
Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2011, Article ID 863801, 15 pages
doi:10.1155/2011/863801

Research Article
Oscillation of Second-Order Nonlinear Delay
Dynamic Equations on Time Scales

H. A. Agwa, A. M. M. Khodier, and Heba A. Hassan

Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt

Correspondence should be addressed to H. A. Agwa, hassanagwa@yahoo.com

Received 3 May 2011; Accepted 6 June 2011

Academic Editor: Elena Braverman

Copyright q 2011 H. A. Agwa et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

In this work, we use the generalized Riccati transformation and the inequality technique to
establish some new oscillation criteria for the second-order nonlinear delay dynamic equation

(p(t)(xΔ(t))γ )
Δ
+ q(t)f(x(τ(t))) = 0, on a time scale T, where γ is the quotient of odd positive

integers and p(t) and q(t) are positive right-dense continuous (rd-continuous) functions on T. Our
results improve and extend some results established by Sun et al. 2009. Also our results unify
the oscillation of the second-order nonlinear delay differential equation and the second-order
nonlinear delay difference equation. Finally, we give some examples to illustrate our main results.

1. Introduction

The theory of time scales was introduced by Hilger [1] in order to unify, extend, and
generalize ideas from discrete calculus, quantum calculus, and continuous calculus to
arbitrary time scale calculus. Many authors have expounded on various aspects of this new
theory, see [2–4]. A time scale T is a nonempty closed subset of the real numbers, If the
time scale equals the real numbers or integer numbers, it represents the classical theories of
the differential and difference equations. Many other interesting time scales exist and give
rise to many applications. The new theory of the so-called “dynamic equation” not only
unify the theories of differential equations and difference equations, but also extends these
classical cases to the so-called q-difference equations (when T = qN0 := {qt : t ∈ N0 for
q > 1} or T = qZ = qZ ∪ {0}) which have important applications in quantum theory (see
[5]). Also it can be applied on different types of time scales like T = hZ,T = N

2
0, and the

space of the harmonic numbers T = Tn. In the last two decades, there has been increasing
interest in obtaining sufficient conditions for oscillation (nonoscillation) of the solutions of
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different classes of dynamic equations on time scales, see [6–9]. In this paper, we deal with
the oscillation behavior of all solutions of the second-order nonlinear delay dynamic equation

(
p(t)
(
xΔ(t)

)γ)Δ
+ q(t)f(x(τ(t))) = 0, t ∈ T, t ≥ t0, (1.1)

subject to the hypotheses

(H1) T is a time scale which is unbounded above, and t0 ∈ T with t0 > 0. We define the
time scale interval [t0,∞)

T
by [t0,∞)

T
= [t0,∞)

⋂
T.

(H2) γ is the quotient of odd positive integers.

(H3) p and q are positive rd-continuous functions on an arbitrary time scale T, and

∫∞

t0

Δ(t)
p1/γ(t)

= ∞ (1.2)

(H4) τ : T → T is a strictly increasing and differentiable function such that τ(t) ≤ t,
limt→∞τ(t) = ∞.

(H5) f ∈ C(R,R) is a continuous function such that for some positive constant L, it
satisfies f(x)/xγ ≥ L for all x /= 0.

By a solution of (1.1), we mean that a nontrivial real valued function x satisfies (1.1) for
t ∈ T. A solution x of (1.1) is called oscillatory if it is neither eventually positive nor
eventually negative; otherwise, it is called nonoscillatory. (1.1) is said to be oscillatory if all
of its solutions are oscillatory. We concentrate our study to those solutions of (1.1) which are
not identically vanishing eventually.
It is easy to see that (1.1) can be transformed into a half linear dynamic equation

(
p(t)
(
xΔ(t)

)γ)Δ
+ q(t)xγ(t) = 0, t ∈ T, t ≥ t0, (1.3)

where f(x) = xγ , τ(t) = t. If γ = 1, then (1.1) is transformed into the equation

(
p(t)xΔ(t)

)Δ
+ q(t)f(x(τ(t))) = 0, t ∈ T, t ≥ t0. (1.4)

If p(t) = 1, then (1.4) has the form

xΔΔ(t) + q(t)f(x(τ(t))) = 0, t ∈ T, t ≥ t0. (1.5)

If f(x) = x, then (1.5) becomes

xΔΔ(t) + q(t)x(τ(t)) = 0, t ∈ T, t ≥ t0. (1.6)

Recently, Zhang et al. [10] have considered the nonlinear delay (1.1) and established some
sufficient conditions for oscillation of (1.1) when γ ≥ 1. Also Grace et al. [11] introduced
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some new sufficient conditions for oscillation of the half linear dynamic equation (1.3). In
2009, Sun et al. [12] extended and improved the results of [6, 13, 14] to (1.1) when γ ≥ 1, but
their results can not be applied for 0 < γ < 1. In 2008, Hassan [15] considered the half linear
dynamic equation (1.3) and established some sufficient conditions for oscillation of (1.3). In
2007, Erbe et al. [13] considered the nonlinear delay dynamic equation (1.4) and obtained
some new oscillation criteria which improve the results of Şahiner [14]. In 2005, Agarwal
et al. [6] studied the linear delay dynamic equation (1.6), also Şahiner [14] considered the
nonlinear delay dynamic equation (1.5) and gave some sufficient conditions for oscillation
of (1.6) and (1.5). In this work, we give some new oscillation criteria of (1.1) by using the
generalized Riccati transformation and the inequality technique. Our results are general cases
for some results of [12, 15].

This paper is organized as follows. In Section 2, we present some preliminaries on time
scales. In Section 3, we give several lemmas. In Section 4, we establish some new sufficient
conditions for oscillation of (1.1). Finally, in Section 5, we present some examples to illustrate
our results.

2. Some Preliminaries on Time Scales

A time scale T is an arbitrary nonempty closed subset of the real numbers R. On any time
scale T, we define the forward and backward jump operators by

σ(t) = inf{s ∈ T, s > t}, ρ(t) = sup{s ∈ T, s < t}. (2.1)

A point t ∈ T, t >inf T is said to be left dense if ρ(t) = t, right dense if t < supT and σ(t) = t,
left scattered if ρ(t) < t, and right scattered if σ(t) > t. The graininess function μ for a time
scale T is defined by μ(t) = σ(t) − t.

A function f : T → R is called rd-continuous provided that it is continuous at right-
dense points of T, and its left-sided limits exist (finite) at left-dense points of T. The set of
rd-continuous functions is denoted by Crd(T,R). By C1

rd(T,R), we mean the set of functions
whose delta derivative belongs to Crd(T,R).

For a function f : T → R (the range R of f may be actually replaced with any Banach
space), the delta derivative fΔ is defined by

fΔ(t) =
f(σ(t)) − f(t)

σ(t) − t
, (2.2)

provided that f is continuous at t, and t is right scattered. If t is not right scattered, then the
derivative is defined by

fΔ(t) = lim
s→ t+

f(σ(t)) − f(t)
t − s

= lim
s→ t+

f(t) − f(s)
t − s

, (2.3)

provided that this limit exists.
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A function f : [a, b] → R is said to be differentiable if its derivative exists. The de-
rivative fΔ and the shift fσ of a function f are related by the equation

fσ = f(σ(t)) = f(t) + μ(t)fΔ(t). (2.4)

The derivative rules of the product fg and the quotient f/g (where ggσ /= 0) of two
differentiable functions f and g are given by

(
f · g)Δ(t) = fΔ(t)g(t) + fσ(t)gΔ(t) = f(t)gΔ(t) + fΔ(t)gσ(t),

(
f

g

)Δ

(t) =
fΔ(t)g(t) − f(t)gΔ(t)

g(t)gσ(t)
.

(2.5)

An integration by parts formula reads

∫b

a

f(t)gΔ(t)Δt =
[
f(t)g(t)

]b
a −
∫b

a

fΔ(t)gσ(t)Δt (2.6)

or

∫b

a

fσ(t)gΔ(t)Δt =
[
f(t)g(t)

]b
a −
∫b

a

fΔ(t)g(t)Δt (2.7)

and the infinite integral is defined by

∫∞

b

f(s)Δs = lim
t→∞

∫ t

b

f(s)Δs. (2.8)

Note that in case T = R, we have

σ(t) = ρ(t) = t, μ(t) = 0, fΔ(t) = f ′(t),
∫b

a

f(t)Δt =
∫b

a

f(t)dt, (2.9)

and in case T = Z, we have

σ(t) = t + 1, ρ(t) = t − 1, μ(t) = 1, fΔ(t) = Δf(t) = f(t + 1) − f(t)

if a < b,

∫b

a

f(t)Δt =
b−1∑
t=a

f(t).
(2.10)
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Throughout this paper, we use

d+(t) := max{0, d(t)}, d−(t) := max{0,−d(t)},

β(t) :=

⎧
⎨
⎩
α(t) 0 < γ ≤ 1

αγ(t) γ > 1,

(2.11)

where

α(t) :=
R(t)

R(t) + μ(t)
, R(t) := p1/γ(t)

∫ t

t0

Δs

p1/γ(s)
, for t ≥ t0. (2.12)

3. Several Lemmas

In this section, we present some lemmas that we need in the proofs of our results in Section 4.

Lemma 1 (Bohner and Peterson [3, Theorem 1.90]). If x(t) is delta differentiable and eventually
positive or negative, then

(
(x(t))γ

)Δ = γ

∫1

0
[hx(σ(t)) + (1 − h)x(t)]γ−1xΔ(t)dh. (3.1)

Lemma 2 (Hardy et al. [16, Theorem 41]). If A and B are nonnegative real numbers, then

λABλ−1 −Aλ ≤ (λ − 1) Bλ, λ > 1, (3.2)

where the equality holds if and only if A = B.

Lemma 3. If (H1)–(H3) and (1.2) hold and (1.1) has a positive solution x on [t0,∞)
T
, then

(
p(t)
(
xΔ(t)

)γ)Δ
< 0, xΔ(t) > 0,

x(t)
xσ(t)

> α(t), for t ∈ [t0,∞). (3.3)

Proof. The proof is similar to the proof of Lemma 2.1 in [15] and, hence, is omitted.

4. Main Results

Theorem 1. Assume that (H1)–(H5), (1.2), Lemma 3 hold and τ ∈ C1
rd([t0,∞)

T
,T), τ([t0,∞)

T
) =

[t0,∞)
T
. Furthermore, assume that there exists a positive Δ-differentiable function δ(t) such that

lim sup
t→∞

∫ t

t0

⎡
⎣Lαγ(τ(s))q(s)δσ(s) − p(τ(s))

((
δΔ(s)

)
+

)γ+1
(
γ + 1

)(γ+1)(
β(τ(s))δσ(s)τΔ(s)

)γ

⎤
⎦Δs = ∞. (4.1)

Then every solution of (1.1) is oscillatory on [t0,∞)
T
.
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Proof. Assume that (1.1) has a nonoscillatory solution on [t0,∞)
T
. Then, without loss of

generality, we assume that x(t) > 0, x(τ(t)) > 0 for all t ∈ [t1,∞)
T
, t1 ∈ [t0,∞)

T
, and

there is T ∈ [t0,∞)
T
such that x(t) satisfies the conclusion of Lemma 3 on [T,∞)

T
. Consider

the generalized Riccati substitution

w(t) = δ(t)p(t)

(
xΔ(t)
x(τ(t))

)γ

. (4.2)

Using the delta derivative rules of the product and quotient of two functions, we have

wΔ(t) = δΔ(t)
p(t)
(
xΔ(t)

)γ
(x(τ(t)))γ

+ δσ(t)

(
p(t)
(
xΔ(t)

)γ
(x(τ(t)))γ

)Δ

=
δΔ(t)
δ(t)

w(t) +
δσ(t)

(
p(t)
(
xΔ(t)

)γ)Δ

(x(τ(σ(t))))γ
− δσ(t)p(t)

(
xΔ(t)

)γ((x(τ(t)))γ)Δ
(x(τ(t)))γ(x(τ(σ(t))))γ

,

(4.3)

using the fact f(x)/xγ ≥ L and x(t)/xσ(t) > α(t), we have

wΔ(t) ≤ δΔ(t)
δ(t)

w(t) − Lαγ(τ(t))δσ(t)q(t) − δσ(t)p(t)
(
xΔ(t)

)γ((x(τ(t)))γ)Δ
(x(τ(t)))γ(x(τ(σ(t))))γ

. (4.4)

If 0 < γ ≤ 1, then using the chain rule and the fact that x(t) is strictly increasing on [T,∞)
T
,

we obtain

(
(x(τ(t)))γ

)Δ = γ

∫1

0

[
x(τ(t)) + hμ(τ(t))(x(τ(t)))Δ

]γ−1
dh(x(τ(t)))Δ

= γ

∫1

0
[(1 − h)x(τ(t)) + hxσ(τ(t))]γ−1dh(x(τ(t)))Δ

≥ γ(xσ(τ(t)))γ−1(x(τ(t)))ΔτΔ(t)

(4.5)

which implies

wΔ(t) ≤ δΔ(t)
δ(t)

w(t) − Lαγ(τ(t))δσ(t)q(t) − γδσ(t)p(t)
(
xΔ(t)

)γ(xσ(τ(t)))γ−1(x(τ(t)))ΔτΔ(t)
(x(τ(t)))γ(x(τ(σ(t))))γ

≤ δΔ(t)
δ(t)

w(t) − Lαγ(τ(t))δσ(t)q(t) − γδσ(t)(x(τ(t)))Δα(τ(t))τΔ(t)
δ(t)x(τ(t))

w(t),

(4.6)
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since (p(t)(xΔ(t))γ)Δ < 0, then by integrating from t to τ(t), we get

(x(τ(t)))Δ >

(
p(t)
)1/γ

((
pτ(t)

))1/γ x
Δ(t) (4.7)

wΔ(t) ≤ δΔ(t)
δ(t)

w(t) − Lαγ(τ(t))δσ(t)q(t) − γδσ(t)
(
p(t)
)1/γ

xΔ(t)α(τ(t))τΔ(t)

δ(t)x(τ(t))
(
p(τ(t))

)1/γ w(t), (4.8)

that is,

wΔ(t) ≤ δΔ(t)
δ(t)

w(t) − Lαγ(τ(t))δσ(t)q(t) − γδσ(t)α(τ(t))τΔ(t)

δ(γ+1)/γ(t)
(
p(τ(t))

)1/γ w(γ+1)/γ(t) . (4.9)

If γ > 1, then using the chain rule and the fact that x(t) is strictly increasing on [T,∞)
T
,

we obtain

(
(x(τ(t)))γ

)Δ ≥ (x(τ(t)))γ−1(x(τ(t)))ΔτΔ(t). (4.10)

From (4.4), (4.7), and (4.10), we have

wΔ(t) ≤ δΔ(t)
δ(t)

w(t) − Lαγ(τ(t))δσ(t)q(t) − γδσ(t)αγ(τ(t))τΔ(t)

δ(γ+1)/γ(t)
(
p(τ(t))

)1/γ w
(γ+1)/γ(t). (4.11)

By (4.9), (4.11), and the definition of β(t), we have for γ > 0

wΔ(t) ≤
(
δΔ(t)

)
+

δ(t)
w(t) − Lαγ(τ(t))δσ(t)q(t) − γδσ(t)β(τ(t))τΔ(t)

δλ(t)pλ−1(τ(t))
wλ(t), (4.12)

where λ = (γ + 1)/γ . Defining A ≥ 0 and B ≥ 0 by

Aλ =
γδσ(t)β(τ(t))τΔ(t)
δλ(t)pλ−1(τ(t))

wλ(t), Bλ−1 =
p(λ−1)/λ(τ(t))

(
δΔ(t)

)
+

λ
(
γδσ(t)β(τ(t))τΔ(t)

)1/λ , (4.13)

then using Lemma 2, we get

(
δΔ(t)

)
+

δ(t)
w(t) − γδσ(t)β(τ(t))τΔ(t)

δλ(t)pλ−1(τ(t))
wλ(t) ≤ p(τ(t))

((
δΔ(t)

)
+

)γ+1
(
γ + 1

)(γ+1)(
β(τ(t))δσ(t)τΔ(t)

)γ . (4.14)
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From this last inequality and (4.12), we get

wΔ(t) ≤ −Lαγ(τ(t))δσ(t)q(t) +
p(τ(t))

((
δΔ(t)

)
+

)γ+1
(
γ + 1

)(γ+1)(
β(τ(t))δσ(t)τΔ(t)

)γ . (4.15)

Integrating both sides from T to t, we get

∫ t

T

⎡
⎣Lαγ(τ(s))δσ(s)q(s) − p(τ(s))

((
δΔ(s)

)
+

)γ+1
(
γ + 1

)(γ+1)(
β(τ(s))δσ(s)τΔ(s)

)γ

⎤
⎦Δs ≤ w(T) −w(t) ≤ w(T),

(4.16)

which contradicts the assumption (4.1). This contradiction completes the proof.

Theorem 2. Assume that (H1)–(H5), (1.2), Lemma 3 hold and τ ∈ C1
rd([t0,∞)

T
,T), τ([t0,∞)

T
) =

[t0,∞)
T
. Furthermore, assume that there exist functions H, h ∈ Crd(D,R) (where D ≡ {(t, s) : t ≥

s ≥ t0}) such that

H(t, t) = 0, t ≥ t0, H(t, s) > 0, t > s ≥ t0, (4.17)

andH has a nonpositive continuousΔ-partial derivative with respect to the second variableHΔs(t, s)
which satisfies

HΔs(σ(t), s) +H(σ(t), σ(s))
δΔ(t)
δ(t)

= −h(t, s)
δ(t)

(H(σ(t), σ(s)))γ/(γ+1), (4.18)

lim sup
t→∞

1
H(σ(t), t0)

∫σ(t)

t0

K(t, s)Δs = ∞, (4.19)

where δ(t) is positive Δ-differentiable function and

K(t, s) = H(σ(t), σ(s))Lαγ(τ(s))q(s)δσ(s) − p(τ(s))(h−(t, s))
γ+1

(
γ + 1

)(γ+1)(
β(τ(s))δσ(s)τΔ(s)

)γ . (4.20)

Then every solution of (1.1) is oscillatory on [t0,∞)
T
.

Proof. Assume that (1.1) has a nonoscillatory solution on [t0,∞)
T
. Then, without loss of

generality, we assume that x(t) > 0, x(τ(t)) > 0 for all t ∈ [t1,∞)
T
, t1 ∈ [t0,∞)

T
, and

there is T ∈ [t0,∞)
T
such that x(t) satisfies the conclusion of Lemma 3 on [T,∞)

T
. Define

w(t) as in the proof of Theorem 1. Replacing (δΔ(t))+ with δΔ (t) in (4.12), we have

Lαγ(τ(t))δσ(t)q(t) ≤ −wΔ(t) +
δΔ(t)
δ(t)

w(t) − γδσ(t)β(τ(t))τΔ(t)
δλ(t)pλ−1(τ(t))

wλ(t). (4.21)
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Multiplying (4.21) by H(σ(t), σ(s)), and integrating with respect to s from T to σ(t), we get

∫σ(t)

T

H(σ(t), σ(s))Lαγ(τ(s))δσ(s)q(s)Δs

≤ −
∫σ(t)

T

H(σ(t), σ(s))wΔ(s)Δs

+
∫σ(t)

T

H(σ(t), σ(s))
δΔ(s)
δ(s)

w(s)Δs

−
∫σ(t)

T

H(σ(t), σ(s))
γδσ(s)β(τ(s))τΔ(s)
δλ(s)pλ−1(τ(s))

wλ(s)Δs.

(4.22)

Integrating by parts and using (4.17) and (4.18), we obtain

∫σ(t)

T

H(σ(t), σ(s))Lαγ(τ(s))δσ(s)q(s)Δs ≤ H(σ(t), T)w(T)

+
∫σ(t)

T

[
h−(t, s)
δ(s)

(H(σ(t), σ(s)))1/λw(s) −H(σ(t), σ(s))
γδσ(s)β(τ(s))τΔ(s)
δλ(s)pλ−1(τ(s))

wλ(s)

]
Δs.

(4.23)

Defining A ≥ 0 and B ≥ 0 by

Aλ = H(σ(t), σ(s))
γδσ(s)β(τ(s))τΔ(s)
δλ(s)pλ−1(τ(s))

wλ(s), Bλ−1 =
p(λ−1)/λ(τ(s))h−(t, s)

λ
(
γδσ(s)β(τ(s))τΔ(s)

)1/λ ,

(4.24)

then using Lemma 2, we get

h−(t, s)
δ(s)

(H(σ(t), σ(s)))1/λw(s) −H(σ(t), σ(s))
γδσ(s)β(τ(s))τΔ(s)
δλ(s)pλ−1(τ(s))

wλ(s)

≤ p(τ(s))(h−(t, s))
γ+1

(
γ + 1

)(γ+1)(
β(τ(s))δσ(s)τΔ(s)

)γ ,
(4.25)

therefore,

∫σ(t)

T

H(σ(t), σ(s))Lαγ(τ(s))δσ(s)q(s)Δs ≤ H(σ(t), T)w(T)

+
∫σ(t)

T

p(τ(s))(h−(t, s))
γ+1

(
γ + 1

)(γ+1)(
β(τ(s))δσ(s)τΔ(s)

)γ Δs.

(4.26)
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By the definition of K(t, s), we get

∫σ(t)

T

K(t, s)Δs ≤ H(σ(t), T)w(T), (4.27)

and this implies that

1
H(σ(t), T)

∫σ(t)

T

K(t, s)Δs ≤ w(T), (4.28)

which contradicts the assumption (4.19). This contradiction completes the proof.

Theorem 3. Assume that (H1)–(H5), (1.2), Lemma 3 hold and τ ∈ C1
rd([t0,∞)

T
,T), τ([t0,∞)

T
) =

[t0,∞)
T
. Furthermore, assume that there exists a positive Δ-differentiable function δ(t) such that for

m ≥ 1

lim sup
t→∞

1
tm

∫ t

t0

(t − s)m
⎡
⎣Lαγ(τ(s))q(s)δσ(s) − p(τ(s))

((
δΔ(s)

)
+

)γ+1

(δ + 1)(γ+1)
(
β(τ(s))δσ(s)τΔ(s)

)γ

⎤
⎦Δs = ∞.

(4.29)

Then every solution of (1.1) is oscillatory on [t0,∞)
T
.

Proof. Assume that (1.1) has a nonoscillatory solution on [t0,∞)
T
. Then, without loss of

generality, we assume that x(t) > 0, x(τ(t)) > 0 for all t ∈ [t1,∞)
T
, t1 ∈ [t0,∞)

T
, and there

is T ∈ [t0,∞)
T
such that x(t) satisfies the conclusion of Lemma 3 on [T,∞)

T
. Proceeding as in

the proof of Theorem 1, we get (4.15) from which we have

Lαγ(τ(t))δσ(t)q(t) − p(τ(t))
((
δΔ(t)

)
+

)γ+1
(
γ + 1

)(γ+1)(
β(τ(t))δσ(t)τΔ(t)

)γ ≤ −wΔ(t), (4.30)

therefore,

∫ t

t1

(t − s)m
⎛
⎝Lαγ(τ(s))δσ(s)q(s) − p(τ(s))

((
δΔ(s)

)
+

)γ+1
(
γ + 1

)(γ+1) (
β(τ(s))δσ(s)τΔ(s)

)γ

⎞
⎠Δs.

≤ −
∫ t

t1

(t − s)mwΔ(t)Δs.

(4.31)

The right hand side of the above inequality gives

∫ t

t1

(t − s)mwΔ(s)Δs = (t − s)mw(s)tt1 −
∫ t

t1

(
(t − s)m

)Δsw(σ(s))Δs. (4.32)
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Since ((t − s)m)Δs ≤ −m(t − σ(s))m−1 ≤ 0 for t ≥ σ(s), m ≥ 1, then we have

∫ t

t1

(t − s)m
⎡
⎣Lαγ(τ(s))q(s)δσ(s) − p(τ(s))

((
δΔ(s)

)
+

)γ+1
(
γ + 1

)(γ+1) (
β(τ(s))δσ(s)τΔ(s)

)γ

⎤
⎦Δs ≤ (t − t1)mw(t1),

(4.33)

then,

1
tm

∫ t

t1

(t − s)m
⎡
⎣Lαγ(τ(s))q(s)δσ(s) − p(τ(s))

((
δΔ(s)

)
+

)γ+1
(
γ + 1

)(γ+1)(
β(τ(s))δσ(s)τΔ(s)

)γ

⎤
⎦Δs ≤

(
t − t1
t

)m

w(t1)

(4.34)

which contradicts (4.29). This contradiction completes the proof.

Theorem 4. Assume that
∫∞
t0
Δt/p1/γ(t) = ∞ and

lim sup
t→∞

LRγ(τ(t))
p(τ(t))

∫∞

t

q(s)Δs > 1, hold. (4.35)

Then every solution of (1.1) is oscillatory on [t0,∞)
T
.

Proof. Assume that (1.1) has a nonoscillatory solution on [t0,∞)
T
. Then, without loss of

generality, we assume that x(t) > 0, x(τ(t)) > 0 for all t ∈ [t1,∞)
T
, t1 ∈ [t0,∞)

T
, and

there is T ∈ [t0,∞)
T
such that x(t) satisfies the conclusion of Lemma 3 on [T,∞)

T
. From (1.1),

we have

(
p(t)
(
xΔ(t)

)γ)Δ
= −q(t)f(x(τ(t))) ≤ −Lq(t)xγ(τ(t)). (4.36)

Integrating last equation from τ(t) to∞, we obtain

∫∞

τ(t)
Lq(s)xγ(τ(s))Δs < p(τ(t))

(
xΔ(τ(t))

)γ − lim
s→∞

p(s)
(
xΔ(s)

)γ
. (4.37)

Since p(s)(xΔ(s))γ decreasing and p(s)(xΔ(s))γ > 0, then we have

1
p(τ(t))

∫∞

τ(t)
Lq(s)xγ(τ(s))Δs <

(
xΔ(τ(t))

)γ
. (4.38)
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Since x(t) > R(t)xΔ(t), then x(τ(t)) > R(τ(t))xΔ(τ(t)), and consequently

L

p(τ(t))

∫∞

τ(t)
q(s)xγ(τ(s))Δs <

(
x(τ(t))
R(τ(t))

)γ

,

LRγ(τ(t))
p(τ(t))

∫∞

τ(t)
q(s)xγ(τ(s))Δs < xγ(τ(t)),

(4.39)

but

LRγ(τ(t))
p(τ(t))

∫∞

t

q(s)xγ(τ(s))Δs <
LRγ(τ(t))
p(τ(t))

∫∞

τ(t)
q(s)xγ(τ(s))Δs < xγ(τ(t)). (4.40)

Since x(t) and τ(t) are strictly increasing, then we get that

LRγ(τ(t))
p(τ(t))

∫∞

t

q(s)Δs < 1, (4.41)

therefore,

LRγ(τ(t))
p(τ(t))

∫∞

t

q(s)Δs ≤ 1. (4.42)

This contradiction completes the proof.

5. Examples

In this section, we give some examples to illustrate our main results.

Example 1. Consider the second-order nonlinear delay dynamic equation

(
tγ
(
xΔ(t)

)γ)Δ
+

λ

tαγ(τ(t))
xγ(τ(t)) = 0 for t ∈ [t0,∞)

T
, t0 ≥ 0, (5.1)

where λ is a positive constant,l and γ is the quotient of odd positive integers.
Here,

p(t) = tγ , q(t) =
λ

tαγ(τ(t))
, f(x) = xγ , L = 1. (5.2)
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If δ(t) = 1, then

∫∞

t0

Δt
(
p(t)
)1/γ =

∫∞

t0

Δt

t
= ∞,

lim sup
t→∞

∫ t

t0

⎡
⎣Lαγ(τ(s))q(s)δσ(s) − p(τ(s))

((
δΔ(s)

)
+

)γ+1
(
γ + 1

)(γ+1)(
β(τ(s))δσ(s)τΔ(s)

)γ

⎤
⎦Δs

= lim sup
t→∞

∫ t

t0

λ

s
Δs = ∞.

(5.3)

Therefore, by Theorem 1, every solution of (5.1) is oscillatory.

Example 2. Consider the second-order nonlinear delay dynamic equation

((
xΔ(t)

)γ)Δ
+
λσγ−1(t)
tγτγ(t)

xγ(τ(t))
[
x2γ(τ(t)) + 1

]
= 0 for t ∈ [t0,∞)

T
, t0 ≥ 0, (5.4)

where λ is a positive constant, and 0 < γ ≤ 1 is the quotient of odd positive integers, that is,
α(t) = β(t).
Here,

p(t) = 1, q(t) =
λσγ−1(t)
tγτγ(t)

, f(x) = xγ
(
x2γ + 1

)
, L = 1, τ(t) =

t

2
. (5.5)

It is clear that (1.2) holds.
Since R(τ(t)) = p1/γ(τ(t))

∫τ(t)
t0

Δs/p1/γ(s) = τ(t) − t0, then we can find 0 < b < 1 such
that

α(τ(t)) =
R(τ(t))

R(τ(t)) + μ(τ(t))
=

τ(t) − t0
τ(t) − t0 + σ(τ(t)) − τ(t)

=
τ(t) − t0

σ(τ(t)) − t0
>

bτ(t)
σ(τ(t))

, for t ≥ tb > t0.

(5.6)

If δ(t) = t, then

lim sup
t→∞

∫ t

t0

⎡
⎣Lαγ(τ(s))q(s)δσ(s) − p(τ(s))

((
δΔ(s)

)
+

)γ+1
(
γ + 1

)(γ+1)(
β(τ(s))δσ(s)τΔ(s)

)γ

⎤
⎦Δs

> lim sup
t→∞

∫ t

t0

[
bγτγ(s)λσγ−1(s)σ(s)
σγ(τ(s))τγ(s)sγ

− 22γσγ(τ(s))
(
γ + 1

)(γ+1)
bγsγσγ(s)

]
Δs
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> lim sup
t→∞

∫ t

t0

[
bγλσγ(τ(s))
sγσγ(τ(s))

− 22γσγ(s)
(
γ + 1

)(γ+1)
bγsγσγ(s)

]
Δs

=

(
bγλ − 22γ

(
γ + 1

)(γ+1)
bγ

)
lim sup

t→∞

∫ t

t0

1
sγ

Δs = ∞,

(5.7)

if λ > 22γ/(b2γ(γ + 1)(γ+1)). Then by Theorem 1, every solution of (5.4) is oscillatory if λ >

22γ/(b2γ(γ + 1)(γ+1)).

Example 3. Consider the second-order nonlinear delay dynamic equation

(
tγ−1
(
xΔ(t)

)γ)Δ
+

λ

tσ(t)
xγ(τ(t)) = 0 for t ∈ [t0,∞)

T
, t0 ≥ 0, (5.8)

where λ is a positive constant and γ ≥ 1 is the quotient of odd positive integers.
Here,

p(t) = tγ−1, q(t) =
λ

tσ(t)
, f(x) = xγ , L = 1. (5.9)

It is clear that
∫∞
t0
Δt/p1/γ(t) =

∫∞
t0
Δt/t(γ−1)/γ = ∞, for γ ≥ 1, (i.e., (1.2) holds) and R(τ(t)) ≥

τ(t) − t0 ≥ kτ(t) for 0 < k < 1, and t ≥ t0 ≥ 1.
Then,

lim sup
t→∞

LRγ(τ(t))
p(τ(t))

∫∞

t

q(s)Δs ≥ lim sup
t→∞

kγτγ(t)
τγ−1(t)

∫∞

t

λ

sσ(s)
Δs

= λ lim sup
t→∞

kγτ(t)
∫∞

t

(−1
s

)Δ

Δs =
λkγτ(t)

t
> 1,

(5.10)

if λ > t/kγτ(t). Then by Theorem 4, every solution of (5.8) is oscillatory if λ > t/kγτ(t).

Remarks 1. (1) The recent results due to Hassan [15], Grace et al. [11] and Agarwal et al. [7]
cannot be applied to (5.1), (5.4), and (5.8) as they deal with ordinary equations without delay.

(2) If 0 < γ ≤ 1, the results of Sun et al. [12] cannot be applied to (5.1) and (5.4).
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[16] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical Library, Cambridge
University Press, Cambridge, UK, 1988.


