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A mathematical model for growth of tumors with two discrete delays is studied. The delays,
respectively, represent the time taken for cells to undergo mitosis and the time taken for the cell to
modify the rate of cell loss due to apoptosis and kill of cells by the inhibitor. We show the influence
of time delays on the Hopf bifurcation when one of delays is used as a bifurcation parameter.

1. Introduction

Within last four decades, an increasing number of partial differential equation models for
tumor growth or therapy have been developed; compare [1–9] and references cited therein.
Most of those models are in form of free boundary problems. Rigorous mathematical analysis
of such free boundary problems has drawn great interest, and many interesting results
have been established; compare [10–20] and references cited therein. Analysis of such free
boundary problems not only provides a sound theoretical basis for tumor medicine, but also
greatly enriches the understanding of deferential equations.

In this paper, we study a mathematical model for growth of tumors with two discrete
delays. The delays, respectively, represent the time taken for cells to undergo mitosis and the
time taken for the cell to modify the rate of cell loss due to apoptosis and kill of cells by the
inhibitor. The model is as follows:

Δrσ = Γ1σ, 0 < r < R(t), t > 0, (1.1)
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∂σ

∂r
(0, t) = 0, σ(R(t), t) = σ∞, t > 0, (1.2)

Δrβ = Γ2β, 0 < r < R(t), t > 0, (1.3)

∂β

∂r
(0, t) = 0, β(R(t), t) = β∞, t > 0, (1.4)

d

dt

4πR3(t)
3

= 4π
∫R(t−τ1)

0
λσ(r, t − τ1)r2dr − 4π

∫R(t−τ2)

0

[
λσ̃ + μβ(r, t − τ2)

]
r2dr, t > 0, (1.5)

R(t) = ϕ(t), −τ ≤ t ≤ 0, (1.6)

where Γ1, Γ2, λ, μ, σ∞, β∞, σ̃, τ1, and τ2 are positive constants, ϕ is a given positive function.
Δr = (1/r2)(∂/∂r)(r2(∂./∂r)). The term Γ1σ in (1.1) is the consumption rate of nutrient in a
unit volume; Γ2β in (1.3) is the consumption rate of inhibitor in a unit volume; σ∞ reflects
constant supply of nutrient that the tumor receives from its surface; β∞ reflects constant
supply of inhibitor that the tumor receives from its surface. τ1 represents the time taken for
cells to undergo mitosis, and τ2 represents the time taken for the cell to modify the rate of cell
loss due to apoptosis and kill of cells by the inhibitor. The two terms on the right hand side of
(1.5) are explained as follows: the first term is the total volume increase in unit time interval
induced by cell proliferation; λσ is the cell proliferation rate in unit volume. The second term
is total volume shrinkage in unit time interval caused by cell apoptosis (cell death due to
aging) and the kills of cells by the inhibitor; the cell apoptosis rate is assumed to be constant;
λσ̃ does not depend on either σ or β.

The study of effects of time delay in growth of tumors by using the method of
mathematical models was initiated by Byrne [1]. Recently this study has drawn attention
of some other researchers; compare Bodnar and Foryś [10], Fory and Bodnar [15], Foryś and
Kolev [16], Sarkar and Banerjee [7] with one delay; and compare Piotrowska [18], Xu [19]
with two delays. This mathematical model is established bymodifying the model of Byrne [2]
by considering two independent time delays effect as in [18, 19]. The modifications are based
on biological considerations, see Cui and Xu [14] for details. In [14], the authors studied the
problem (1.1)–(1.6) with only one delay in proliferation, that is, τ2 = 0, and showed that the
dynamical behavior of solutions of the model with a delay in proliferation is similar to that of
solutions for corresponding nondelayed problem. The aim of this paper is to investigate the
influence of time delays on the Hopf bifurcation when τ2 is used as a bifurcation parameter.

Denote θ =
√
(Γ2/Γ1). By rescaling the space variable, we may assume that Γ1 = 1.

Accordingly, we have θ =
√
Γ2. The solution of (1.1)–(1.4) is

σ(r, t) =
σ∞R(t)
sinhR(t)

sinh r

r
, β(r, t) =

β∞R(t)
sinh(θR(t))

sinh(θr)
r

. (1.7)

Substituting (1.7) into (1.6) we obtain

Ṙ(t) = R(t)

[
λσ∞p(R(t − τ1))

(
R(t − τ1)
R(t)

)3

−
(
μβ∞p(R(t − τ2)) +

1
3
λσ̃

)(
R(t − τ2)
R(t)

)3
]
; (1.8)
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here p(x) = (x cothx − 1)/x2. Set ω(t) = R3(t), and we have

ω̇(t) = 3λσ∞p
(
ω1/3(t − τ1)

)
ω(t − τ1) −

(
3μβ∞p

(
ω1/3(t − τ2)

)
+ λσ̃

)
ω(t − τ2). (1.9)

Using the step method (see, e.g., [21]), we can easily show that if there exists a solution for
t ∈ [(n − 1)τ3, nτ3], then the solution for t ∈ [nτ3, (n + 1)τ3], where n ∈ N, τ3 = min(τ1, τ2), is
defined by the formula

ω(t)=ω(nτ3)+
∫ t

nτ3

3λσ∞p
(
ω1/3(s − τ1)

)
ω(s − τ1) −

(
3μβ∞p

(
ω1/3(s − τ2)

)
+ λσ̃

)
ω(s − τ2)ds.

(1.10)

Clearly the stepmethod gives the existence of unique solution to (1.9) because of s−τ1, s−τ2 ∈
[(n − 1)τ3, nτ3].

Using Theorem 1.2 from [22], we can get nonnegative initial condition ω0, and the
solution of (1.9) can become negative in a finite time. Therefore, through the rest of the paper
we assume that a positive solution of (1.9) with initial function ω0 exists for every t > 0.

2. Stability of the Stationary Solutions and Existence of
Local Hopf Bifurcation

In this section, we will study stability of the stationary solutions and existence of local Hopf
bifurcation.

The first step is to find stationary solutions. Stationary solutions to (1.9) satisfy the
equation

(
3λσ∞p

(
x1/3

)
− 3μβ∞p

(
θx1/3

)
− λσ̃

)
x = 0. (2.1)

Clearly, (2.1) has the trivial solution x = 0. Next, we consider the positive solutions to (2.1).
From [17] we know that p(x) is strictly monotone decreasing for x > 0, and

lim
x→ 0+

p(x) =
1
3
, lim

x→∞
p(x) = 0. (2.2)

Let g(x) = 3λσ∞p(x1/3) − 3μβ∞p(θx1/3) − λσ̃, x > 0. Then

lim
x→ 0+

g(x) = λσ∞ − μβ∞ − λσ̃,

g ′(x) = x−2/3
(
λσ∞p′

(
x1/3

)
− θμβ∞p′

(
θx1/3

))
= −θμβ∞x−2/3p′

(
x1/3

)(p′
(
θx1/3)

p′
(
x1/3

) − λσ∞
θμβ∞

)
.

(2.3)
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By [12], we know that p′(θy)/p′(y) is strictly monotone increasing (resp., decreasing) if 0 <

θ < 1 (resp., θ > 1) and

lim
y→ 0+

p′
(
θy

)
p′
(
y
) = θ, lim

y→∞
p′
(
θy

)
p′
(
y
) =

1
θ2

. (2.4)

Using these results, we can easily prove the following lemma (see [11] or [14]).

Lemma 2.1. Assume that 0 < θ < 1. Then the following assertions hold.

(1) If β∞ ≥ λσ∞/θ2μ then there exist no positive solutions for (2.1), that is, the problem (1.9)
has no positive stationary solutions.

(2) If β∞ < λσ∞/θ2μ, then in the case σ̃ ≥ σ∞ − μβ∞/λ there exist no positive solutions for
(2.1), that is, the problem (1.9) has no positive stationary solutions, and in the opposite
case σ̃ < σ∞ − μβ∞/λ, there exists a unique positive solution x = ωs for (2.1), that is, the
problem (1.9) has a unique positive stationary solution x = ωs. Moreover g ′(ωs) < 0.

Assume that θ > 1. Then the following assertions hold.

(3) If β∞ ≥ θλσ∞/μ then there exist no positive solutions for (2.1), that is, the problem (1.9)
has no positive stationary solutions.

(4) If β∞ ≤ λσ∞/θ2μ, then in the case σ̃ ≥ σ∞ − μβ∞/λ there exist no positive solutions for
(2.1), that is, the problem (1.9) has no positive stationary solution, and in the opposite case
σ̃ < σ∞ − μβ∞/λ, there exists a unique positive solution x = ωs for (2.1), that is, the
problem (1.9) has a unique positive stationary solution. Moreover g ′(ωs) < 0.

(5) If λσ∞/θ2μ < β∞ < θλσ∞/μ, then there exists a unique x∗ > 0 such that

p′
(
θy∗)

p′
(
y∗) =

λσ∞
θμβ∞

; (2.5)

here y∗ = (x∗)1/3, and x∗ is the maximum point of g(x). Denote g(x∗) = M. Then if σ̃ > 3M there
exist no positive solutions for (2.1), that is, the problem (1.9) has no positive stationary solutions.
If 0 < σ̃ ≤ σ∞ − μβ∞/λ there exists a unique positive solution x = ωs for (2.1) which satisfy
g ′(ωs) < 0, that is, the problem (1.9) has a unique positive stationary solution satisfying g ′(ωs) < 0.
If σ∞ − μβ∞/λ < σ̃ < 3M there exist two positive solutions x1 = ωs1 < x1 = ωs2 for (2.1) which
satisfy g ′(ωs1) > 0, g ′(ωs2) < 0, that is, the problem (1.9) has two positive stationary solutions
satisfying g ′(ωs1) > 0, g ′(ωs2) < 0, respectively.

The next step is to study the stability and the Hopf bifurcation of (1.9). Linearizing
(1.9) at positive stationary solutions, we obtain

ω̇(t) = −A1ω(t − τ1) −A2ω(t − τ2), (2.6)

where A1 = −λσ∞[ω1/3
s p′(ω1/3

s ) + 3p(ω1/3
s )], A2 = μβ∞(θω1/3

s p′(θω1/3
s ) + 3p(θω1/3

s )) + λσ̃.
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Similarly linearizing (1.9) at the trivial stationary solution we get

ω̇(t) = −B1ω(t − τ1) − B2ω(t − τ2), (2.7)

where B1 = −λσ∞, B2 = μβ∞ + λσ̃.
We claim A1 < 0, A2 > 0. Actually, for y > 0, y3p(y) is strictly monotone increasing in

y (see [14]), that is, for y > 0,

d
(
y3p

(
y
))

dy
> 0 ⇐⇒ y2(yṗ(y) + 3p

(
y
))

> 0 ⇐⇒ yṗ
(
y
)
+ 3p

(
y
)
> 0. (2.8)

This readily implies thatA1 = −λσ∞(yṗ(y)+3p(y))|y=ω1/3
s

< 0. Immediately,A2 = μβ∞(yṗ(y)+
3p(y))|y=θω1/3

s
+ σ̃ > 0. Hence the claim is true.

The characteristic of (2.6) is as follows:

z = −A1e
−zτ1 −A2e

−zτ2 . (2.9)

From [14] we know that if τ2 = 0 then for arbitrary τ1 > 0, the dynamical behavior of
solutions of problem (1.9) with nonnegative initial function is similar to that of solutions
for corresponding nondelayed problem. By continuity, for sufficiently small τ2 > 0, the
dynamical behavior of solutions of problem (1.9) with nonnegative initial function is also
similar to that of solutions for corresponding nonretarded problem.

In the following, we will study stability of the stationary solutions and existence of
local Hopf bifurcation. From biological point of view it is reasonable to take τ2 as bifurcation
parameter, for detail see [18] and the references therein.

The case when B1 < 0, B2 > 0 was studied in [23, 24], and the proof of the following
lemma can be found in it.

Lemma 2.2. Consider the equation

ẋ(t) = f(x(t − τ1), x(t − τ2)), (2.10)

with a nonnegative initial continuous function ϕ : [−τ, 0] → R+, where τ1, τ2 are the positive
constants, τ = max(τ1, τ2), and f is a continuously differentiable nonlinear function. Assume that
(2.10) has the trivial stationary solution, that is, f(0, 0) = 0. Let the linearized equation around the
trivial solution of (2.10) be as follows:

ẋ(t) = −B1x(t − τ1) − B2x(t − τ2). (2.11)

Then

(1) if B1 < 0, B2 > |B1|, and τ1 ∈ (0, π/2
√
B2
2 − B2

1], then there exists τ0
2 > 0 such that for

τ2 ∈ [0, τ0
2 ) the trivial solution to (2.10) is asymptotically stable and for τ2 = τ0

2 the Hopf
bifurcation occurs;

(2) if B1 < 0, 0 < B2 < |B1|, the trivial solution to (2.10) is unstable independently on the
values of both delays, and there is no Hopf bifurcation.
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Use Lemma 2.2, we easily have the following.

Corollary 2.3. Consider the equation

ẋ(t) = f(x(t − τ1), x(t − τ2)), (2.12)

with a nonnegative initial continuous function ϕ : [−τ, 0] → R+, where τ1, τ2 are the positive
constants, τ = max(τ1, τ2), f is a continuously differentiable nonlinear function. Assume that (2.12)
has the positive stationary solution x = xs, that is, f(xs, xs) = 0. Let the linearized equation around
the positive stationary solution of (2.10) be as follows:

ẋ(t) = −A1x(t − τ1) −A2x(t − τ2). (2.13)

Then

(1) if A1 < 0, A2 > |A1|, and τ1 ∈ (0, π/2
√
A2

2 −A2
1], then there exists τ0

2 > 0 such that

for τ2 ∈ [0, τ0
2 ) the positive stationary solution to (2.10) is asymptotically stable and for

τ2 = τ0
2 the Hopf bifurcation occurs;

(2) if A1 < 0, 0 < A2 < |A1|, the positive stationary solution to (2.10) is unstable
independently on the values of both delays, and there is no Hopf bifurcation.

NoticingA1 = −λσ∞[ω1/3
s p′(ω1/3

s )+3p(ω1/3
s )],A2 = μβ∞(θω1/3

s p′(θω1/3
s )+3p(θω1/3

s ))+
σ̃ and ωs > 0 satisfy (2.1), by direct computation, we have

A2 − |A1| = A2 +A1 = −λσ∞p′
(
ω1/3

s

)
+ θμβ∞p′

(
θω1/3

s

)
. (2.14)

Since p(x) is strictly monotone decreasing for x > 0, we are readily get

A2 > |A1| ⇐⇒
p′
(
θω1/3

s

)

p′
(
ω1/3

s

) <
λσ∞
θμβ∞

⇐⇒ g ′(ωs) < 0,

A2 < |A1| ⇐⇒
p′
(
θω1/3

s

)

p′
(
ω1/3

s

) >
λσ∞
θμβ∞

⇐⇒ g ′(ωs) > 0.

(2.15)

Clearly B1 < 0, by direct computation, we obtain

B2 > |B1| ⇐⇒ σ̃ > σ∞ − μβ∞
λ

,

B2 < |B1| ⇐⇒ σ̃ < σ∞ − μβ∞
λ

.

(2.16)
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Noticing

β∞ <
λ

μ
(σ∞ − σ̃) ⇐⇒ σ̃ > σ∞ − μβ∞

λ
⇐⇒ B2 > |B1|,

β∞ >
λ

μ
(σ∞ − σ̃) ⇐⇒ σ̃ < σ∞ − μβ∞

λ
⇐⇒ B2 < |B1|,

(2.17)

by Lemma 2.2, we can conclude the following.

(i) Assume that β∞ < (λ/μ)(σ∞ − σ̃) and τ1 ∈ (0, π/2
√
B2
2 − B2

1] hold, then there exists

τ0
2 > 0 such that for τ2 ∈ [0, τ0

2 ) the trivial solution to (1.9) is asymptotically stable
and for τ2 = τ0

2 the Hopf bifurcation occurs.

(ii) Assume that β∞ > (λ/μ)(σ∞ − σ̃) holds, the trivial solution to (1.9) is unstable
independently on the values of both delays, and there is no Hopf bifurcation.

By simple computation, we have

β∞ <
λ

μ
(σ∞ − σ̃), β∞ <

λσ∞
μθ2

⇐⇒

0 < θ < 1, β∞ <
λσ∞
μθ2

, σ̃ < σ∞ − μβ∞
λ

or θ > 1, β∞ <
λσ∞
μθ2

, σ̃ < σ∞ − μβ∞
λ

(2.18)

⇒ (1.9) has a positive stationary solution ωs and g ′(ωs) < 0 ⇔ A2 > |A1|. Then by
Corollary 2.3, we have the following. Assume that β∞ < (λ/μ)(σ∞ − σ̃) and β∞ < λσ∞/μθ2

hold, then for τ1 ∈ (0, π/2
√
A2

2 −A2
1] there exists τ

0
2 > 0 such that for τ2 ∈ [0, τ0

2 ) the positive

stationary solution to (1.9) is asymptotically stable and for τ2 = τ0
2 the Hopf bifurcation

occurs.
Since 0 < θ < 1 and (λ/μ)(σ∞ − σ̃) < β∞ < λσ∞/μθ2 ⇔ β∞ < λσ∞/μθ2, σ̃ > σ∞ −

μβ∞/λ ⇒ B2 > |B1|. From Lemma 2.1 we know that if 0 < θ < 1 and (λ/μ)(σ∞ − σ̃) < β∞ <

λσ∞/μθ2 hold, then (1.9) has no positive stationary solution. By Lemma 2.2, we readily have
the following. Assume that 0 < θ < 1 and (λ/μ)(σ∞ − σ̃) < β∞ < λσ∞/μθ2 hold, then for

τ1 ∈ (0, π/2
√
B2
2 − B2

1] there exists τ
0
2 > 0 such that for τ2 ∈ [0, τ0

2 ) the trivial solution to (2.10)

is asymptotically stable and for τ2 = τ0
2 the Hopf bifurcation occurs.

Assume that θ > 1, then we have the following.
If β∞ > (θλσ∞/μ)(> λσ∞/μθ2) ⇒ β∞ < (λ/μ)(σ∞ − σ̃) ⇒ B2 > |B1|;
if (λ/μ)(σ∞ − σ̃) < β∞ < λσ∞/μθ2 ⇒ σ̃ > σ∞ − μβ∞/λ ⇔ B2 > |B1|;
if λσ∞/μθ2 < β∞ < θλσ∞/μ and if σ̃ > 3M ⇒ σ̃ < σ∞ − μβ∞/λ ⇔ B2 < |B1|; if

σ̃ < σ∞ − μβ∞/λ ⇒ B2 > |B1|; if σ∞ − μβ∞/λ < σ̃ < 3M ⇒ g ′(ωs2) < 0 and then by Lemma 2.2
and Corollary 2.3, we have the following.

(1) Assume that θ > 1, β∞ > θλσ∞/μ or θ > 1, (λ/μ)(σ∞ − σ̃) < β∞ < λσ∞/μθ2 holds,

then for τ1 ∈ (0, π/2
√
B2
2 − B2

1] there exists τ0
2 > 0 such that for τ2 ∈ [0, τ0

2 ) the
trivial solution to (2.10) is asymptotically stable and for τ2 = τ0

2 the Hopf bifurcation
occurs.



8 Abstract and Applied Analysis

(2) Assume that θ > 1, (λ/μ)(σ∞ − σ̃) < β∞ < λσ∞/μθ2 hold. Then if σ̃ > 3M, the trivial
solution to (1.9) is unstable independently on the values of both delays, and there

is no Hopf bifurcation; if σ̃ < σ∞ − μβ∞/λ, then for τ1 ∈ (0, π/2
√
B2
2 − B2

1] there

exists τ0
2 > 0 such that for τ2 ∈ [0, τ0

2 ) the trivial solution to (2.10) is asymptotically
stable and for τ2 = τ0

2 the Hopf bifurcation occurs; if σ∞ − μβ∞/λ < σ̃ < 3M, then

for τ1 ∈ (0, π/2
√
A2

2 −A2
1] there exists τ0

2 > 0 such that for τ2 ∈ [0, τ0
2 ) the positive

stationary solution ωs2 to (1.9) is asymptotically stable and for τ2 = τ0
2 the Hopf

bifurcation occurs.

We summarize as follows.

Theorem 2.4. (i) Assume that β∞ < (λ/μ)(σ∞ − σ̃) and τ1 ∈ (0, π/2
√
B2
2 − B2

1] hold, then there

exists τ0
2 > 0 such that for τ2 ∈ [0, τ0

2 ) the trivial solution to (1.9) is asymptotically stable and for
τ2 = τ0

2 the Hopf bifurcation occurs.
(ii) Assume that β∞ > (λ/μ)(σ∞ − σ̃) holds, the trivial solution to (1.9) is unstable

independently on the values of both delays, and there is no Hopf bifurcation.
(iii) Assume that β∞ < (λ/μ)(σ∞ − σ̃) and β∞ < λσ∞/μθ2 hold, then for τ1 ∈

(0, π/2
√
A2

2 −A2
1] there exists τ0

2 > 0 such that for τ2 ∈ [0, τ0
2 ) the positive stationary solution

to (1.9) is asymptotically stable and for τ2 = τ0
2 the Hopf bifurcation occurs.

(iv) Assume that 0 < θ < 1 and (λ/μ)(σ∞ − σ̃) < β∞ < λσ∞/μθ2 hold, then for τ1 ∈
(0, π/2

√
B2
2 − B2

1] there exists τ0
2 > 0 such that for τ2 ∈ [0, τ0

2 ) the trivial solution to (2.10) is

asymptotically stable and for τ2 = τ0
2 the Hopf bifurcation occurs.

(v) Assume that θ > 1, β∞ > θλσ∞/μ or θ > 1, (λ/μ)(σ∞ − σ̃) < β∞ < λσ∞/μθ2 holds, then

for τ1 ∈ (0, π/2
√
B2
2 − B2

1] there exists τ
0
2 > 0 such that for τ2 ∈ [0, τ0

2 ) the trivial solution to (2.10)

is asymptotically stable and for τ2 = τ0
2 the Hopf bifurcation occurs.

(vi) Assume that θ > 1, λσ∞/μθ2 < β∞ < θλσ∞/μ hold. Then if σ̃ > 3M, the trivial solution
to (1.9) is unstable independently on the values of both delays, and there is no Hopf bifurcation; if

σ̃ < σ∞ − μβ∞/λ, then for τ1 ∈ (0, π/2
√
B2
2 − B2

1] there exists τ
0
2 > 0 such that for τ2 ∈ [0, τ0

2 )

the trivial solution to (2.10) is asymptotically stable and for τ2 = τ0
2 the Hopf bifurcation occurs;

if σ∞ − μβ∞/λ < σ̃ < 3M, then for τ1 ∈ (0, π/2
√
A2

2 −A2
1] there exists τ0

2 > 0 such that for

τ2 ∈ [0, τ0
2 ) the positive stationary solution ωs2 to (1.9) is asymptotically stable and for τ2 = τ0

2 the
Hopf bifurcation occurs.

3. Conclusion

In this paper, we study a mathematical model for growth of tumors with two discrete delays.
The delays, respectively, represent the time taken for cells to undergo mitosis and the time
taken for the cell to modify the rate of cell loss due to apoptosis and kill of cells by the
inhibitor. Final mathematical formulation of the model is retarded differential equation of
the form

ω̇(t) = f(ω(t − τ1), ω(t − τ2)), (3.1)
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with a nonnegative initial continuous function ϕ : [−τ, 0] → R+, where τ1, τ2, and τ =
max(τ1, τ2) are the positive constants, f is a continuously differentiable function. The results
show that the two independent delays control the dynamics of the solution of the problem
(3.1) and the dynamic behavior is different to the corresponding nonretarded ordinary
equation

ω̇(t) = f(ω(t), ω(t)), x(0) = x0 > 0, (3.2)

or retarded differential equation with only one delay of the form

ω̇(t) = f(ω(t − τ), ω(t)), (3.3)

with a nonnegative initial continuous function ϕ : [−τ, 0] → R+. However the dynamic
behaviors of the problem (3.2) and (3.3) are similar, see [14].
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