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We derive a new iteration method for finding solution of the generalized Blasius problem. This
method results in the analytical series solutions which are consistent with the existing series
solutions for some special cases.

1. Introduction

We consider the generalized Blasius’ equation

y′′′(x) + αy(x)y′′(x) = 0, 0 ≤ x < ∞, (1.1)

where α = 1/2 or α = 1, with boundary conditions

y(0) = 0, y′(0) = μ, y′(∞) = 1. (1.2)

This problem describes the boundary layer flow over a moving plate with constant velocity
μ. For a special case of α = 1/2 and μ = 0, the series solution of the Blasius problem becomes

S(x) =
κ

2
x2 − κ2

240
x5 +

11
161280

κ3x8 − 5
4257792

κ4x11 + · · · , (1.3)

where κ = y′′(0) ≈ 0.3320573362. The Blasius series, however, converges for |x| < ρ =
5.6900380545. In the literature [1–3], it was shown that the limitation can be overcome by
Padé approximants or an Euler-accelerated series.
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Lots of analytical methods such as Adomian decompositionmethods [4–6], variational
iteration methods [7–11], and homotopy analysis methods [12–14] have been proposed.

2. Derivation of an Iteration Formula

We develop a new iteration method to find the analytical series solution of the Blasius prob-
lem (1.1) subject to the boundary condition

y(0) = 0, y′(0) = μ, y′′(0) = κ, (2.1)

where the curvature κ of the solution is assumed to be known. It should be noted that in
order to make the problem easy to be solved, we consider the one point boundary conditions
in (2.1) instead of the two-point boundary conditions in (1.2).

First, for y = y(x) the Blasius equation (1.1) becomes

(
y′′ + αyy′)′ = α

(
y′)2. (2.2)

From the boundary conditions in (2.1), it follows that

y′′ + αyy′ = α

∫x

0

{
y′(t)

}2
dt + κ := A

(
x, y
)
. (2.3)

This can be represented by

(
y′ +

α

2
y2
)′

= A
(
x, y
)
, (2.4)

which implies

y′ =
∫x

0
A
(
t, y
)
dt − α

2
y2 + μ := B

(
x, y
)
. (2.5)

In the result, we have

y(x) =
∫x

0
B
(
t, y
)
dt. (2.6)

If we denote by yn the nth iterate solution and substitute it into the right hand side of
(2.6), we have an iteration formula

yn+1(x) =
∫x

0
B
(
t, yn(t)

)
dt, n ≥ 0, (2.7)

where

B
(
x, yn(x)

)
=
∫x

0
A
(
t, yn(t)

)
dt − α

2
yn(x)2 + μ. (2.8)
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From (2.3) and (2.7), the function A(x, yn) can be represented by

A
(
x, yn(x)

)
= α

∫x

0

{
B
(
t, yn−1(t)

)}2
dt + κ, (2.9)

for n ≥ 1 with A(t, y0) ≡ κ. Referring to the boundary conditions in (2.1), we may take the
initial solution as

y0(x) =
κ

2
x2 + μx. (2.10)

The proposed method can be summarized by the following algorithm.

Algorithm A. We have the following steps.

Step 1. Set initial guesses

y(x) := y0(x),

B
(
x, y
)
:= y′

0(x).
(2.11)

Step 2. For a large integer L > 0, perform the iteration (2.7)–(2.9) using symbolic computa-
tions

l := 0, while (l := l + 1) ≤ L,

A
(
x, y
)
:= α

∫x

0

{
B
(
t, y(t)

)}2
dt + κ,

B
(
x, y
)
:=
∫x

0
A
(
t, y(t)

)
dt − α

2
y(x)2 + μ,

y(x) :=
∫x

0
B
(
t, y(t)

)
dt.

(2.12)

It should be noted that by performing this algorithm, we can also obtain the
approximates B(x, yn) to the velocity y′(x) = B(x, y).

3. Analytical Solutions

Performing the above algorithm by using the symbolic calculation software Mathematica, we
have the successive approximate solutions below

y1(x) =
κx2

2
− αk2x5

120
+

(

x − αkx4

24

)

μ,

y2(x) =
κx2

2
− αk2x5

120
+
11α2k3x8

40320
− α3k4x11

712800
+

(

x − αkx4

24
+
11α2k2x7

5040
− α3k3x10

64800

)

μ

+

(
α2kx6

240
− α3k2x9

24192

)

μ2,
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y3(x) =
κx2

2
− αk2x5

120
+
11α2k3x8

40320
− 5α3k4x11

532224
+
10033α4k5x14

87178291200
− 5449α5k6x17

3908653056000

+
83α6k7x20

8935557120000
− α7k8x23

49080898944000

+

(

x − αkx4

24
+
11α2k2x7

5040
− 5α3k3x10

48384

+
10033α4k4x13

6227020800
− 5449α5k5x16

229920768000
+

83α6k6x19

446777856000
− α7k7x22

2133952128000

)

μ

+

(
α2kx6

240
− 43α3k2x9

120960
+
1157α4k3x12

159667200

−1147α
5k4x15

7925299200
+

14057α6k5x18

10260214272000
− 197α7k6x21

49145564160000

)

μ2

−
(

α3kx8

2688
− 23α4k2x11

2217600
+

967α5k3x14

2641766400
− 1829α6k4x17

414554112000
+

α7k5x20

66189312000

)

μ3

−
(

α5k2x13

3294720
− 17α6k3x16

3251404800
+

α7k4x19

47259168768

)

μ4.

(3.1)

For the case of α = 1/2, we have

y1(x) =
κx2

2
− k2x5

240
+

(

x − kx4

48

)

μ,

y2(x) =
κx2

2
− k2x5

240
+
11k3x8

161280
− k4x11

5702400
+

(

x − kx4

48
+
11k2x7

20160
− k3x10

518400

)

μ

+

(
kx6

960
− k2x9

193536

)

μ2,

y3(x) =
κx2

2
− k2x5

240
+
11k3x8

161280
− 5k4x11

4257792
+

10033k5x14

1394852659200
− 5449k6x17

125076897792000

+
83k7x20

571875655680000
− k8x23

6282355064832000

+

(

x − kx4

48
+
11k2x7

20160
− 5k3x10

387072
+

10033k4x13

99632332800

− 5449k5x16

7357464576000
+

83k6x19

28593782784000
− k7x22

273145872384000

)

μ
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+

(
kx6

960
− 43k2x9

967680
+

1157k3x12

2554675200
− 1147k4x15

253609574400

+
14057k5x18

656653713408000
− 197k6x21

6290632212480000

)

μ2

−
(

kx8

21504
− 23k2x11

35481600
+

967k3x14

84536524800
− 1829k4x17

26531463168000
+

k5x20

8472231936000

)

μ3

−
(

k2x13

105431040
− 17k3x16

208089907200
+

k4x19

6049173602304

)

μ4.

(3.2)

One can see that the result is consistent with the known series solution [11, 12].
In particular, when α = 1 and μ = 0, it follows that

y1(x) =
κx2

2
− k2x5

120
,

y2(x) =
κx2

2
− k2x5

120
+
11k3x8

40320
− k4x11

712800
,

y3(x) =
κx2

2
− k2x5

120
+
11k3x8

40320
− 5k4x11

532224
+

10033k5x14

87178291200
− 5449k6x17

3908653056000

+
83k7x20

8935557120000
− k8x23

49080898944000
,

y4(x) =
κx2

2
− k2x5

120
+
11k3x8

40320
− 5k4x11

532224
+

9299k5x14

29059430400
− 2173649k6x17

355687428096000

+
13722337k7x20

115852476579840000
− 27184438601k8x23

12926008369442488320000

+
12320831753849k9x26

403291461126605635584000000

+ · · · − k16x47

463172433275878342410240000000
.

(3.3)

In this case, κ ≈ 0.4695999883. For comparison, we refer to another analytical solution
obtained by the Adomian decomposition method as follows:

yA
1 (x) =

κx2

2
− k2x5

120
,

yA
2 (x) =

κx2

2
− k2x5

120
+
11k3x8

40320
,

yA
3 (x) =

κx2

2
− k2x5

120
+
11k3x8

40320
− 5k4x11

532224
,

yA
4 (x) =

κx2

2
− k2x5

120
+
11k3x8

40320
− 5k4x11

532224
+

9299k5x14

29059430400
,

yA
5 (x) =

κx2

2
− k2x5

120
+
11k3x8

40320
− 5k4x11

532224
+

9299k5x14

29059430400
− 1272379k6x17

118562476032000
.

(3.4)
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This solution is based on

yA
n (x) = y0(x) +

n∑

k=1

uk(x), n = 1, 2, . . . , (3.5)

with

uk+1(x) = −L−1(Ak(x)), k = 0, 1, 2, . . . , (3.6)

u0(x) = y0(x), and Adomian polynomial Ak(x) generated by the formula [6]

Ak(x) =
1
k!

⎡

⎣ dk

dλk

⎛

⎝
k∑

j=0

λjuj(x)

⎞

⎠

⎛

⎝
k∑

j=0

λju′′
j (x)

⎞

⎠

⎤

⎦

λ=0

, (3.7)

where L−1 is an inverse operator of L = d3/dx3. Comparing the formulas in (3.3) and (3.4),
one can see that the presented analytical solution yn(x) has more terms than yA

n (x) in each
nth iteration. In other words,

yn(x) = yA
n (x) +

2n−n−1∑

j=1

djx
3(n+j)+2, (3.8)

for any integer n ≥ 2. In practice, Figure 1 depicts that the presented solutions yn(x) and their
derivatives y′

n(x), n = 1, 3, 5 approximate exact ones better than yA
n (x) and (yA

n )
′(x). Therein,

we chose the initial solution y0(x) = (κ/2)x2 as given in (2.10) and took a numerical solution
for the exact solution which is denoted by y∗(x). Moreover, Table 1 includes numerical results
of the errors and the CUP times spent in computations for the presented solution yn(x)
compared with those of yA

n (x). The L∞ error indicates the maximum error for the 50 nodes
selected in the interval (0, ρ), where ρ is a radius of convergence of the series solution given
in the literature [2, 15]. In fact, ρ ≈ 4.02 for α = 1 and ρ ≈ 5.69 for α = 1/2. The L2 error means
‖yn − y∗‖2 over the same interval.

By the numerical performance, we can surmise the convergence of the algorithm
proposed in this work, and the rate of convergence is better than that of the Adomian
decomposition method though it spends more CPU time as shown above. In addition, for
example, for the case of α = 1 and μ = 0, we may guess that the presented method has the
same radius of convergence, ρ = 4.0234644935 as the well known Blasius’ series [2] as follows:

y(x) =
∞∑

k=0

(−1)kpk κk+1

(3k + 2)!
x3k+2, (3.9)

where p0 = 1 and

pk =
k−1∑

j=0

(
3k − 1

3j

)

pjpk−j−1, k ≥ 1. (3.10)

Theoretical convergence analysis with extended application of the presented method to more
general problems is left for further works.
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Figure 1:Graphs of the presented solutions yn(x) and their derivatives y′
n(x) in (a) and those of Adomian’s

solutions yA
n (x) and their derivatives (yA

n )
′(x) in (b).

Table 1: Comparison of the numerical results obtained by the presented method and the Adomian’s
decomposition method for α = 1, 1/2 with μ = 0.

n
Presented solution, yn(x) Adomian’s solution, yA

n (x)
L∞ error L2 error CPU time (sec) L∞ error L2 error CPU time (sec)

2 0.690 0.318 0.14 0.995 0.445 0.09
α = 1 4 0.300 0.110 1.03 1.080 0.382 0.37

6 0.078 0.025 6.37 1.110 0.335 1.48
8 0.013 0.004 26.5 1.118 0.299 5.74
2 0.976 0.534 0.13 1.407 0.748 0.11

α = 1/2 4 0.424 0.185 1.01 1.527 0.643 0.41
6 0.111 0.041 6.71 1.570 0.564 1.55
8 0.019 0.006 27.4 1.581 0.504 5.93
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