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The problem of exponential stabilization of neutral-type neural networks with various activation
functions and interval nondifferentiable and distributed time-varying delays is considered. The
interval time-varying delay function is not required to be differentiable. By employing new
and improved Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, the
stabilizability criteria are formulated in terms of a linear matrix inequalities. Numerical examples
are given to illustrate and show the effectiveness of the obtained results.

1. Introduction

In recent years, there have been great attentions on the stability analysis of neural
networks due to its real world application to various systems such as signal processing,
pattern recognition, content-addressable memory, and optimization [1–5]. In performing
a periodicity or stability analysis of a neural network, the conditions to be imposed on
the neural network are determined by the characteristics of various activation functions
and network parameters. When neural networks are designed for problem solving, it is
desirable that their activation functions are not too restrictive, [3, 6, 7]. It is known that
time delays cannot be avoided in the hardware implementation of neural networks due
to the finite switching speed of amplifies in electronic neural networks or the finite signal
propagation time in biological networks. The existence of time delays may result in instability
or oscillation of a neural network. Therefore, many researchers have focused on the study of
stability analysis of delayed neural networks with various activation functions with more
general conditions during the last decades [2, 8–11].
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The stability criteria for system with time delays can be classified into two categories:
delay independent and delay dependent. Delay-independent criteria do not employ any
information on the size of the delay; while delay-dependent criteria make use of such
information at different levels. Delay-dependent stability conditions are generally less
conservative than delay-independent ones especially when the delay is small. In many
situations, time delays are time-varying continuous functions which vary from 0 to a given
upper bound. In addition, the range of time delays may vary in a range for which the lower
bound is not restricted to be 0; in which case time delays are called interval time-varying
delay. A typical example with interval time delay is the networked control system, which
has been widely studied in the recent literature (see, e.g., [2, 11–14]). Therefore, it is of great
significance to investigate the stability of system with interval time-varying delay. Another
important type of time delay is distributed delay where stability analysis of neural networks
with distributed delayed has been studied extensively recently, see [2, 5, 8–11, 15–17].

It is know that exponential stability is more important than asymptotic stability since
it provides information on convergence rate of solutions of systems to equilibrium points.
It is particularly important for neural networks where the exponential convergence rate is
used to determine the speed of neural computations. Therefore, it is important to determine
the exponential stability and to estimate the exponential convergence rate for delayed neural
networks. Consequently, many researchers have considered the exponential stability analysis
problem for delayed neural networks and several results on this topic that have been reported
in the literatures [3, 9, 13, 14, 17].

In practical control designs, due to systems uncertainty, failure modes, or systems
with various modes of operation, the simultaneous stabilization problem has often to be
taken into account. The problem is concerned with designing a single controller which can
simultaneously stabilize a set of systems. Recently, the exponential stability and stabilization
problems for time-delay systems have been studied by many researchers, see [8, 12, 18, 19].
Among the usual approach, there are many results on the stabilization problem of neural
networks being reported in the literature (see [2, 9, 15, 16, 20, 21]). In [21], robust stabilization
criterion are provided via designing amemoryless state feedback controller for the time-delay
dynamical neural networks with nonlinear perturbation. However, time-delay is required to
be constant. In [16], global robust stabilizing control are presented for neural network with
time-varying delay with the lower bound restricted to be 0. For neural network with interval
time-varying delay, global stability analysis is considered with control input in [2, 9, 12].
Nonetheless, in most studies, the time-varying delays are required to be differentiable
[2, 9, 15, 16]. Therefore, their methods have a conservatism which can be improved upon.

It is noted that these stability conditions are either with testing difficulty or with
conservatism to some extent. It is natural and important that systems will contain some
information about the derivative of the past state to further describe and model the dynamics
for such complex neural reactions. Such systems are called neutral-type systems in which the
systems contain both state delay as well as state derivative delay, so called neutral delay. The
phenomena on neutral delay often appears in the study of heat exchanges, distributed net-
works containing lossless transmission lines, partial element equivalent circuits and popula-
tion ecology are examples of neutral systems see [1, 10, 11, 22, 23] and references cited therein.

Based on the above discussions, we consider the problem of exponential stabilization
of neutral-type neural networks with interval and distributed time-varying delays. There
are various activation functions which are considered in the system and the restriction on
differentiability of interval time-varying delays is removed, which means that a fast interval
time-varying delay is allowed. Based on the construction of improved Lyapunov-Krasovskii
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functionals combined with Liebniz-Newton’s formula and some appropriate estimation of
integral terms, new delay-dependent sufficient conditions for the exponential stabilization of
the system are derived in terms of LMIs without introducing any free-weighting matrices.
The new stability conditions are much less conservative and more general than some existing
results. Numerical examples are given to illustrate the effectiveness and less conservativeness
of our theoretical results. To the best of our knowledge, our results are among the first
on investigation of exponential stabilization for neutral-type neural networks with discrete,
neutral, and distributed delays.

The rest of this paper is organized as follows. In Section 2, we give notations,
definitions, propositions, and lemmas which will be used in the proof of the main results.
Delay-dependent sufficient conditions for the exponential stabilization of neutral-type neural
networks with various activation functions, interval and distributed time-varying delays, and
designs of memoryless feedback controls are presented in Section 3. Numerical examples
illustrated the obtained results are given in Section 4. The paper ends with conclusions in
Section 5 and cited references.

2. Preliminaries

The following notation will be used in this paper: R
+ denotes the set of all real nonnegative

numbers; R
n denotes the n-dimensional space and the vector norm ‖ · ‖; Mn×r denotes the

space of all matrices of (n × r)-dimensions.
AT denotes the transpose of matrixA;A is symmetric ifA = AT ; I denotes the identity

matrix; λ(A) denotes the set of all eigenvalues of A; λmax(A) = max{Reλ;λ ∈ λ(A)}.
xt := {x(t + s) : s ∈ [−h, 0]}, ‖xt‖ = sups∈[−h,0]‖x(t + s)‖; C([0, t],Rn) denotes the set of

all R
n-valued continuous functions on [0, t]; L2([0, t],Rm) denotes the set of all the R

m-valued
square integrable functions on [0, t].

Matrix A is called semi-positive definite (A ≥ 0) if 〈Ax, x〉 ≥ 0, for all x ∈ R
n; A is

positive definite (A > 0) if 〈Ax, x〉 > 0 for all x /= 0; A > B means A − B > 0. The symmetric
term in a matrix is denoted by ∗.

Consider the following neural networks with mixed time-varying delays and control
input

ẋ(t) = −(A + ΔA(t))x(t) + (W0 + ΔW0)f(x(t)) + (W1 + ΔW1)g(x(t − h(t)))

+ (W2 + ΔW2)
∫ t

t−k(t)
h(x(s))ds + B0ẋ

(
t − η(t)

)
+ Bu(t),

x(t) = φ(t), t ∈ [−d, 0], d = max
{
h2, k, η

}
,

(2.1)

where x(t) ∈ R
n is the state of the neural networks, u(·) ∈ L2([0, t],Rm) is the control, n is the

number of neurals, and

f(x(t)) =
[
f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))

]T
,

g(x(t)) =
[
g1(x1(t)), g2(x2(t)), . . . , gn(xn(t))

]T
,

h(x(t)) = [h1(x1(t)), h2(x2(t)), . . . hn(xn(t))]
T

(2.2)
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are the activation functions, A = diag(a1, a2, . . . , an), ai > 0 represents the self-feedback term
and W0,W1,W2 denote the connection weights, the discretely delayed connection weights,
and the distributively delayed connection weight, respectively. In this paper, we consider
various activation functions and assume that the activation functions f(·), g(·), h(·) are
Lipschitzian with the Lipschitz constants ai, bi, ci > 0

∣∣fi(ξ1) − fi(ξ2)
∣∣ ≤ ai|ξ1 − ξ2|, i = 1, 2, . . . , n, ∀ξ1, ξ2 ∈ R,

∣∣gi(ξ1) − gi(ξ2)
∣∣ ≤ bi|ξ1 − ξ2|, i = 1, 2, . . . , n, ∀ξ1, ξ2 ∈ R,

|hi(ξ1) − hi(ξ2)| ≤ ci|ξ1 − ξ2|, i = 1, 2, . . . , n, ∀ξ1, ξ2 ∈ R.

(2.3)

The time-varying delay functions h(t), k(t), η(t) satisfy the condition

0 ≤ h1 ≤ h(t) ≤ h2,

0 ≤ k(t) ≤ k,

0 ≤ η(t) ≤ η, η̇(t) ≤ δ < 1.

(2.4)

It is worth noting that the time delay is assumed to be a continuous function belonging to
a given interval, which means that the lower and upper bounds for the time-varying delay
are available, but the delay function is bounded but not restricted to being zero. The initial
functions φ(t) ∈ C1([−d, 0],Rn), with the norm

‖φ‖ = sup
t∈[−d,0]

√
‖φ(t)‖2 + ‖φ̇(t)‖2. (2.5)

The uncertainties satisfy the following condition:

ΔA(t) = EaFa(t)Ha, ΔW0(t) = E0F0(t)H0,

ΔW1(t) = E1F1(t)H1, ΔW2(t) = E2F2(t)H2,
(2.6)

where Ei,Hi, i = a, 0, 1, 2 are given constant matrices with appropriate dimensions, Fi(t), i =
a, 0, 1, 2 are unknown, real matrices with Lebesgue measurable elements satisfying

FT
i (t)Fi(t) ≤ I, i = a, 0, 1, 2 ∀t ≥ 0. (2.7)

Definition 2.1. The zero solution of system (2.8) is exponentially stabilizable if there exists a
feedback control u(t) = Kx(t), K ∈ R

m×n such that the resulting closed-loop system

ẋ(t) = −[A − BK]x(t) +W0f(x(t)) +W1g(x(t − h(t))) +W2

∫ t

t−k(t)
h(x(s))ds

+ B0ẋ
(
t − η(t)

) (2.8)

is α-stable.
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Definition 2.2. Given α > 0. The zero solution of system (2.1) with u(t) = 0 is α-stable if
there exists a positive number N > 0 such that every solution x(t, φ) satisfies the following
condition:

∥∥x(t, φ)∥∥ ≤ Ne−αt
∥∥φ∥∥, ∀t ≥ 0. (2.9)

We introduce the following technical well-known propositions and lemma, which will
be used in the proof of our results.

Proposition 2.3 (Cauchy inequality). For any symmetric positive definite matrix N ∈ Mn×n and
x, y ∈ R

n one has

±2xTy ≤ xTNx + yTN−1y. (2.10)

Proposition 2.4 (see [24]). For any symmetric positive definite matrix M > 0, scalar γ > 0 and
vector function ω : [0, γ] → R

n such that the integrations concerned are well defined, the following
inequality holds:

(∫ γ

0
ω(s)ds

)T

M

(∫ γ

0
ω(s)ds

)
≤ γ

(∫ γ

0
ωT (s)Mω(s)ds

)
. (2.11)

Proposition 2.5 ([24, Schur complement lemma]). Given constant symmetric matrices X,Y,Z
with appropriate dimensions satisfying X = XT, Y = YT > 0. Then X + ZTY−1Z < 0 if and only if

(
X ZT

Z −Y

)
< 0 or

(−Y Z

ZT X

)
< 0. (2.12)

Lemma 2.6 (see [25]). Given matricesQ = QT,H,E, and R = RT > 0 with appropriate dimensions.
Then

Q +HFE + ETFTHT < 0, (2.13)

for all F satisfying FTF ≤ R, if and only if there exists an ε > 0 such that

Q + εHHT + ε−1ETRE < 0. (2.14)
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3. Main Results

3.1. Exponential Stabilization for Nominal Interval Time-Varying
Delay Systems

The nominal system is given by

ẋ(t) = −Ax(t) +W0f(x(t)) +W1g(x(t − h(t))) +W2

∫ t

t−k(t)
h(x(s))ds + B0ẋ

(
t − η(t)

)
+ Bu(t)

x(t) = φ(t), t ∈ [−d, 0].
(3.1)

First, we present a delay-dependent exponential stabilizability analysis conditions for the
given nominal interval time-varying delay system (3.1) with ΔA(t) = ΔW0(t) = ΔW1(t) =
ΔW2(t) = 0. Let us set

λ1 = λmin

(
P−1
)
,

λ2 = λmax

(
P−1
)
+ 2h2λmax

(
P−1QP−1

)
+ 2h2

2λmax

(
P−1RP−1

)

+ ηλmax

(
P−1Q1P

−1
)
+ 2λmax

(
HD−1

2 H
)
+ (h2 − h1)

2λmax

(
P−1UP−1

)
.

(3.2)

Assumption 3.1. All the eigenvalues of matrix B0 are inside the unit circle.

Theorem 3.2. Given α > 0. The system (3.1) is α-exponentially stabilizable if there exist symmetric
positive definite matrices P,Q,R,U,Q1, three diagonal matricesDi, i = 0, 1, 2 such that the following
LMI holds:

M1 = M− [0 0 0 −I 0 I
]T × e−2αh2U

[
0 0 0 −I 0 I

]
< 0, (3.3)

M2 = M− [0 0 I 0 0 −I]T × e−2αh2U
[
0 0 I 0 0 −I] < 0, (3.4)

M3 =

⎡
⎢⎢⎣
−0.1BBT − 0.1

(
e−2αh1 + e−2αh2

)
R 2kPH 2PF

∗ −2kD2 0

∗ ∗ −2D0

⎤
⎥⎥⎦ < 0, (3.5)

M4 =

[−0.1e−2αh2U 2PG

∗ −2D1

]
< 0, (3.6)

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14 M15 0

∗ M22 0 0 M25 0

∗ ∗ M33 0 0 M36

∗ ∗ ∗ M44 0 M46

∗ ∗ ∗ ∗ M55 0

∗ ∗ ∗ ∗ ∗ M66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.7)
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where

M11 = [−A + αI]P + P[−A + αI]T − 0.9BBT + 2Q +W0D0W
T
0 +W1D1W

T
1

+ke2αkW2D2W
T
2 − 0.9e−2αh1R − 0.9e−2αh2R

]

M12 = B0P, M13 = e−2αh1R, M14 = e−2αh2R, M15 = −PAT − 0.5BBT ,

M22 = −(1 − δ)e−2αηQ1, M25 = PBT
0 , M33 = −e−2αh1Q − e−2αh1R − e−2αh2U,

M36 = e−2αh2U, M44 = −e−2αh2Q − e−2αh2R − e−2αh2U, M46 = e−2αh2U,

M55 = h2
1R + h2

2R + (h2 − h1)
2U +Q1 − 2P +W0D0W

T
0 +W1D1W

T
1

+ke2αkW2D2W
T
2

]

M66 = −1.9e−2αh2U.

(3.8)

Moreover, the memoryless feedback control is

u(t) = −0.5BTP−1x(t), t ≥ 0, (3.9)

and the solution x(t, φ) of the system satisfies

∥∥x(t, φ)∥∥ ≤
√

λ2
λ1

e−αt
∥∥φ∥∥, ∀t ≥ 0. (3.10)

Proof. Let Y = P−1, y(t) = Yx(t). Using the feedback control (3.9) we consider the following
Lyapunov-Krasovskii functional:

V (t, xt) =
8∑
i=1

Vi, (3.11)

where

V1 = xT (t)Yx(t),

V2 =
∫ t

t−h1

e2α(s−t)xT (s)YQYx(s)ds,

V3 =
∫ t

t−h2

e2α(s−t)xT (s)YQYx(s)ds,

V4 = h1

∫0

−h1

∫ t

t+s
e2α(τ−t)ẋT (τ)YRYẋ(τ)dτ ds,

V5 = h2

∫0

−h2

∫ t

t+s
e2α(τ−t)ẋT (τ)YRYẋ(τ)dτ ds,
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V6 = (h2 − h1)
∫−h1

−h2

∫ t

t+s
e2α(τ−t)ẋT (τ)YUYẋ(τ)dτ ds,

V7 =
∫ t

t−η(t)
e2α(s−t)ẋT (s)YQ1Yẋ(s)ds,

V8 = 2
∫0

−k

∫ t

t+s
e2α(τ−t)hT (x(τ))D−1

2 h(x(τ))dτ ds.

(3.12)

It easy to check that

λ1‖x(t)‖2 ≤ V (t, xt) ≤ λ2‖xt‖2, ∀t ≥ 0. (3.13)

Taking the derivative of V (xt) along the solution of system (3.1)we have

V̇1 = 2xT (t)Yẋ(t),

= 2yT (t)

[
−Ax(t) +W0f(x(t)) +W1g(x(t − h(t))) +W2

∫ t

t−k(t)
h(x(s))ds

+B0ẋ
(
t − η(t)

) − 0.5BBTP−1x(t)

]

= 2yT (t)

[
−APy(t) +W0f(x(t)) +W1g(x(t − h(t))) +W2

∫ t

t−k(t)
h(x(s))ds

+B0Pẏ
(
t − η(t)

) − 0.5BBTy(t)

]

(3.14)

= yT (t)
[
−AP − PAT

]
y(t) + 2yT (t)W0f(x(t)) + 2yT (t)W1g(x(t − h(t)))

+ 2yT (t)W2

∫ t

t−k(t)
h(x(s))ds + 2yT (t)B0Pẏ

(
t − η(t)

) − yT (t)BBTy(t)

+ 2αyT (t)Py(t) − 2αV1,

V̇2 = yT (t)Qy(t) − e−2αh1yT (t − h1)Qy(t − h1) − 2αV2,

V̇3 = yT (t)Qy(t) − e−2αh2yT (t − h2)Qy(t − h2) − 2αV3,

V̇4 ≤ h2
1ẏ

T (t)Rẏ(t) − h1e
−2αh1

∫ t

t−h1

ẏT (s)Rẏ(s)ds − 2αV4,

V̇5 ≤ h2
2ẏ

T (t)Rẏ(t) − h2e
−2αh2

∫ t

t−h2

ẏT (s)Rẏ(s)ds − 2αV5,
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V̇6 ≤ (h2 − h1)
2ẏT (t)Uẏ(t) − (h2 − h1)e−2αh2

∫ t−h1

t−h2

ẏT (s)Uẏ(s)ds − 2αV6,

V̇7 ≤ ẏT (t)Q1ẏ(t) − (1 − δ)e−2αηẏT(t − η(t)
)
Q1ẏ

(
t − η(t)

) − 2αV7,

V̇8 ≤ 2khT (x(t))D−1
2 h(x(t)) − 2e−2αk

∫ t

t−k
hT (x(s))D−1

2 h(x(s))ds − 2αV8.

(3.15)

Using the condition (2.3) and since the matrices D−1
i > 0, i = 0, 1, 2 are diagonal, we have

khT (x(t))D−1
2 h(x(t)) ≤ kxT (t)HD−1

2 Hx(t) = kyT (t)PHD−1
2 HPy(t),

fT (x(t))D−1
0 f(x(t)) ≤ xT (t)FD−1

0 Fx(t) = yT (t)PFD−1
0 FPy(t),

gT (x(t − h(t)))D−1
1 g(x(t − h(t))) ≤ xT (t − h(t))GD−1

1 Gx(t − h(t)),

= yT (t − h(t))PGD−1
1 GPy(t − h(t)),

(3.16)

and using (2.3) and the Proposition (2.3) for the following estimations:

2yT (t)W0f(x(t)) ≤ yT (t)W0D0W
T
0 y(t) + fT (x(t))D−1

0 f(x(t))

≤ yT (t)W0D0W
T
0 y(t) + xT (t)FD−1

0 Fx(t)

≤ yT (t)W0D0W
T
0 y(t) + yT (t)PFD−1

0 FPy(t),

2yT (t)W1g(x(t − h(t))) ≤ yT (t)W1D1W
T
1 y(t) + gT (x(t − h(t)))D−1

1 g(x(t − h(t)))

≤ yT (t)W1D1W
T
1 y(t) + xT (t − h(t))GD−1

1 Gx(t − h(t))

≤ yT (t)W1D1W
T
1 y(t) + yT (t − h(t))PGD−1

1 GPy(t − h(t)),

2yT (t)W2

∫ t

t−k(t)
h(x(s))ds ≤ ke2αkyT (t)W2D2W

T
2 y(t)

+ k−1e−2αk
(∫ t

t−k(t)
h(x(s)ds)

)T

D−1
2

(∫ t

t−k(t)
h(x(s))ds

)

≤ ke2αkyT (t)W2D2W
T
2 y(t) + e−2αk

∫ t

t−k
hT (x(s))D−1

2 h(x(s))ds.

(3.17)
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Applying Proposition 2.4 and the Leibniz-Newton formula, we have

−h1

∫ t

t−h1

ẏT (s)Rẏ(s)ds ≤ −
[∫ t

t−h1

ẏ(s)

]T
R

[∫ t

t−h1

ẏ(s)

]

≤ −[y(t) − y(t − h1)
]T
R
[
y(t) − y(t − h1)

]
= −yT (t)Ry(t) + 2yT (t)Ry(t − h1) − yT (t − h1)Ry(t − h1),

−h2

∫ t

t−h2

ẏT (s)Rẏ(s)ds ≤ −
[∫ t

t−h2

ẏ(s)

]T
R

[∫ t

t−h2

ẏ(s)

]

≤ −[y(t) − y(t − h2)
]T
R
[
y(t) − y(t − h2)

]
= −yT (t)Ry(t) + 2yT (t)Ry(t − h2) − yT (t − h2)Ry(t − h2).

(3.18)

Note that

−(h2 − h1)
∫ t−h1

t−h2

ẏT (s)Uẏ(s)ds = −(h2 − h1)
∫ t−h(t)

t−h2

ẏT (s)Uẏ(s)ds

− (h2 − h1)
∫ t−h1

t−h(t)
ẏT (s)Uẏ(s)ds

= −(h2 − h(t))
∫ t−h(t)

t−h2

ẏT (s)Uẏ(s)ds

− (h(t) − h1)
∫ t−h(t)

t−h2

ẏT (s)Uẏ(s)ds

− (h(t) − h1)
∫ t−h1

t−h(t)
ẏT (s)Uẏ(s)ds

− (h2 − h(t))
∫ t−h1

t−h(t)
ẏT (s)Uẏ(s)ds.

(3.19)

Using Proposition 2.4 gives

−(h2 − h(t))
∫ t−h(t)

t−h2

ẏT (s)Uẏ(s)ds ≤ −
[∫ t−h(t)

t−h2

ẏ(s)ds

]T
U

[∫ t−h(t)

t−h2

ẏ(s)ds

]

≤ −[y(t − h(t)) − y(t − h2)
]T
U
[
y(t − h(t)) − y(t − h2)

]
,

(3.20)

−(h(t) − h1)
∫ t−h1

t−h(t)
ẏT (s)Uẏ(s)ds ≤ −

[∫ t−h1

t−h(t)
ẏ(s)ds

]T
U

[∫ t−h1

t−h(t)
ẏ(s)ds

]

≤ −[y(t − h1) − y(t − h(t))
]T
U
[
y(t − h1) − y(t − h(t))

]
.

(3.21)
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Let β = (h2 − h(t))/(h2 − h1) ≤ 1. Then

−(h2 − h(t))
∫ t−h1

t−h(t)
ẏT (s)Uẏ(s)ds = −β

∫ t−h1

t−h(t)
(h2 − h1)ẏT (s)Uẏ(s)ds

≤ −β
∫ t−h1

t−h(t)
(h(t) − h1)ẏT (s)Uẏ(s)ds

≤ −β[y(t − h1) − y(t − h(t))
]T
U
[
y(t − h1) − y(t − h(t))

]
,

(3.22)

−(h(t) − h1)
∫ t−h(t)

t−h2

ẏT (s)Uẏ(s)ds = −(1 − β
) ∫ t−h(t)

t−h2

(h2 − h1)ẏT (s)Uẏ(s)ds

≤ −(1 − β
) ∫ t−h(t)

t−h2

(h2 − h(t))ẏT (s)Uẏ(s)ds

≤ −(1 − β
)[
y(t − h(t)) − y(t − h2)

]T
×U
[
y(t − h(t)) − y(t − h2)

]
.

(3.23)

Therefore from (3.20)–(3.23), we obtain

−(h2 − h1)
∫ t−h1

t−h2

ẏT (s)Uẏ(s)ds ≤ −[y(t − h(t)) − y(t − h2)
]T
U
[
y(t − h(t)) − y(t − h2)

]

− [y(t − h1) − y(t − h(t))
]T
U
[
y(t − h1) − y(t − h(t))

]

− β
[
y(t − h1) − y(t − h(t))

]T
U
[
y(t − h1) − y(t − h(t))

]

− (1 − β
)[
y(t − h(t)) − y(t − h2)

]T
×U
[
y(t − h(t)) − y(t − h2)

]
.

(3.24)

By using the following identity relation:

− Pẏ(t) −APy(t) +W0f(x(t)) +W1g(x(t − h(t))) +W0

∫ t

t−k(t)
h(x(s))ds

+ B0Pẏ
(
t − η(t)

) − 0.5BBTy(t) = 0,

(3.25)

we have

− 2ẏT (t)Pẏ(t) − 2ẏT (t)APy(t) + 2ẏT (t)W0f(x(t)) + 2ẏT (t)W1g(x(t − h(t)))

+ 2ẏT (t)W0

∫ t

t−k(t)
h(x(s))ds + 2ẏT (t)B0Pẏ

(
t − η(t)

) − ẏT (t)BBTy(t) = 0.
(3.26)
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By using Propositions 2.3 and 2.4, we have

2ẏT (t)W0f(x(t)) ≤ ẏT (t)W0D0W
T
0 ẏ(t) + fT (x(t))D−1

0 f(x(t))

≤ ẏT (t)W0D0W
T
0 ẏ(t) + yT (t)PFD−1

0 FPy(t),
(3.27)

2ẏT (t)W1g(x(t − h(t))) ≤ ẏT (t)W1D1W
T
1 ẏ(t) + gT (x(t − h(t)))D−1

1 g(x(t − h(t)))

≤ ẏT (t)W1D1W
T
1 ẏ(t) + yT (t − h(t))PGD−1

1 GPy(t − h(t)),
(3.28)

2ẏT (t)W2

∫ t

t−k(t)
h(x(s))ds ≤ ke2αkẏT (t)W2D2W

T
2 ẏ(t)

+ e−2αk
∫ t

t−k
hT (x(s))D−1

2 h(x(s))ds.

(3.29)

From (3.15)–(3.29), we obtain

V̇ (t, xt) + 2αV (t, xt) ≤ yT (t)
[
−AP − PAT + 2αP − BBT + 2Q + 2kPHD−1

2 HP

+W0D0W
T
0 +W1D1W

T
1 + ke2αkW2D2W

T
2

−e−2αh1R − e−2αh2R + PFD−1
1 FP

]
y(t) + 2yT (t)B0Pẏ

(
t − η(t)

)

+yT (t − h1)
[
−e−2αh1Q − e−2αh1R − e−2αh2U

]
y(t − h1),

+(t − h2)
[
−e−2αh2Q − e−2αh2R − e−2αh2U

]
y(t − h2),

+ ẏT (t)
[
h2
1R + h2

2R + (h2 − h1)
2U +Q1 − 2P +W0D0W

T
0

+W1D1W
T
1 + ke2αkW2D2W

T
2

]
ẏ(t)

− (1 − δ)e−2αηẏT(t − η(t)
)
Q1ẏ

(
t − η(t)

)

+ yT (t − h(t))
[
2PGD−1

1 GP − 2e−2αh2U
]
y(t − h(t))

+ 2e−2αh1yT (t)Ry(t − h1) + 2e−2αh2yT (t)Ry(t − h2)

+ 2e−2αh2yT (t − h(t))Uy(t − h2)

+ 2e−2αh2yT (t − h(t))Uy(t − h1) − 2ẏT (t)APy(t)

+ 2ẏT (t)B0Pẏ
(
t − η(t)

) − ẏT (t)BBTy(t)

− e−2αh2β
[
y(t − h1) − y(t − h(t))

]T
U
[
y(t − h1) − y(t − h(t))

]

− e−2αh2
(
1 − β

)[
y(t − h(t)) − y(t − h2)

]T
U
[
y(t − h(t)) − y(t − h2)

]
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= ξT (t)Ωξ(t) − e−2αh2β
[
y(t − h1) − y(t − h(t))

]T
U

× [y(t − h1) − y(t − h(t))
] − e−2αh2

(
1 − β

)[
y(t − h(t)) − y(t − h2)

]T
×U
[
y(t − h(t)) − y(t − h2)

]

= ξT (t)
[(
1 − β

)M1 + βM2
]
ξ(t) + yT (t)M3y(t)

+ yT (t − h(t))M4y(t − h(t)),

(3.30)

where

M3 = −0.1BBT − 0.1
(
e−2αh1 + e−2αh2

)
R + 2kPHD−1

2 HP + 2PFD−1
0 FP,

M4 = −0.1e−2αh2U + 2PGD−1
1 GP,

ζ(t) =
[
y(t), ẏ

(
t − η(t)

)
, y(t − h1), y(t − h2), ẏ(t), y(t − h(t))

]
.

(3.31)

Since 0 ≤ β ≤ 1, (1 − β)M1 + βM2 is a convex combination of M1 and M2. Therefore, (1 −
β)M1 + βM2 < 0 is equivalent to M1 < 0 and M2 < 0. Applying Schur complement lemma
Proposition 2.5, the inequalities M3 < 0 and M4 < 0 are equivalent to M3 < 0 and M4 < 0,
respectively. Thus, it follows from (3.3)–(3.6) and (3.30), we obtain

V̇ (t, xt) ≤ −2αV (t, xt), ∀t ≥ 0. (3.32)

Integrating both sides of (3.32) from 0 to t, we obtain

V (t, xt) ≤ V
(
φ
)
e−2αt, ∀t ≥ 0. (3.33)

Furthermore, taking condition (3.13) into account, we have

λ1
∥∥x(t, φ)∥∥2 ≤ V (xt) ≤ V

(
φ
)
e−2αt ≤ λ2e

−2αt∥∥φ∥∥2, (3.34)

then

∥∥x(t, φ)∥∥ ≤
√

λ2
λ1

e−αt
∥∥φ∥∥, t ≥ 0. (3.35)

Therefore, nominal system (3.1) is α-exponentially stabilizable. The proof is completed.

3.2. Exponential Stabilization for Interval Time-Varying Delay Systems

Based on Theorem 3.2, we derive robustly α-exponential stabilizability conditions of
uncertain linear control systems with interval time-varying delay (2.1) in terms of LMIs.
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Theorem 3.3. Given α > 0. The system (2.1) is α-exponentially stabilizable if there exist symmetric
positive definite matrices P, Q, R, U, Q1, three diagonal matrices Di, i = 0, 1, 2 and εi > 0, i =
1, 2, . . . , 6 such that the following LMI holds:

W1 = W− [0 0 0 −I 0 I
]T × e−2αh2U

[
0 0 0 −I 0 I

]
< 0, (3.36)

W2 = W− [0 0 I 0 0 −I]T × e−2αh2U
[
0 0 I 0 0 −I] < 0, (3.37)

W3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ 4kPH 2PF PHT
a PHT

a PFHT
0 PFHT

0

∗ −4kD2 0 0 0 0 0

∗ ∗ −2D0 0 0 0 0

∗ ∗ ∗ −ε1I 0 0 0

∗ ∗ ∗ ∗ −ε4I 0 0

∗ ∗ ∗ ∗ ∗ −ε2I 0

∗ ∗ ∗ ∗ ∗ ∗ −ε5I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.38)

W4 =

⎡
⎢⎢⎢⎢⎢⎣

−0.1e−2αh2U 2PG PGHT
1 PGHT

1

∗ −2D1 0 0

∗ ∗ −ε3I 0

∗ ∗ ∗ −ε6I

⎤
⎥⎥⎥⎥⎥⎦

< 0,

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W11 W12 W13 W14 W15 0

∗ W22 0 0 W25 0

∗ ∗ W33 0 0 W36

∗ ∗ ∗ W44 0 W46

∗ ∗ ∗ ∗ W55 0

∗ ∗ ∗ ∗ ∗ W66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.39)

where

Δ = −0.1BBT − 0.1
(
e−2αh1 + e−2αh2

)
R,

W11 = [−A + αI]P + P[−A + αI]T − 0.9BBT + 2Q +W0D0W
T
0 +W1D1W

T
1

+ ke2αkW2D2W
T
2 − 0.9e−2αh1R − 0.9e−2αh2R + ε1E

T
aEa + ε3E

T
1E1 + ε2E

T
0E0

+ ke2αkET
2H

T
2 D2H2E2,

W12 = B0P, W13 = e−2αh1R, W14 = e−2αh2R, W15 = −PAT − 0.5BBT ,

W22 = −(1 − δ)e−2αηQ1, W25 = PBT
0 , W33 = −e−2αh1Q − e−2αh1R − e−2αh2U,

W36 = e−2αh2U, W44 = −e−2αh2Q − e−2αh2R − e−2αh2U, W46 = e−2αh2U,



Abstract and Applied Analysis 15

W55 = h2
1R + h2

2R + (h2 − h1)
2U +Q1 − 2P +W0D0W

T
0 +W1D1W

T
1

+ ke2αkW2D2W
T
2 + ε4E

T
aEa + ε5E

T
0E0 + ε6E

T
1E1 + ke2αkET

2H
T
2 D2H2E2,

W66 = −1.9e−2αh2U.

(3.40)

Proof. Choose Lyapunov-Krasovskii functional as in (3.11) but change V8 to V8 =
4
∫0
−k
∫ t
t+s e

2α(τ−t)hT (x(τ))D−1
2 h(x(τ))dτ ds, we may proof the Theorem by using a similar

argument as in the proof of Theorem 3.2. By replacing A, W0, W1, and W2 with A +
EaFa(t)Ha, W0 + E0F0(t)H0, W1 + E1F1(t)H1, and W2 + E2F2(t)H2, respectively. We have
the following:

V̇ (t, xt) + 2αV (t, xt) ≤ yT (t)
[
(−A + EaFa(t)Ha)P + P(−A + EaFa(t)Ha)T − BBT + 2αP

+2Q − e−2αh1R − e−2αh2R
]
y(t) + 2yT (t)(W0 + E0F0(t)H0)f(x(t))

+ 2yT (t)(W1 + E1F1(t)H1)g(x(t − h(t))) + 2yT (t)(W2 + E2F2(t)H2)

×
∫ t

t−k(t)
h(x(s))ds + 2yT (t)B0Pẏ

(
t − η(t)

)

− e−2αh1yT (t − h1)Qy(t − h1) − e−2αh2yT (t − h2)Qy(t − h2)

+ h2
1ẏ

T (t)Rẏ(t) + h2
2ẏ

T (t)Rẏ(t) + (h2 − h1)
2ẏT (t)Uẏ(t)

+ e−2αh12yT (t)Ry(t − h1) − e−2αh1yT (t − h1)Ry(t − h1)

+ e−2αh22yT (t)Ry(t − h2) − e−2αh2yT (t − h2)Ry(t − h2)

− e−2αh2
[
y(t − h(t)) − y(t − h2)

]T
U
[
y
(
t − h(t) − y(t − h2)

)]T

− e−2αh2
[
y(t − h1) − y(t − h(t))

]T
U
[
y(t − h1) − y(t − h(t))

]T

− βe−2αh2
[
y(t − h1) − y(t − h(t))

]T
U
[
y(t − h1) − y(t − h(t))

]T

− e−2αh2
(
1 − β

)[
y(t − h(t)) − y(t − h2)

]T
U
[
y(t − h(t)) − y(t − h2)

]T
+ ẏT (t)Q1ẏ(t) − (1 − δ)e−2αηẏT(t − η(t)

)
Q1ẏ

(
t − η(t)

)

+ 4kyT (t)PHD−1
2 HPy(t) − 4e−2αk

∫ t

t−k
hT (x(s))D−1

2 h(x(s))ds

− 2ẏT (t)Pẏ(t) − 2ẏT (t)(A + EaFa(t)Ha)Py(t)

+ 2ẏT (t)(W0 + E0F0(t)H0)f(x(t))

+ 2ẏT (t)(W1 + E1F1(t)H1)g(x(t − h(t)))
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+ 2ẏT (t)(W2 + E2F2(t)H2)
∫ t

t−k(t)
h(x(s))ds + 2ẏT (t)B0Pẏ

(
t − η(t)

)

− ẏT (t)BBTy(t)

= ξT (t)
[(
1 − β

)M1 + βM2
]
ξ(t) + yT (t)M3y(t)

+ yT (t − h(t))M4y(t − h(t)).

(3.41)

Applying Proposition 2.3 and Lemma 2.6, the following estimations hold:

yT (t)
[
(−A + EaFa(t)H)a)P + P

(
−AT +HT

a F
T
a (t)E

T
a

)]
y(t)

≤ yT (t)
[
−PAT −AP

]
y(t) + ε1y

T (t)ET
aEay(t) + ε−11 yT (t)PHT

aHaPy(t),

2yT (t)[W0 + E0F0(t)H0]f(x(t))

= 2yT (t)W0f(x(t)) + 2yT (t)E0F0(t)H0f(x(t))

≤ yT (t)W0D0W
T
0 y(t)

+ yT (t)PFD−1
0 FPy(t) + ε2y

T (t)ET
0E0y(t) + ε−12 yT (t)PFHT

0 H0FPy(t),

2yT (t)(W1 + E1F1(t)H1)g(x(t − h(t)))

= 2yT (t)W1g(x(t − h(t))) + 2yT (t)E1F1(t)H1g(x(t − h(t))) ≤ yT (t)W1D1W
T
1 y(t)

+ yT (t − h(t))PGD−1
1 GPy(t − h(t)) + ε3y

T (t)ET
1E1y(t)

+ ε−13 yT (t − h(t))PGHT
1 H1GPyT (t − h(t)),

2yT (t)(W2 + E2F2(t)H2)
∫ t

t−k(t)
h(x(s))ds

= 2yT (t)W2

∫ t

t−k(t)
h(x(s))ds + 2yT (t)E2F2(t)H2

∫ t

t−k(t)
h(x(s))ds

≤ ke2αkyT (t)W2D2W
T
2 y(t) + e−2αk

∫ t

t−k
hT (x(s))D−1

2 h(x(s))ds

+ ke2αkyT (t)ET
2H2D2H

T
2 E2y(t) + k−1e−2αk

[∫ t

t−k(t)
h(x(s))ds

]T
HT

2 H
−T
2 D−1

2 H−1
2 H2

×
[∫ t

t−k(t)
h(x(s))ds

]



Abstract and Applied Analysis 17

≤ ke2αkyT(t)W2D2W
T
2 y(t) + e−2αk

∫ t

t−k
hT (x(s))D−1

2 h(x(s))ds

+ ke2αkyT (t)ET
2H2D2H

T
2 E2y(t) + e−2αk

∫ t

t−k
hT (x(s))D−1

2 h(x(s))ds

− 2ẏT (t)(A + EaFa(t)Ha)Py(t) ≤ −2ẏT (t)APy(t) − 2ẏT (t)EaFa(t)HaPy(t)

≤ −2ẏT (t)APy(t) + ε4ẏ
T (t)ET

aEaẏ(t) + ε−14 yT (t)PHT
aHaPy(t),

2ẏT (t)(W0 + E0F0(t)H0)f(x(t))

= 2ẏT (t)[W0 + E0F0(t)H0]f(x(t))

≤ ẏT (t)W0D0W
T
0 ẏ(t)

+ yT (t)PFD−1
0 FPy(t) + ε5ẏ

T (t)ET
0E0ẏ(t) + ε−15 yT (t)PFHT

0 H0FPy(t),

2ẏT (t)(W1 + E1F1(t)H1)g(x(t − h(t)))

≤ ẏT (t)W1D1W
T
1 ẏ(t) + yT (t − h(t))PGD−1

1 G

× Py(t − h(t)) + ε6ẏ
T (t)ET

1E1ẏ(t) + ε−16 yT (t − h(t))PGHT
1 H1GPyT (t − h(t)),

2ẏT (t)(W2 + E2F2(t)H2)

≤ ke2αkẏT (t)W2D2W
T
2 ẏ(t) + 2e−2αk

∫ t

t−k
hT (x(s))D−1

2 h(x(s))ds

+ ke2αkẏT (t)ET
2H

T
2 D2H2E2ẏ(t).

(3.42)

Remark 3.4. In [10, 13, 14], exponential stability of neutral-type neural networks with time-
varying delays were investigated. However, the distributed delays have not been considered.
Stability conditions in [13, 26–28] are not applicable to our work, since we consider more
activation functions than them. Therefore, our stability conditions are less conservative than
some other existing results.

Remark 3.5. In this paper, the restriction that the state delay is differentiable is not required
which allows the state delay to be fast time-varying. Meanwhile, this restriction is required
in some existing result, see [13, 14, 26–28].

4. Numerical Examples

In this section, we now provide an example to show the effectiveness of the result in
Theorem 3.2.

Example 4.1. Consider the neural networks with interval time-varying delay and control
input with the following parameters:

ẋ(t) = −Ax(t) +W0f(x(t)) +W1g(x(t − h(t))) + Bu(t), (4.1)
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where

A =

[−0.2 0

1 2

]
, W0 =

[
0.4 0.1

0.1 −0.2

]
, W1 =

[
0.3 0.1

0.5 0.2

]
, F =

[
0.3 0

0 0.5

]
,

G =

[
0.1 0

0 0.4

]
, B =

[
0.3

0.1

]
.

(4.2)

It is worth noting that, the delay functions h(t) = 0.1 + 0.1| sin t|. Therefore, the methods used
in [2, 9] are not applicable to this system. We have h1 = 0.1, h2 = 0.2. Given α = 0.2 and any
initial function φ(t) = C1([−0.2, 0],R2). Using the Matlab LMI toolbox, we obtain

P =

[
0.0370 0.0010

0.0010 0.2938

]
, Q =

[
0.0008 0.0029

0.0029 0.0250

]
, U =

[
0.0153 0.0080

0.008 0.6201

]
,

R =

[
0.0377 0.0055

0.0055 0.8173

]
, D0 =

[
0.0353 0

0 0.2833

]
, D1 =

[
0.0215 0

0 0.5025

]
.

(4.3)

Thus, the system (4.1) is 0.2-exponentially stabilizable and the value
√
λ2/λ1 = 1.6469, so the

solution of the closed-loop system satisfies

∥∥x(t, φ)∥∥ ≤ 1.6469e−0.2t
∥∥φ∥∥, ∀t ∈ R

+. (4.4)

Example 4.2. Consider the neural networks with mixed interval time-varying delays and
control input with the following parameters:

ẋ(t) = −(A + ΔA(t))x(t) + (W0 + ΔW0)f(x(t)) + (W1 + ΔW1)g(x(t − h(t)))

+ (W2 + ΔW2)
∫ t

t−k(t)
h(x(s))ds + B0ẋ

(
t − η(t)

)
+ Bu(t),

(4.5)

where

A =

[
0.15 0

0 1

]
, W0 =

[
0.5 0.12

0.1 −0.3

]
, W1 =

[
0.2 0.1

0.1 0.2

]
, W2 =

[
0.1 0.2

0.5 0.1

]
,

B0 =

[
0.15 0

0 0.15

]
, F =

[
0.4 0

0 0.5

]
, G =

[
0.1 0

0 0.2

]
, H =

[
0.5 0

0 0.3

]
,

B =

[
0.1

0

]
, Ha = H0 = H1 = H2 = Ea = E0 = E1 = E2 =

[
0.1 0

0 0.1

]
.

(4.6)

It is worth noting that, the delay functions h(t) = 0.2 + 0.2| sin t|, k(t) = | cos t| are
nondifferentiable and η(t) = 0.2sin2(t). Therefore, the methods used in [13, 14] are not
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applicable to this system. We have h1 = 0.2, h2 = 0.4, k = 0.1, δ = 0.1, η = 0.2. Given
α = 0.1 and any initial function φ(t) = C1([−0.4, 0],R2). Using the Matlab LMI toolbox, we
obtain e1 = 0.0173, e2 = 0.0128, e3 = 0.0111, e4 = 0.0263, e5 = 0.0209, e6 = 0.0192,

P =

[
0.0061 0.0002

0.0002 0.0228

]
, Q =

[
0.0003 0.0005

0.0001 0.0031

]
, Q1 =

[
0.0005 0.0001

0.0001 0.0024

]
,

U =

[
0.0028 0.0004

0.0004 0.00382

]
, R =

[
0.0052 0.0008

0.0008 0.0543

]
, D0 =

[
0.0068 0

0 0.0304

]
,

D1 =

[
0.0038 0

0 0.0145

]
, D2 =

[
0.0433 0

0 0.0275

]
.

(4.7)

Thus, the system (4.1) is 0.1-exponentially stabilizable and the value
√
λ2/λ1 = 2.2939, so the

solution of the closed-loop system satisfies

∥∥x(t, φ)∥∥ ≤ 2.2939e−0.1t
∥∥φ∥∥, ∀t ∈ R

+. (4.8)

5. Conclusions

In this paper, we have investigated the exponential stabilization of neutral-type neural
networks with various activation functions and interval nondifferentiable and distributed
time-varying delays. The interval time-varying delay function is not necessary to be
differentiable which allows time-delay function to be a fast time-varying function. By
constructing a set of improved Lyapunov-Krasovskii functional combined with Leibniz-
Newton’s formula, the proposed stability criteria have been formulated in the form of a linear
matrix inequalities. Numerical examples illustrate the effectiveness of the results.
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