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400591 Cluj-Napoca, Romania

2 Faculty of Mathematics and Computer Science, Babeş-Bolyai University,
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We study the time evolution of the free boundary of a viscous fluid for planar flows in Hele-
Shaw cells under injection. Applying methods from the theory of univalent functions, we prove
the invariance in time of Φ-likeness property (a geometric property which includes starlikeness
and spiral-likeness) for two basic cases: the inner problem and the outer problem. We study both
zero and nonzero surface tension models. Certain particular cases are also presented.

1. Introduction

The time evolution of the free boundary of a viscous fluid for planar flows in Hele-Shaw
cells under injection was studied by many authors. By using methods of univalent functions
theory, they proved that certain geometric properties (such as starlikeness and directional
convexity) are preserved in time [1–6]. In this paper, we continue their study by proving the
invariance in time of another geometric property: Φ-likeness.

In the first section of the paper, we review the main results that are needed later. We
start by presenting the basic notions regarding the bounded case.

In this case, we study the flow of a viscous fluid in a planar Hele-Shaw cell under
injection through a source (of constant strengthQ,Q < 0 in case of injection)which is situated
at the origin. Suppose that at the initial moment the domain Ω(0) occupied by the fluid is
simply connected and is bounded by an analytic and smooth curve Γ(0) = ∂Ω(0). By using
the well-known Riemann mapping theorem, the domain Ω(t) (occupied by the fluid at the
moment t) can be described by a univalent function f(ζ, t) of the unit disk U = {ζ : |ζ| < 1}



2 Abstract and Applied Analysis

ontoΩ(t) normalized by f(0, t) = 0, f ′(0, t) > 0.We denote Γ(t) = ∂Ω(t). The function f(ζ, 0) =
f0(ζ) produces a parametrization of Γ0 = {f0(eiθ), θ ∈ [0, 2π)}, and the moving boundary is
parameterized by Γ(t) = {f(eiθ, t), θ ∈ [0, 2π)}.

The equation satisfied by the free boundary was first derived by Galin [7] and
Polubarinova-Kochina [8, 9]:

Re
[
ḟ(ζ, t)ζf ′(ζ, t)

]
= − Q

2π
, ζ = eiθ (1.1)

(in the previous equality we have used the notations: f ′ = ∂f/∂ζ, ḟ = ∂f/∂t).
A classical solution in the interval [0, T) is a function f(ζ, t), t ∈ [0, T), that is univalent

on U and C1 with respect to t in [0, T). It is known that, starting with an analytic and smooth
boundary Γ(0), the classical solution exists and is unique locally in time (see [10]; see e.g.,
[11, Chapter 1]). Note that T is called the blow-up time.

In the case of the problem of injection (Q < 0) of the fluid into a bounded simply
connected with small surface tension γ > 0, the Polubarinova-Galin equation [6] is of the
form:

Re
[
ḟ(ζ, t)ζf ′(ζ, t)

]
= − Q

2π
+ γH

[
i
∂k

∂θ

(
eiθ, t

)]
(θ), ζ = eiθ, (1.2)

where k(eiθ, t) = (1/|f ′(eiθ, t)|)Re(1 + (eiθf ′′(eiθ, t)/f ′(eiθ, t))), θ ∈ [0, 2π), and the Hilbert
transform in (1.2) is given by (1/π)P.V.θ

∫2π
0 Φ(eiθ

′
)/(1 − ei(θ−θ

′))dθ′ = H[Φ](θ).
We mention the following technical results: (∂k/∂θ)(eiθ , t) =

− Im(e2iθSf(eiθ, t))/|f ′(eiθ, t)| where Sf is the Schwarzian derivative given by
Sf(ζ) = (f ′′(ζ, t)/f ′(ζ, t))′ − (1/2)(f ′′(ζ, t)/f ′(ζ, t))2 and

∂

∂θ

[
i
∂k

∂θ

(
eiθ, t

)]
(θ) = − ∂

∂θ

[
i Im

(
e2iθSf

(
eiθ

))
∣∣f ′(eiθ)∣∣

]
= H[iA](θ), (1.3)

where

A(ζ) =

(
1∣∣f ′(ζ)

∣∣
)[

Re

(
2ζ2Sf(ζ) + ζ

[(
f ′′(ζ)
f ′(ζ)

)′
− f ′′(ζ)

f ′(ζ)

(
f ′′(ζ)
f ′(ζ)

)′])

+ Im
ζf ′′(ζ)
f ′(ζ)

Im ζ2Sf(ζ)

]
.

(1.4)

The case of unbounded domain with bounded complement can be viewed as
the dynamics of a contracting bubble in a Hele-Shaw cell since the fluid occupies a
neighbourhood of infinity and injection (of constant strength Q < 0) is supposed to take
place at infinity. Again, we denote by Ω(t) the domain occupied by the fluid at the moment
t, Γ(t) = ∂Ω(t). By using the Riemann mapping theorem, the domain Ω(t) can be described
by a univalent function F(ζ, t) from the exterior of the unit disk U− = {ζ | |ζ| > 1} onto Ω(t),
F(ζ, t) = aζ + a0 + a1/ζ + · · · , a > 0.
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The equation satisfied by the free boundary is [4, 6]

Re
[
Ḟ(ζ, t)ζF ′(ζ, t)

]
=

Q

2π
, ζ = eiθ (1.5)

for the zero tension surface model and

Re
[
Ḟ(ζ, t)ζF ′(ζ, t)

]
=

Q

2π
− γH

[
i
∂k

∂t

(
eiθ, t

)]
(θ), ζ = eiθ (1.6)

for the small surface tension model.

2. The Inner Problem (Bounded Domains)

In this section, we obtain the invariance in time ofΦ-likeness property for the inner problem.
Starting with an initial bounded domainΩ(0)which is Φ-like, we prove that at each moment
t ∈ [0, T) the domain Ω(t) is Φ-like (both for zero and nonzero surface tension models).

Definition 2.1. Let f be a holomorphic function onU such that f(0) = 0 and f ′(0)/= 0. LetΦ be
a holomorphic function on f(U) such that Φ(0) = 0 and Re Φ′(0) > 0. We say that f is Φ-like
on U (or Φ-like) if

Re

[
zf ′(z)
Φ
(
f(z)

)
]
> 0, for each z ∈ U. (2.1)

We remark that a Φ-like function is univalent. In fact, any univalent function is Φ-like
for some Φ.

Remark 2.2. (a) The concept of Φ-likeness was introduced and studied by Brickman in 1973
[12] and generalizes the notions of starlikeness and spiral-likeness. Applications of this
notion in the study of univalence may be found in [13].

(b) If Φ(w) = w in the above definition, then f is starlike.
(c) If Φ(w) = λw and Re λ > 0, then f is spiral-like of type − argλ.

We restate that a holomorphic function f on U such that f(0) = 0 and f ′(0)/= 0 is said
to be spiral-like of type α ∈ (−π/2, π/2) if Re(eiαzf ′(z)/f(z)) > 0, z ∈ U [13, 14].

The following result is a generalization of [1, Theorem 1] to the case of Φ-like
functions. The mentioned theorem may be obtained by taking Φ(w) ≡ w in Theorem 2.3
below.

Theorem 2.3. Let Q < 0 and f0 be a function which is Φ-like on U and univalent on U. Let f(ζ, t)
be the classical solution of the Polubarinova-Galin equation (1.1) with the initial condition f(ζ, 0) =
f0(ζ). Also let Ω =

⋃
0≤t<T Ω(t) =

⋃
0≤t<T f(U, t), where T is the blow-up time. If Φ is holomorphic

on Ω and satisfies the condition

Re Φ′(w) > 0, ∀w ∈ Ω, (2.2)

then f(ζ, t) is Φ like for t ∈ [0, T).
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Proof. Taking into account that all the functions f(ζ, t) have analytic univalent extensions to
U for each t ∈ [0, T) and in consequence their derivatives f ′(ζ, t) are continuous and do not
vanish inU, we can replace with “≥” the inequality in the definition (2.1) of aΦ-like function.
The equality can be attained only for |ζ| = 1.

We suppose by contrary that the conclusion of Theorem 2.3 is not true. Then there
exist t0 ≥ 0 and ζ0 = eiθ0 such that arg(ζ0f ′(ζ0, t0)/Φ(f(ζ0, t0))) = π/2 (or − π/2), which is
equivalent to

Re
ζ0f ′(ζ0, t0)
Φ
(
f(ζ0, t0)

) = 0, Im
ζ0f ′(ζ0, t0)
Φ
(
f(ζ0, t0)

) /= 0, (2.3)

and for each ε > 0, there are t > t0 and θ ∈ (θ0 − ε, θ0 + ε) such that

arg
eiθf ′(eiθ, t)

Φ
(
f
(
eiθ, t

)) ≥ π

2

(
or ≤ −π

2

)
. (2.4)

Let t0 be the first such point, t0 ∈ [0, T). Without loss of generality, we assume that

Im
ζ0f ′(ζ0, t0)
Φ
(
f(ζ0, t0)

) > 0. (2.5)

In fact, (1, θ0) is a maximum point for the function g(r, θ) =
arg(reiθf ′(reiθ, t0)/Φ(f(reiθ, t0))), where r ∈ [0, 1], θ ∈ [0, 2π]. Hence, (∂/∂θ)g(1, θ0) = 0
and (∂/∂r)g(1, θ0) ≥ 0 (the stationarity condition at an endpoint of an interval), and in
consequence we obtain

Re

(
1 +

ζ0f ′′(ζ0, t0)
f ′(ζ0, t0)

− Φ′(f(ζ0, t0)
)
ζ0f

′(ζ0, t0)

Φ
(
f(ζ0, t0)

)
)

= 0, (2.6)

Im

(
1 +

ζ0f ′′(ζ0, t0)
f ′(ζ0, t0)

− Φ′(f(ζ0, t0)
)
ζ0f ′(ζ0, t0)

Φ
(
f(ζ0, t0)

)
)

≥ 0. (2.7)

By straightforward calculations, we get

∂

∂t
arg

ζf ′(ζ, t)
Φ
(
f(ζ, t)

) = Im

(
(∂/∂t)f ′(ζ, t)

f ′(ζ, t)
− Φ′(f(ζ, t))(∂/∂t)f(ζ, t)

Φ
(
f(ζ, t)

)
)
. (2.8)
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By differentiating the Polubarinova-Galin equation with respect to θ, we obtain
Im((∂/∂t)f ′(ζ, t)f ′(ζ, t) − ζf ′(ζ, t)(∂/∂t)f(ζ, t) − ζ2f ′′(ζ, t)(∂/∂t)f(ζ, t)) = 0 for ζ = eiθ. The
previous equality yields the following relation:

∣∣f ′(ζ, t)
∣∣2 Im

(
(∂/∂t)f ′(ζ, t)

f ′(ζ, t)
− Φ′(f(ζ, t)) · (∂/∂t)f(ζ, t)

Φ
(
f(ζ, t)

)
)

= Im
(
ζf ′(ζ, t)ḟ(ζ, t)

)(
1 +

(
ζf ′′(ζ, t)
f ′(ζ, t)

)
− Φ′(f(ζ, t)) · ζf ′(ζ, t)

Φ
(
f(ζ, t)

)
)
.

(2.9)

If we substitute (2.6), (2.7), (2.8), and (1.1) in the above expression and replace θ by θ0
and t by t0, we obtain

∂

∂t
arg

ζf ′(ζ, t)
Φ
(
f(ζ, t)

)
∣∣∣∣∣
ζ=ζ0,t=t0

=
Q

2π
∣∣f ′(ζ0, t0)

∣∣2
[
Im

(
ζ0f ′′(ζ0, t0)
f ′(ζ0, t0)

− Φ′(f(ζ0, t0)ζ0f ′( ζ0, t0)
)

Φ
(
f(ζ0, t0)

)
)

+2ReΦ′(f(ζ0, t0)
)
Im

ζ0f ′(ζ0, t0)
Φ
(
f(ζ0, t0)

)
]
< 0,

(2.10)

due to (2.2), (2.3) and (2.5). Finally, we get (∂/∂t) arg(ζf ′(ζ, t)/Φ(f(ζ, t)))|ζ=ζ0 ,t=t0 < 0.
Therefore, arg(eiθf ′(eiθ, t)/Φ(f(eiθ, t))) < π/2, for t > t0 (close to t0) in some neighbourhood
of θ0. This contradicts the assumption (2.4) and completes the proof.

If in the previous theorem, we take Φ(w) ≡ e−iαw, α ∈ (−π/2, π/2); then we obtain
the following corollary.

Corollary 2.4. Let Q < 0, and let f0 be a function which is spiral-like of type α ∈ (−π/2, π/2) on
U and univalent on U. Then the classical solution of the Polubarinova-Galin equation (1.1) with the
initial condition f(ζ, 0) = f0(ζ) is spiral-like of type α for t ∈ [0, T), where T is the blow-up time.

The following result is a generalization of [6, Theorem 1] to the case of Φ-like
functions. The mentioned theorem may be obtained by taking Φ(w) ≡ w in Theorem 2.5
below.

Theorem 2.5. Let Q < 0 and the surface tension γ be sufficiently small. If f0 is a function which is
Φ-like on U and univalent on U, then there exists t(γ) ≤ T such that the classical solution f(ζ, t)
of (1.2) with the initial condition f(ζ, 0) = f0(ζ) is Φ-like for t ∈ [0, t(γ)), where T is the blow-up
time, Ω =

⋃
0≤t<t(γ) Ω(t) =

⋃
0≤t<t(γ) f(U, t), and Φ is a holomorphic function onΩ which satisfies the

condition (2.2).

Proof. If we consider f in the closure ofU, then the inequality sign in (2.1) can be replaced by
“≥” where equality can be attained for |ζ| = 1.

Suppose by contrary that the conclusion of Theorem 2.5 is not true. Then there exist
t0 ≥ 0 and ζ0 = eiθ0 such that (2.3), (2.4), (2.5), (2.6), and (2.7) are true. At the same time
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the equality (2.8) is fulfilled. By differentiating the Polubarinova-Galin equation (1.2) with
respect to θ, we obtain

Im
(

∂

∂t
f ′(ζ, t)f ′(ζ, t) − ζf ′(ζ, t)

∂

∂t
f(ζ, t) − ζ2f ′′(ζ, t)

∂

∂t
f(ζ, t)

)
= γH[iA](θ), (2.11)

for ζ = eiθ. The previous equality is equivalent to the following:

∣∣f ′(ζ, t)
∣∣2 Im

(
(∂/∂t)f ′(ζ, t)

f ′(ζ, t)
− Φ

(
f(ζ, t)

)
(∂/∂t)f(ζ, t)

Φ(f(ζ, t))

)∣∣∣∣∣
ζ=ζ0=eiθ0 ,t=t0

=
(

Q

2π
− γH

(
i
∂k

∂θ

(
eiθ, t

)))

×
[
Im

(
ζf ′′

f ′ − Φ′(f)

Φ
(
f
) ζf ′

)
+ 2ReΦ′(f) Im ζf ′

Φ
(
f
)
]∣∣∣∣∣

ζ=ζ0,t=t0,θ=θ0

− γH[iA](θ)|ζ=ζ0,t=t0,θ=θ0 .

(2.12)

The right-hand side of this equality is strictly negative for small γ because of (2.5),
(2.7), and the fact that ReΦ′(f) > 0.

By using (2.8), we obtain that arg(eiθf ′(eiθ, t)/Φ(f(eiθ, t))) < π/2 for t > t0 (close
to t0) in a neighbourhood of θ0. This is in contradiction with our assumption and ends the
proof.

Remark 2.6. Let Q < 0, and let f0 be a function that is Φ-like on U and univalent on U. If f0
satisfies the condition (2.1) for each ζ ∈ U, then there exist a surface tension γ (which depends
on f0) sufficiently small and t(γ) ≤ T such that the classical solution f(ζ, t) of (1.2) with the
initial condition f(ζ, 0) = f0(ζ) areΦ-like for t ∈ [0, t(γ)), where T is the blow-up time.

Proof. The conclusion is immediate from the smoothness of the classical solution of (1.1).

If Φ(w) ≡ e−iαw in Theorem 2.5, where α ∈ (−π/2, π/2), then we obtain the following
corollary:

Corollary 2.7. Let Q < 0 and the surface tension γ be sufficiently small. If f0 is a function which is
spiral-like of type α ∈ (−π/2, π/2) on U and univalent on U, then there exists t(γ) ≤ T such that
the classical solution f(ζ, t) of (1.2) with the initial condition f(ζ, 0) = f0(ζ) is spiral-like of type α
for t ∈ [0, t(γ)), where T is the blow-up time.

3. The Outer Problem (Unbounded Domain with Bounded
Complement)

In this section, we obtain the invariance in time of the same geometric property (denoted by
Φ̃) for the outer problem.
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Definition 3.1. Let F be a holomorphic function onU− = {ζ | |ζ| > 1} such that F(ζ) = aζ + a0 +
a−1/ζ+· · · , where a/= 0. Let Φ̃ be a holomorphic function on F(U−) such that limζ→∞Φ̃(ζ) = ∞
and limζ→∞Φ̃′(ζ) > 0. We say that F is Φ̃-like onU− if

Re

[
ζF ′(ζ)

Φ̃(F(ζ))

]
> 0, ζ ∈ U−. (3.1)

Remark 3.2. (a) If F is a Φ̃-like function on U−, then the function f : U → C given by f(z) =
1/F(1/z), z/= 0, and f(0) = 0, is Φ-like on U, where Φ : f(U) → C, Φ(w) = w2Φ̃(1/w), for
all w ∈ f(U) \ {0} and Φ(0) = 0.

(b) If f is a Φ-like function on U, then the function F : U− → C, F(ζ) = 1/f(1/ζ) is
Φ̃-like onU−, where Φ̃ : F(U−) → C, Φ̃(ω) = ω2Φ(1/ω), for all ω ∈ F(U−).

(c) Any Φ̃-like holomorphic function F on U− is univalent on U−.

Proof. This remark can be obtained by straightforward computations and its proof is,
therefore, left to the reader.

The following result is a generalization of [5, Theorem 3]. The mentioned theoremmay
be obtained by taking Φ̃(w) ≡ w in Theorem 3.3 below.

Theorem 3.3. Let F0 be a function which is Φ̃-like on U− and univalent on U−. Then the solution
F(ζ, t) of the Polubarinova-Galin equation (1.5)with the initial condition F(ζ, 0) = F0(ζ) is Φ̃-like for
t ∈ [0, T), where T is the blow-up time, Ω =

⋃
0≤t<T Ω(t) =

⋃
0≤t<T F(U

−, t), and Φ̃ is a holomorphic
function on Ω which satisfies the following conditions:

Re
Φ̃(ω)
ω

> 0, Re Φ̃′(ω) < 2Re
Φ̃(ω)
ω

, ∀ω ∈ Ω. (3.2)

Proof. By considering the function f(ζ, t) = 1/F(1/ζ, t), the Polubarinova-Galin equation (1.5)
can be rewritten in terms of f as follows:

Re ḟ(ζ, t)ζf ′(ζ, t) = −Q
∣∣f(ζ, t)∣∣4
2π

, |ζ| = 1. (3.3)

Due to the previous remark, the function F(ζ, t), ζ ∈ U−, is Φ̃-like if and only if f(ζ, t), ζ ∈
U, is Φ-like, where the relationship between Φ̃ and Φ is Φ̃(ω) = ω2Φ(1/ω), for all ω ∈
F(U−) (or Φ(w) = w2Φ̃(1/w), for all w ∈ f(U)). Thus, it suffices to prove that the functions
f(ζ, t) areΦ-like for t ∈ [0, T).
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Suppose by contrary that the previous statement is not true. Then there exist t0 ≥ 0 and
ζ0 = eiθ0 such that (2.3), (2.4), (2.5), (2.6), and (2.7) are true. At the same time, the equality
(2.8) is fulfilled. We have to determine the sign of the function (∂/∂t) arg (ζf ′(ζ, t)/Φ(f(ζ, t)))
at the point (ζ0, t0).

By differentiating (3.3) and using (2.6), (2.8), and (3.3), we get

∂

∂t
arg

ζf ′(ζ, t)
Φ(f(ζ, t))

∣∣∣∣
ζ=ζ0,t=t0

=
Q
∣∣f∣∣4

2π
∣∣f ′∣∣2 Im

[(
ζf ′′

f ′ − Φ′(f)ζf ′

Φ
(
f
)

)
+ 2 Im

ζf ′

Φ
(
f
)
(
ReΦ′(f) + 2Re

Φ
(
f
)

f

)]∣∣∣∣∣
ζ=ζ0,t=t0

.

(3.4)

The right-hand side of the previous equality is strictly negative in view of (2.5), (2.7),
Re Φ′(f) > 0, and Re(Φ(f)/f) > 0 (the previous inequalities are easy consequences of (3.2)).
Therefore, arg(eiθf ′(eiθ, t)/Φ(f(eiθ, t))) < π/2, for t > t0 (close to t0) in some neighbourhood
of θ0. This contradiction completes the proof.

The following result is a generalization of [6, Theorem 3.1]. The mentioned theorem
may be obtained by taking Φ̃(w) ≡ w in Theorem 3.4 below.

Theorem 3.4. Let Q < 0, and let the surface tension γ be sufficiently small. If F0 is a function which
is Φ̃-like onU− and univalent onU−, then there exists t(γ) ≤ T such that the solution F(ζ, t) of (1.6)
with the initial condition F(ζ, 0) = F0(ζ) is Φ̃-like for t ∈ [0, t(γ)), where T is the blow-up time,
Ω =

⋃
0≤t<t(γ) Ω(t) =

⋃
0≤t<t(γ) F(U

−, t), and Φ̃ is a holomorphic function on Ω which satisfies the
conditions (3.2).

Proof. We introduce (as in the proof of Theorem 3.3) the function f(ζ, t) = 1/F(1/ζ, t), ζ ∈ U,
which is Φ-like (Φ(w) = w2Φ̃(1/w)) if and only if F(ζ, t) is Φ̃-like.

The Polubarinova-Galin equation can be written in terms of f as

Re ḟ(ζ, t)ζf ′(ζ, t) = −∣∣f∣∣4
(

Q

2π
− γH

[
i
∂k

∂θ

]
(θ)

)
, |ζ| = 1. (3.5)

Suppose by contrary that the conclusion of Theorem 3.4 is not true. Then there exist t0 ≥ 0 and
ζ0 = eiθ0 such that (2.3), (2.4), (2.5), (2.6), and (2.7) are true. At the same time, the equality
(2.8) is fulfilled. We differentiate (3.5) with respect to θ. Since the left side is differentiable
with respect to θ and the solution of (3.5) exists and is unique, then the right-hand side is
differentiable and its derivative is bounded on [0, 2π].
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If we denote A(θ, t) = (∂/∂θ)H[i∂k/∂θ](θ); then by using (2.6), (2.8) and (3.5), we
obtain

∂

∂t
arg

ζf ′(ζ, t)
Φ(f(ζ, t))

∣∣∣∣
ζ=ζ0=eiθ0 ,t=t0

=

∣∣f∣∣4
∣∣f ′∣∣2

(
Q

2π
− γH

(
i
∂k

∂θ

)
(θ)

)

×
[
Im

(
ζf ′′

f ′ − Φ′(f)ζf ′

Φ
(
f
)

)
+ Im

ζf ′

Φ
(
f
)
(
2ReΦ′(f) + 4Re

Φ
(
f
)

f

)]∣∣∣∣∣
ζ=ζ0,t=t0

+

∣∣f∣∣4
∣∣f ′∣∣2 · γA(θ, t)

∣∣∣∣∣
ζ=ζ0,t=t0

.

(3.6)

The right-hand side of the previous equality is strictly negative for small γ because
of (2.5), (2.7), ReΦ′(f) > 0, and Re(Φ(f)/f) > 0. Therefore, arg (eiθf ′(eiθ, t)/Φ(f(eiθ, t))) <
π/2, for t > t0 (close to t0) in some neighbourhood of θ0. This contradiction completes the
proof.

Remark 3.5. Let Q < 0, and let F0 be a function that is Φ̃-like on U−and univalent on U−. If
F0 satisfies the condition (3.1) for each ζ ∈ U−, then there exist a surface tension γ (which
depends on F0) sufficiently small and t(γ) ≤ T such that the classical solution F(ζ, t) of (1.6)
with the initial condition F(ζ, 0) = F0(ζ) is Φ̃-like for t ∈ [0, t(γ)), where T is the blow-up
time.

Proof. The conclusion is immediate from the smoothness of the classical solution of (1.6)
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