jrŷ

)∥∥∥∥.
(3.10)

Since x, y ∈ Bs, by the accretivity ofA it is easy to show that there exists t > 0 such that
x̂ − ŷ ∈ Bt; hence, Jrx̂ − Jrŷ ∈ Bt for Jr is nonexpansive. Now since X is uniformly convex, we
can use Lemma 2.2 to find a continuous, strictly increasing and convex function ϕ : R

+ → R
+,

with ϕ(0) = 0, satisfying

∥∥∥∥
1
2
(
x̂ − ŷ

)
+
1
2
(
Jrx̂ − Jrŷ

)∥∥∥∥
q

≤ 1
2
∥∥x̂ − ŷ

∥∥q +
1
2
∥∥Jrx̂ − Jrŷ

∥∥q

−Wq

(
1
2

)
ϕ
(∥∥(I − Jr)x̂ − (I − Jr)ŷ

∥∥)

≤ ∥∥x̂ − ŷ
∥∥q − 1

2q
ϕ
(∥∥(I − Jr)x̂ − (I − Jr)ŷ

∥∥),

(3.11)
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where the last inequality follows from the nonexpansivity of the resolvent Jr . Letting φq =
ϕ/2q and combining (3.10) and (3.11) yield

∥∥Trx − Try
∥∥q ≤ ∥∥x̂ − ŷ

∥∥q − φq

(∥∥(I − Jr)x̂ − (I − Jr)ŷ
∥∥). (3.12)

On the other hand, since X is also q-uniformly smooth and A is α-isa of order q, we
derive that

∥∥x̂ − ŷ
∥∥q =

∥∥(x − y
) − r

(
Ax −Ay

)∥∥q

≤ ∥∥x − y
∥∥q + κqr

q
∥∥Ax −Ay

∥∥q − rq
〈
Ax −Ay,Jq

(
x − y

)〉

≤ ∥∥x − y
∥∥q − r

(
αq − rq−1κq

)∥∥Ax −Ay
∥∥q

.

(3.13)

Finally the required inequality (3.9) follows from (3.12) and (3.13).

Remark 3.4. Note that from Lemma 3.3 one deduces that, under the same conditions, if r ≤
(αq/κq)

1/(q−1), then the mapping Tr is nonexpansive.

3.1. Weak Convergence

Mann’s iterative method [20] is a widely used method for finding a fixed point of
nonexpansive mappings [21]. We have proved that a splitting method for solving (1.1) can,
under certain conditions, be reduced to a method for finding a fixed point of a nonexpansive
mapping. It is therefore the purpose of this subsection to introduce and prove its weak
convergence of a Mann-type forward-backward method with errors in a uniformly convex
and q-uniformly smooth Banach space. (See [22] for a similar treatment of the proximal point
algorithm [23, 24] for finding zeros of monotone operators in the Hilbert space setting.) To
this end we need a lemma about the uniqueness of weak cluster points of a sequence, whose
proof, included here, follows the idea presented in [21, 25].

Lemma 3.5. Let C be a closed convex subset of a uniformly convex Banach space X with a Fréchet
differentiable norm, and let {Tn} be a sequence of nonexpansive self-mappings on C with a nonempty
common fixed point set F. If x0 ∈ C and xn+1 := Tnxn + en, where

∑∞
n=1 ‖en‖ < ∞, then 〈z1 −

z2, J(y1 − y2)〉 = 0 for all y1, y2 ∈ F and all z1, z2 weak limit points of {xn}.

Proof. We first claim that the sequence {xn} is bounded. As a matter of fact, for each fixed
p ∈ F and any n ∈ N,

∥∥xn+1 − p
∥∥ =

∥∥Tnxn − Tnp + en
∥∥

≤ ∥∥xn − p
∥∥ + ‖en‖.

(3.14)

As
∑∞

n=1 ‖en‖ < ∞, we can apply Lemma 2.5 to find that limn→∞‖xn − p‖ exists. In particular,
{xn} is bounded.

Let us next prove that, for every y1, y2 ∈ F and 0 < t < 1, the limit

lim
n→∞

∥∥txn + (1 − t)y1 − y2
∥∥ (3.15)
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exists. To see this, we set Sn,m = Tn+m−1Tn+m−2 · · · Tn which is nonexpansive. It is to see that we
can rewrite {xn} in the manner

xn+m = Sn,mxn + cn,m, n,m ≥ 1, (3.16)

where

cn,m = Tn+m−1(Tn+m−2(· · · Tn−1(Tnxn + en) + en−1 · · · ) + en+m−2)

+ en+m−1 − Sn,mxn.
(3.17)

By nonexpansivity, we have that

‖cn,m‖ ≤
n+m−1∑
k=n

‖ek‖, (3.18)

and the summability of {en} implies that

lim
n,m→∞

‖cn,m‖ = 0. (3.19)

Set

an =
∥∥txn + (1 − t)y1 − y2

∥∥,
dn,m =

∥∥Sn,m

(
txn + (1 − t)y1

) − (
tSn,mxn + (1 − t)y1

)∥∥.
(3.20)

Let K be a closed bounded convex subset of X containing {xn} and {y1, y2}. A result
of Bruck [26] assures the existence of a strictly increasing continuous function g : [0,∞) →
[0,∞)with g(0) = 0 such that

g
(∥∥U(

tx + (1 − t)y
) − (

tUx + (1 − t)Uy
)∥∥) ≤ ∥∥x − y

∥∥ − ∥∥Ux −Uy
∥∥ (3.21)

for all U : K → X nonexpansive, x, y ∈ K and 0 ≤ t ≤ 1. Applying (3.21) to each Sn,m, we
obtain

g(dn,m) ≤
∥∥xn − y1

∥∥ − ∥∥Sn,mxn − Sn,my1
∥∥

=
∥∥xn − y1

∥∥ − ∥∥xn+m − y1 − cn,m
∥∥

≤ ∥∥xn − y1
∥∥ − ∥∥xn+m − y1

∥∥ + ‖cn,m‖.
(3.22)

Now since limn→∞‖xn − y1‖ exists, (3.19) and (3.22) together imply that

lim
n,m→∞

dn,m = 0. (3.23)



Abstract and Applied Analysis 11

Furthermore, we have

an+m ≤ an + dn,m + ‖cn,m‖. (3.24)

After taking first lim supm→∞ and then lim infn→∞ in (3.24) and using (3.19) and
(3.23), we get

lim sup
m→∞

am ≤ lim inf
n→∞

an + lim
n,m→∞

(dn,m + ‖cn,m‖) = lim inf
n→∞

an. (3.25)

Hence the limit (3.15) exists.
If we replace now x and u in (2.12) with y1 − y2 and t(xn − y1), respectively, we arrive

at

1
2
∥∥y1 − y2

∥∥2 + t
〈
xn − y1,J

(
y1 − y2

)〉

≤ 1
2
∥∥txn + (1 − t)y1 − y2

∥∥2

≤ 1
2
∥∥y1 − y2

∥∥2 + t
〈
xn − y1,J

(
y1 − y2

)〉
+ h

(
t
∥∥xn − y1

∥∥).

(3.26)

Since the limn→∞‖xn − y1‖ exists, we deduce that

1
2
∥∥y1 − y2

∥∥2 + t lim sup
n→∞

〈
xn − y1,J

(
y1 − y2

)〉

≤ lim
n→∞

1
2
∥∥txn + (1 − t)y1 − y2

∥∥2

≤ 1
2
∥∥y1 − y2

∥∥2 + t lim inf
n→∞

〈
xn − y1,J

(
y1 − y2

)〉
+ o(t),

(3.27)

where limt→ 0 o(t)/t = 0. Consequently, we deduce that

lim sup
n→∞

〈
xn − y1,J

(
y1 − y2

)〉 ≤ lim inf
n→∞

〈
xn − y1,J

(
y1 − y2

)〉
+
o(t)
t

. (3.28)

Setting t tend to 0, we conclude that limn→∞〈xn − y1,J(y1 − y2)〉 exists. Therefore, for any
two weak limit points z1 and z2 of {xn}, 〈z1 − y1,J(y1 − y2)〉 = 〈z2 − y1,J(y1 − y2)〉; that is,
〈z1 − z2,J(y1 − y2)〉 = 0.

Theorem 3.6. Let X be a uniformly convex and q-uniformly smooth Banach space. Let A : X → X
be an α-isa of order q and B : X → 2X an m-accretive operator. Assume that S = (A + B)−1(0)/= ∅.
We define a sequence {xn} by the perturbed iterative scheme

xn+1 = (1 − αn)xn + αn(Jrn(xn − rn(Axn + an)) + bn), (3.29)
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where Jrn = (I + rnB)
−1, {an}, {bn} ⊂ X, {αn} ⊂ (0, 1], and {rn} ⊂ (0,+∞). Assume that

(i)
∑∞

n=1 ‖an‖ < ∞ and
∑∞

n=1 ‖bn‖ < ∞;

(ii) 0 < lim infn→∞αn;

(iii) 0 < lim infn→∞rn ≤ lim supn→∞rn < (αq/κq)
1/(q−1).

Then {xn} converges weakly to some x ∈ S.

Proof. Write Tn = (I + rnB)
−1(I − rnA). Notice that we can write

Jrn(xn − rn(Axn + an)) + bn = Tnxn + en, (3.30)

where en = Jrn(xn − rn(Axn + an)) + bn − Tnxn. Then the iterative formula (3.29) turns into the
form

xn+1 = (1 − αn)xn + αn(Tnxn + en). (3.31)

Thus, by nonexpansivity of Jrn ,

‖en‖ ≤ ‖Jrn(xn − rn(Axn + an)) − Tnxn‖‖bn‖
≤ rn‖an‖ + ‖bn‖.

(3.32)

Therefore, condition (i) implies

∞∑
n=1

‖en‖ < ∞. (3.33)

Take z ∈ S to deduce that, as S = Fix(Tn) and Tn is nonexpansive,

‖xn+1 − z‖ ≤ (1 − αn)‖xn − z‖ + αn‖Tnxn − Tnz + en‖
≤ ‖xn − z‖ + αn‖en‖.

(3.34)

Due to (3.33), Lemma 2.5 is applicable and we get that limn→∞‖xn − z‖ exists; in
particular, {xn} is bounded. Let M > 0 be such that ‖xn‖ < M, for all n ∈ N, and let
s = q(M + ‖z‖)q−1. By (2.7) and Lemma 3.3, we have

‖xn+1 − z‖q ≤ ‖(1 − αn)(xn − z) + αn(Tnxn − z) + αnen‖q

≤ ‖(1 − αn)(xn − z) + αn(Tnxn − z)‖q + αn〈en,J(xn+1 − z)〉

≤ (1 − αn)‖xn − z‖q + αn‖Tnxn − Tnz‖q + αnq‖en‖‖xn+1 − z‖q−1

≤ ‖xn − z‖q − αnrn
(
qα − r

q−1
n κq

)
‖Axn −Az‖q

− φq(‖xn − rnAxn − Tnxn + rnAz‖) + s‖en‖.

(3.35)
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From (3.35), assumptions (ii) and (iii), and (3.33), it turns out that

lim
n→∞

‖Axn −Az‖q + ‖xn − rnAxn − Tnxn + rnAz‖ = 0. (3.36)

Consequently,

lim
n→∞

‖Tnxn − xn‖ = 0. (3.37)

Since lim infn→∞rn > 0, there exists ε > 0 such that rn ≥ ε for all n ≥ 0. Then, by Lemma 3.2,

lim
n→∞

‖Tεxn − xn‖ ≤ 2 lim
n→∞

‖Tnxn − xn‖ = 0. (3.38)

By Lemmas 3.3 and 3.1, Tε is nonexpansive and Fix(Tε) = S/= ∅. We can therefore make
use of Lemma 2.3 to assure that

ωw(xn) ⊂ S. (3.39)

Finally we set Un = (1 − αn)I + αnTn and rewrite scheme (3.31) as

xn+1 = Unxn + e′n, (3.40)

where the sequence {e′n} satisfies
∑∞

n=1 ‖e′n‖ < ∞. Since {Un} is a sequence of nonexpansive
mappings with S as its nonempty common fixed point set, and since the spaceX is uniformly
convex with a Fréchet differentiable norm, we can apply Lemma 3.5 together with (3.39)
to assert that the sequence {xn} has exactly one weak limit point; it is therefore weakly
convergent.

3.2. Strong Convergence

Halpern’s method [27] is another iterative method for finding a fixed point of nonexpansive
mappings. This method has been extensively studied in the literature [28–30] (see also the
recent survey [31]). In this section we aim to introduce and prove the strong convergence of
a Halpern-type forward-backward method with errors in uniformly convex and q-uniformly
smooth Banach spaces. This result turns out to be new even in the setting of Hilbert spaces.

Theorem 3.7. Let X be a uniformly convex and q-uniformly smooth Banach space. Let A : X → X
be an α-isa of order q and B : X → 2X an m-accretive operator. Assume that S = (A + B)−1(0)/= ∅.
We define a sequence {xn} by the iterative scheme

xn+1 = αnu + (1 − αn)(Jrn(xn − rn(Axn + an)) + bn), (3.41)
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where u ∈ X, Jrn = (I + rnB)
−1, {an}, {bn} ⊂ X, {αn} ⊂ (0, 1], and {rn} ⊂ (0,+∞). Assume the

following conditions are satisfied:

(i)
∑∞

n=1 ‖an‖ < ∞and
∑∞

n=1 ‖bn‖ < ∞, or limn→∞‖an‖/αn = limn→∞‖bn‖/αn = 0;

(ii) limn→∞αn = 0,
∑∞

n=1 αn = ∞;

(iii) 0 < lim infn→∞rn ≤ lim supn→∞rn < (αq/κq)
1/(q−1).

Then {xn} converges in norm to z = Q(u), where Q is the sunny nonexpansive retraction of
X onto S.

Proof. Let z = Q(u), where Q is the sunny nonexpansive retraction of X onto S whose
existence is ensured by Theorem 2.4. Let (yn) be a sequence generated by

yn+1 = αnu + (1 − αn)Tnyn, (3.42)

where we abbreviate Tn := Jrn(I − rnA). Hence to show the desired result, it suffices to prove
that yn → z. Indeed, since Jrn and I − rnA are both nonexpansive, it follows that

∥∥xn+1 − yn+1
∥∥ ≤ (1 − αn)

∥∥Jrn(xn − rn(Axn + an)) + bn − Jrn
(
yn − rnAyn

)∥∥

≤ (1 − αn)
∥∥(I − rnA)xn − (I − rnA)yn − rnan

∥∥ + ‖bn‖
= (1 − αn)

∥∥xn − yn

∥∥ + L(‖an‖ + ‖bn‖),
(3.43)

where L := max(1, (αq/κq)
1/(q−1)). According to condition (i), we can apply Lemma 2.5(ii) to

conclude that ‖xn − yn‖ → 0 as n → ∞.

We next show yn → z. Indeed, since S = Fix(Tn) and Tn is nonexpansive, we have

∥∥yn+1 − z
∥∥ ≤ αn‖u − z‖ + (1 − αn)

∥∥Tnyn − Tnz
∥∥

≤ αn‖u − z‖ + (1 − αn)
∥∥yn − z

∥∥.
(3.44)

Hence, we can apply Lemma 2.5(i) to claim that {yn} is bounded.
Using the inequality (2.7) with p = q, we derive that

∥∥yn+1 − z
∥∥q =

∥∥αn(u − z) + (1 − αn)Tnyn − z
∥∥q

≤ (1 − αn)q
∥∥Tnyn − z

∥∥q + qαn

〈
u − z,Jq

(
yn+1 − z

)〉
.

(3.45)

By condition (iii), we have some δ > 0 such that

1 − αn ≥ δ, (1 − αn)rn
(
αq − r

q−1
n κq

)
≥ δ, (3.46)
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for all n ∈ N. Hence, by Lemma 3.3 we get from (3.45) that

∥∥yn+1 − z
∥∥q ≤ (1 − αn)

∥∥yn − z
∥∥q − δφq

(∥∥yn − rnAyn − Tnyn + rnAz
∥∥)

− δ
∥∥Ayn −Az

∥∥q + qαn

〈
u − z,Jq

(
yn+1 − z

)〉
.

(3.47)

Let us define sn = ‖yn − z‖q for all n ≥ 0. Depending on the asymptotic behavior of the
sequence {sn}we distinguish two cases.

Case 1. Suppose that there exists N ∈ N such that the sequence {sn}n≥N is nonincreasing;
thus, limn→∞sn exists. Since αn → 0 and ‖en‖ → 0, it follows immediately from (3.47) that

lim
n→∞

∥∥Ayn −Az
∥∥q +

∥∥yn − rnAyn − Tnyn + rnAz
∥∥ = 0. (3.48)

Consequently,

lim
n→∞

∥∥Tnyn − yn

∥∥ = 0. (3.49)

By condition (iii), there exists ε > 0 such that rn ≥ ε for all n ≥ 0. Then, by Lemma 3.2,
we get

lim
n→∞

∥∥Tεyn − yn

∥∥ ≤ lim
n→∞

∥∥Tnyn − yn

∥∥ = 0. (3.50)

The demiclosedness principle (i.e., Lemma 2.3) implies that

ωw

(
yn

) ⊂ S. (3.51)

Note that from inequality (3.47) we deduce that

sn+1 ≤ (1 − αn)sn + qαn

〈
u − z,Jq

(
yn+1 − z

)〉
. (3.52)

Next we prove that

lim sup
n→∞

〈
u − z,Jq

(
yn − z

)〉 ≤ 0. (3.53)

Equivalently (should ‖yn − z‖ � 0), we need to prove that

lim sup
n→∞

〈
u − z,J(

yn − z
)〉 ≤ 0. (3.54)
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To this end, let zt satisfy zt = tu + Tεzt. By Reich’s theorem [32], we get zt → QSu = z
as t → 0. Using subdifferential inequality, we deduce that

∥∥zt − yn

∥∥2 =
∥∥t(u − yn

)
+ (1 − t)

(
Tεzt − yn

)∥∥2

≤ (1 − t)2
∥∥Tεzt − yn

∥∥2 + 2t
〈
u − yn,J

(
zt − yn

)〉

≤ (1 − t)2
(∥∥Tεzt − Tεyn

∥∥ +
∥∥Tεyn − yn

∥∥)2 + 2t
∥∥zt − yn

∥∥2 + 2t
〈
u − zt,J

(
zt − yn

)〉

≤
(
1 + t2

)∥∥zt − yn

∥∥2 +M
∥∥Tεyn − yn

∥∥ + 2t
〈
u − zt,J

(
zt − yn

)〉
,

(3.55)

where M > 0 is a constant such that

M > max
{∥∥zt − yn

∥∥2
, 2
∥∥zt − yn

∥∥ +
∥∥Tεyn − yn

∥∥}, t ∈ (0, 1), n ∈ N. (3.56)

Then it follows from (3.55) that

〈
u − zt,J

(
yn − zt

)〉 ≤ M

2
t +

M

2t
∥∥Tεyn − yn

∥∥. (3.57)

Taking lim supn→∞ yields

lim sup
n→∞

〈
u − zt,J

(
yn − zt

)〉 ≤ M

2
t. (3.58)

Then, letting t → 0 and noting the fact that the duality map J is norm-to-norm
uniformly continuous on bounded sets, we get (3.54) as desired. Due to (3.53), we can apply
Lemma 2.5(ii) to (3.52) to conclude that sn → 0; that is, yn → z.

Case 2. Suppose that there exists n1 ∈ N such that sn1 ≤ sn1+1. Let us define

In := {n1 ≤ k ≤ n : sk ≤ sk+1}, n ≥ n1. (3.59)

Obviously In /= ∅ since n1 ∈ In for any n ≥ n1. Set

τ(n) = max In. (3.60)

Note that the sequence {τ(n)} is nonincreasing and limn→∞τ(n) = ∞. Moreover, τ(n) ≤ n
and

sτ(n) ≤ sτ(n)+1, (3.61)

sn ≤ sτ(n)+1, (3.62)
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for any n ≥ n1 (see Lemma 3.1 of Maingé [33] for more details). From inequality (3.47) we
get

sτ(n)+1 ≤
(
1 − ατ(n)

)
sτ(n) − δφ

(∥∥yτ(n) − rτ(n)Ayτ(n) − Tτ(n)yτ(n) + rτ(n)Az
∥∥)

− δ
∥∥Ayτ(n) −Az

∥∥q + qατ(n)
〈
u − z,Jq

(
yτ(n)+1 − z

)〉
.

(3.63)

It turns out that

lim
n→∞

∥∥Ayτ(n) −Az
∥∥ = 0, lim

n→∞
∥∥yτ(n) − rτ(n)Ayτ(n) − Tτ(n)yτ(n) + rτ(n)Az

∥∥ = 0. (3.64)

Consequently,

lim
n→∞

∥∥Tτ(n)yτ(n) − yτ(n)
∥∥ = 0. (3.65)

Now repeating the argument of the proof of (3.53) in Case 1, we can get

lim sup
n→∞

〈
u − z,Jq

(
yτ(n) − z

)〉 ≤ 0. (3.66)

By the asymptotic regularity of {yτ(n)} and (3.65), we deduce that

lim
n→∞

∥∥yτ(n)+1 − yτ(n)
∥∥ = 0. (3.67)

This implies that

lim sup
n→∞

〈
u − z,J(

yτ(n)+1 − z
)〉 ≤ 0. (3.68)

On the other hand, it follows from (3.64) that

sτ(n)+1 − sτ(n) + ατ(n)sτ(n) ≤ qατ(n)
〈
u − z,Jq

(
yτ(n)+1 − z

)〉
. (3.69)

Taking the lim supn→∞ in (3.69) and using condition (i) we deduce that
lim supn→∞sτ(n) ≤ 0; hence limn→∞sτ(n) = 0. That is, ‖yτ(n) − z‖ → 0. Using the triangle
inequality,

∥∥yτ(n)+1 − z
∥∥ ≤ ∥∥yτ(n)+1 − yτ(n)

∥∥ +
∥∥yτ(n) − z

∥∥, (3.70)

we also get that limn→∞sτ(n)+1 = 0 which together with (3.42) guarantees that ‖yn − z‖ → 0.

4. Applications

The two forward-backward methods previously studied, (3.29) and (3.41), find applications
in other related problems such as variational inequalities, the convex feasibility problem,
fixed point problems, and optimization problems.
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Throughout this section, let C be a nonempty closed and convex subset of a Hilbert
space H. Note that in this case the concept of monotonicity coincides with the concept of
accretivity.

Regarding the problem we concern, of finding a zero of the sum of two accretive
operators in a Hilbert space H, as a direct consequence of Theorem 3.7, we first obtain the
following result due to Combettes [34].

Corollary 4.1. Let A : H → H be monotone and B : H → H maximal monotone. Assume that
κA is firmly nonexpansive for some κ > 0 and that

(i) limn→∞αn > 0,

(ii) 0 < lim infn→∞λn ≤ lim supn→∞λn < 2κ,

(iii)
∑∞

n=1 ‖an‖ < ∞ and
∑∞

n=1 ‖bn‖ < ∞,

(iv) S := (A + B)−1(0)/= ∅.

Then the sequence {xn} generated by the algorithm

xn+1 = (1 − αn)xn + αnJλn((xn − λn(Axn + an)) + bn) (4.1)

converges weakly to a point in S.

Proof. It suffices to show that κA is firmly nonexpansive if and only ifA is κ-inverse strongly
monotone. This however follows from the following straightforward observation:

〈
κAx − κAy, x − y

〉 ≥ ∥∥κAx − κAy
∥∥2 ⇐⇒ 〈

Ax −Ay, x − y
〉 ≥ κ

∥∥Ax −Ay
∥∥2

, (4.2)

for all x, y ∈ H.

4.1. Variational Inequality Problems

A monotone variational inequality problem (VIP) is formulated as the problem of finding a
point x ∈ C with the property:

〈Ax, z − x〉 ≥ 0, ∀z ∈ C, (4.3)

where A : C → H is a nonlinear monotone operator. We shall denote by S the solution set of
(4.3) and assume S/= ∅.

One method for solving VIP (4.3) is the projection algorithm which generates, starting
with an arbitrary initial point x0 ∈ H, a sequence {xn} satisfying

xn+1 = PC(xn − rAxn), (4.4)

where r is properly chosen as a stepsize. If in addition A is κ-inverse strongly monotone
(ism), then the iteration (4.4) with 0 < r < 2κ converges weakly to a point in S whenever
such a point exists.
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By [35, Theorem 3], VIP (4.3) is equivalent to finding a point x so that

0 ∈ (A + B)x, (4.5)

where B is the normal cone operator of C. In other words, VIPs are a special case of the
problem of finding zeros of the sum of two monotone operators. Note that the resolvent of
the normal cone is nothing but the projection operator and that if A is κ-ism, then the set Ω
is closed and convex [36]. As an application of the previous sections, we get the following
results.

Corollary 4.2. LetA : C → H be κ-ism for some κ > 0, and let the following conditions be satisfied:

(i) limn→∞αn > 0,

(ii) 0 < lim infn→∞λn ≤ lim supn→∞λn < 2κ.

Then the sequence {xn} generated by the relaxed projection algorithm

xn+1 = (1 − αn)xn + αnPC(xn − λnAxn) (4.6)

converges weakly to a point in S.

Corollary 4.3. Let A : C → H be κ-ism and let the following conditions be satisfied:

(i) limn→∞αn = 0,
∑∞

n=1 αn = ∞;

(ii) 0 < limn→∞λn ≤ lim supn→∞λn < 2κ.

Then, for any given u ∈ C, the sequence {xn} generated by

xn+1 = αnu + (1 − αn)PC(xn − λnAxn), (4.7)

converges strongly to PSu.

Remark 4.4. Corollary 4.3 improves Iiduka-Takahashi’s result [37, Corollary 3.2], where apart
from hypotheses (i)-(ii), the conditions

∑∞
n=1 |αn − αn+1| < ∞ and

∑∞
n=1 |λn − λn+1| < ∞ are

required.

4.2. Fixed Points of Strict Pseudocontractions

An operator T : C → C is said to be a strict κ-pseudocontraction if there exists a constant
κ ∈ [0, 1) such that

∥∥Tx − Ty
∥∥2 ≤ ∥∥x − y

∥∥2 + κ
∥∥(I − T)x − (I − T)y

∥∥2 (4.8)

for all x, y ∈ C. It is known that if T is strictly κ-pseudocontractive, thenA = I −T is (1−κ)/2-
ism (see [38]). To solve the problem of approximating fixed points for such operators, an
iterative scheme is provided in the following result.
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Corollary 4.5. Let T : C → C be strictly κ-pseudocontractive with a nonempty fixed point set
Fix(T). Suppose that

(i) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(ii) 0 < limn→∞λn ≤ lim supn→∞λn < 1 − κ.

Then, for any given u ∈ C, the sequence {xn} generated by the algorithm

xn+1 = αnu + (1 − αn)((1 − λn)xn + λnTxn) (4.9)

converges strongly to the point PFix(T)u.

Proof. Set A = I − T . Hence A is (1 − κ)/2-ism. Moreover we rewrite the above iteration as

xn+1 = αnu + (1 − αn)(xn − λnAxn). (4.10)

Then, by setting B the operator constantly zero, Corollary 4.3 yields the result as
desired.

4.3. Convexly Constrained Minimization Problem

Consider the optimization problem

min
x∈C

f(x), (4.11)

where f : H → R is a convex and differentiable function. Assume (4.11) is consistent, and
let Ω denote its set of solutions.

The gradient projection algorithm (GPA) generates a sequence {xn} via the iterative
procedure:

xn+1 = PC

(
xn − r∇f(xn)

)
, (4.12)

where ∇f stands for the gradient of f . If in addition ∇f is (1/κ)-Lipschitz continuous; that
is, for any x, y ∈ H,

∥∥∇f(x) − ∇f
(
y
)∥∥ ≤

(
1
κ

)∥∥x − y
∥∥, (4.13)

then the GPA with 0 < r < 2κ converges weakly to a minimizer of f in C (see, e.g, [39,
Corollary 4.1]).

The minimization problem (4.11) is equivalent to VIP [40, Lemma 5.13]:

〈∇f(x), z − x
〉 ≥ 0, z ∈ C. (4.14)

It is also known [41, Corollary 10] that if ∇f is (1/κ)-Lipschitz continuous, then it is also
κ-ism. Thus, we can apply the previous results to (4.11) by taking A = ∇f .
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Corollary 4.6. Assume that f : H → R is convex and differentiable with (1/κ)-Lipschitz
continuous gradient ∇f . Assume also that

(i) limn→∞αn > 0,

(ii) 0 ≤ lim infn→∞λn ≤ lim supn→∞λn ≤ 2κ.

Then the sequence {xn} generated by the algorithm

xn+1 = (1 − αn)xn + αnPC

(
xn − λn∇f(xn)

)
(4.15)

converges weakly to x ∈ Ω.

Corollary 4.7. Assume that f : H → R is convex and differentiable with (1/κ)-Lipschitz
continuous gradient ∇f . Assume also that

(i) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(ii) 0 < limn→∞λn ≤ lim supn→∞λn < 2κ.

Then for any given u ∈ C, the sequence {xn} generated by the algorithm

xn+1 = αnu + (1 − αn)PC

(
xn − λn∇f(xn)

)
(4.16)

converges strongly to PΩu whenever such point exists.

4.4. Split Feasibility Problem

The split feasibility problem (SFP) [42] consists of finding a point x̂ satisfying the property:

x̂ ∈ C, Ax̂ ∈ Q, (4.17)

where C and Q are, respectively, closed convex subsets of Hilbert spaces H and K and
A : H → K is a bounded linear operator. The SFP (4.17) has attracted much attention
due to its applications in signal processing [42]. Various algorithms have, therefore, been
derived to solve the SFP (4.17) (see [39, 43, 44] and reference therein). In particular, Byrne
[43] introduced the so-called CQ algorithm:

xn+1 = PC

(
xn − λA∗(I − PQ

)
Axn

)
, (4.18)

where 0 < λ < 2ν with ν = 1/‖A‖2.
To solve the SFP (4.17), it is very useful to investigate the following convexly

constrained minimization problem (CCMP):

min
x∈C

f(x), (4.19)

where

f(x) :=
1
2
∥∥(I − PQ

)
Ax

∥∥2
. (4.20)
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Generally speaking, the SFP (4.17) and CCMP (4.19) are not fully equivalent: every
solution to the SFP (4.17) is evidently a minimizer of the CCMP (4.19); however a solution to
the CCMP (4.19) does not necessarily satisfy the SFP (4.17). Further, if the solution set of the
SFP (4.17) is nonempty, then it follows from [45, Lemma 4.2] that

C ∩ (∇f
)−1(0)/= ∅, (4.21)

where f is defined by (4.20). As shown by Xu [46], the CQ algorithm need not converge
strongly in infinite-dimensional spaces. We now consider an iteration process with strong
convergence for solving the SFP (4.17).

Corollary 4.8. Assume that the SFP (4.17) is consistent, and let S be its nonempty solution set.
Assume also that

(i) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(ii) 0 < limn→∞λn ≤ lim supn→∞λn < 2ν.

Then for any given u ∈ C, the sequence (xn) generated by the algorithm

xn+1 = αnu + (1 − αn)PC

[
xn − λnA

∗(I − PQ

)
Axn

]
(4.22)

converges strongly to the solution PSu of the SFP (4.17).

Proof. Let f be defined by (4.19). According to [39, page 113], we have

∇f = A∗(I − PQ

)
A, (4.23)

which is (1/ν)-Lipschitz continuous with ν = 1/‖A‖2. Thus Corollary 4.7 applies, and the
result follows immediately.
Remark 4.9. Corollary 4.8 improves and recovers the result of [44, Corollary 3.7], which uses
the additional condition

∑∞
n=1 |αn+1 − αn| < ∞, condition (i), and the special case of condition

(ii)where λn ≡ λ for all n ∈ N.

4.5. Convexly Constrained Linear Inverse Problem

The constrained linear system

Ax = b

x ∈ C,
(4.24)

where A : H → K is a bounded linear operator and b ∈ K, is called convexly constrained
linear inverse problem (cf. [47]). A classical way to deal with this problem is the well-known
projected Landweber method (see [40]):

xn+1 = PC[xn − λA∗(Axn − b)], (4.25)
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where 0 < λ < 2ν with ν = 1/‖A‖2. A counterexample in [8, Remark 5.12] shows that the
projected Landweber iteration converges weakly in infinite-dimensional spaces, in general.
To get strong convergence, Eicke introduced the so-called damped projection method (see
[47]). In what follows, we present another algorithm with strong convergence, for solving
(4.24).

Corollary 4.10. Assume that (4.24) is consistent. Assume also that

(i) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(ii) 0 < limn→∞λn ≤ lim supn→∞λn < 2ν.

Then, for any given u ∈ H, the sequence {xn} generated by the algorithm

xn+1 = αnu + (1 − αn)PC[xn − λnA
∗(Axn − b)] (4.26)

converges strongly to a solution to problem (4.24) whenever it exists.

Proof. This is an immediate consequence of Corollary 4.8 by taking Q = {b}.
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The work of G. López, V. Martı́n-Márquez, and H.-K. Xu was supported by Grant MTM2009-
10696-C02-01. This work was carried out while F. Wang was visiting Universidad de Sevilla
under the support of this grant. He was also supported by the Basic and Frontier Project
of Henan 122300410268 and the Peiyu Project of Luoyang Normal University 2011-PYJJ-002.
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