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We prove the eigenfunction expansion formula for a Dirichlet problem with explosive factor by
two ways, first by standard method and second by proving a convergence in some metric space
L2(0, π ; ρ(x)).

1. Introduction

The solutions of many problems of mathematical physics are reduced to the spectral in-
vestigation of a differential operator or finding the expansion of arbitrary function, in series or
integration, in terms of the eigenfunctions of a differential operator. The differential operator
is called regular if it its domain is finite and its coefficients are continuous; otherwise it is
called singular differential operator. The Sturm-Liouville theory occupies a central position of
the spectral theory of regular operator. During the development of quantummechanics, there
was an increase in the interest of spectral theory of singular operator on which wewill restrict
our attention. The first basic role in the development of spectral theory of singular operator
dates back to E. Ch. Tetchmarsh [1]. He gave a new approach in the spectral theory of singular
differential operator of the second order by using contour integration. Also Levitan [2] gave
a new method, he obtained the eigenfunction expansion in infinite interval by taking limit of
a regular case. In the last time about twenty five or so years, due to the needs of mathematical
physics, in particular, quantum mechanics, the question of solving various spectral problems
with explosive factor has been arisen. These appeared also in the study of geophysics and
electromagnetic field, see Alemov [3]. The spectral theory of differential operators with
explosive factor is studied by A. N. Tekhanov, M. G. Krien, M. G. Gasimov, and others. In this
paper, we find the eigenfunction expansion formula and prove its convergence for following
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version of a Dirichlet problem (1.2), (1.3). The introduction of the weight function ρ(x) (1.4)
as ± signs causes many analytical difficulties, see [4], because the problem is to be treated
as two separated problems and so the formula of eigenfunctions expansion is written as two
sums. In [5] the author considered the weight function of the form

ρ(x) =

⎧
⎨

⎩

α2; Imα/= 0, 0 ≤ x ≤ a < π,
1; a < x ≤ π,

(1.1)

and the spectrum was both continuous and discreet so that the formula of eigenfunctions
expansion obtained there was written as a summation and integration. We must notice that
the result of this paper is a starting point in solving the inverse spectral problem which will
be investigated later on.

Consider the following Dirichlet problem:

−y′′ + q(x)y = λρ(x)y, 0 ≤ x ≤ π, (1.2)

y(0) = 0, y(π) = 0, (1.3)

where the nonnegative real function q(x) has a second piecewise integrable derivatives on
[0, π], λ is a spectral parameter, and the weight function or the explosive factor ρ(x) is of the
form

ρ(x) =

⎧
⎨

⎩

1, 0 ≤ x ≤ a < π,
−1, a < x ≤ π.

(1.4)

In [4] the author proved that the eigenvalues λ±n, n = 0, 1, 2, . . ., of problem (1.2)-(1.3) are real
and the corresponding eigenfunctions ϕ(x, λ±n), ψ(x, λ

±
n) are orthogonal with weight function

ρ(x). We prove, here, the reality of these eigenfunctions under the condition that q(x) is real.
Indeed, let ϕ(x, λ) be the solution of the differential equation (1.2), x ∈ (0, a) which satisfies
the conditions

ϕ(0, λ) = 0, ϕ′(0, λ) = 1 (1.5)

so that

−ϕ′′(x, λ) + q(x)ϕ(x, λ) = λϕ(x, λ), (1.6)

taking the complex conjugate we have

−ϕ′′(x, λ) + q(x)ϕ(x, λ) = λϕ(x, λ). (1.7)

By the aid of the uniqueness theorem, we have ϕ(x, λ) = ϕ(x, λ). In a similar way, we can
see that ψ(x, λ) = ψ(x, λ) where ψ(x, λ) is the solution of (1.2), x ∈ (a, π), ψ(π, λ) = 0,
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ψ ′(π, λ) = 1, that is, the eigenfunctions of the problem (1.2)-(1.3) are real. As we know from
[4], the eigenvalues of problem (1.2)-(1.3) coincide with the roots of the function Ψ(λ) = 0,
where Ψ(λ) is the Wronskian of the two solutions ϕ(x, λ), ψ(x, λ) of (1.2)-(1.3)

Ψ(λ) =W
[
ϕ(a, λ), ψ(a, λ)

]
= 0. (1.8)

In the following lemma, under the reality of q(x), we prove the simplicity of the eigenvalues,
that is, we prove that the roots of (1.8) are simple, in other cases for q(x) is complex the roots
of (1.8)may not be simple.

Lemma 1.1. Under the conditions stated in the introduction with respect to the problem (1.2)-(1.3),
the eigenvalues of the problem (1.2)-(1.3) are simple.

Proof. We prove that Ψ̇(λ)/= 0 where the dot means differentiation with respect to λ. Let
ϕ(x, λ) be the solution of the problem

−y′′ + q(x)y = λy, (0 ≤ x ≤ a),
y(0) = 0, y′(0) = 1,

(1.9)

and let ψ(x, λ) be the solution of the problem

−y′′ + q(x)y = −λy, (a < x ≤ π),
y(π) = 0, y′(π) = 1.

(1.10)

From (1.9), we have

−ϕ′′(x, λ) + q(x)ϕ(x, λ) = λϕ(x, λ). (1.11)

Differentiating (1.11) with respect to λ, we have

−ϕ̇′′(x, λ) + q(x)ϕ̇(x, λ) = λϕ̇(x, λ) + ϕ(x, λ). (1.12)

Multiplying (1.11) by ϕ̇(x, λ) and (1.12) by ϕ(x, λ) and then subtracting the two results we
have (d/dx)[ϕ̇ϕ′ − ϕ̇′ϕ] = ϕ2(x, λ) from which, by integrating with respect to x, from 0 to a
and using the conditions in (1.10), we obtain

ϕ′(a, λn)ϕ̇(a, λn) − ϕ̇′(a, λn)ϕ(a, λn) =
∫a

0
ϕ2(x, λn)dx. (1.13)

In a similar way, from (1.10), we can write

−ψ ′(a, λn)ψ̇(a, λn) + ψ̇ ′(a, λn)ψ(a, λn) = −
∫π

a

ψ2(x, λn)dx. (1.14)
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From (1.8), we have

ϕ(a, λn)ψ ′(a, λn) = ϕ′(a, λn)ψ(a, λn). (1.15)

From which we have

ϕ′(a, λn) =
ϕ(a, λn)ψ ′(a, λn)

ψ(a, λn)
,

ψ ′(a, λn) =
ϕ′(a, λn)ψ(a, λn)

ϕ(a, λn)
.

(1.16)

Substituting from (1.16) into (1.13) and (1.14), we can see by adding that

Ψ̇(λn) = rnan, (1.17)

where

an =
∫a

0
ϕ2(x, λn)dx − 1

r2n

∫π

a

ψ2(x, λn)dx, rn =
ψ(a, λn)
ϕ(a, λn)

, (1.18)

and the numbers an are the normalization numbers of the eigenfunctions of problem (1.2)-
(1.3). Following [4], we have rn /= 0 and an /= 0 which complete the proof of lemma.

2. The Function R(x, ξ, λ)

We introduce the function R(x, ξ, λ) by

R(x, ξ, λ) =
−1

Ψ(λ)

⎧
⎨

⎩

ϕ(x, λ)ψ(ξ, λ), x ≤ ξ,

ϕ(ξ, λ)ψ(x, λ), ξ ≤ x,
(2.1)

which is called the Green’s function of the nonhomogenous Dirichlet problem

−y′′ + q(x)y = λρ(x)y + ρ(x)f(x), 0 ≤ x ≤ π,

y(0) = y(π) = 0,
(2.2)

where f(x) ∈ L1(0, π) and ρ(x) is defined by (1.4). The function R(x, ξ, λ) is, also, called
the kernel of the resolvent Rλ = (A − λI)−1, where A ≡ −(d2/dx2) + q(x), D(A) = {y(x) :
∃y′′, y(0) = y(π) = 0}. In the following lemmas, we prove some essential properties of
R(x, ξ, λ) which are useful in the forthcoming study of the eigenfunction expansion of the
problem (1.2)-(1.3)
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Lemma 2.1. Let f(x) be any function belonging to L1(0, π), then the function

y(x, λ) =
∫π

0
R(x, ξ, λ)f(ξ)ρ(ξ)dξ (2.3)

is the solution of the nonhomogenous Dirichlet problem (2.2).

Proof. First we show that (2.3) satisfies the boundary conditions of (2.2). From (2.2) by using
(1.9) and (1.10), we, respectively, have

y(0) =
−1

Ψ(λ)

∫π

0
ϕ(0, λ)ψ(ξ, λ)ρ(ξ)f(ξ)dξ = 0,

y(π) =
−1

Ψ(λ)

∫π

0
ϕ(ξ, λ)ψ(π, λ)ρ(ξ)f(ξ)dξ = 0.

(2.4)

Secondly, we calculate the solution of (2.2) by the method of variation of parameters. We seek
a solution of the nonhomogenous problem (2.2) in the form

y(x, λ) = C1ϕ(x, λ) + C2ψ(x, λ), (2.5)

where ϕ(x, λ), ψ(x, λ) are given together with their asymptotic formulas in [4]. By using the
standard calculation, we find

C1(x, λ) =
−1

Ψ(λ)

∫π

x

f(ξ)ρ(ξ)ψ(ξ, λ)dξ,

C2(x, λ) =
−1

Ψ(λ)

∫x

0
f(ξ)ρ(ξ)ϕ(ξ, λ)dξ.

(2.6)

Substituting from (2.6) into (2.5) and keeping in mind (2.1), we get the required formula
(2.3).

Lemma 2.2. Under the conditions of Lemma 2.1, the function R(x, ξ, λ) satisfies the following
formula:

R(x, ξ, λ) =
−1

λ − λn
an

ϕ(x, λn)ϕ(ξ, λn)
+ R1(x, ξ, λ), (2.7)

where R1(x, ξ, λ) is regular in the neighborhood of λ = λn and an =
∫π
0 ρ(ξ)ϕ

2(x, λn)dx.

Proof. So long as, from Lemma 1.1, the roots of the function Ψ(λ) are simple; it follows that
the poles of the function R(x, ξ, λ) are simple. So that R(x, ξ, λ) can be represented in the form

R(x, ξ, λ) =
Res[R(x, ξ, λ)]

λ − λn + R1(x, ξ, λ) (2.8)



6 Abstract and Applied Analysis

from (2.1); for x ≤ ξ, we have

Resλ=λn[R(x, ξ, λ)] = −ϕ(x, λn)ψ(ξ, λn)
Ψ̇(λn)

. (2.9)

From (1.17) and (1.18), the relation (2.9) takes the form

Resλ=λn[R(x, ξ, λ)] = −ϕ(x, λn)ϕ(ξ, λn)
an

. (2.10)

Formula (2.7) is obtained by substituting from (2.10) into (2.8) we deduce the formula (2.7).
We notice that in case of ξ ≤ x, in a similar way. in order to prove the convergence of
the eigenfunction expansion of the Dirichlet problem (1.2)-(1.3), we must write an equality
for the function R(x, ξ, λ) and this, in turn, needs to extend the asymptotic formulas of
ϕ(x, λ), ψ(x, λ) over all the interval [0, π]. In [4], the asymptotic formulas for ϕ(x, λ), ψ(x, λ)
were deduced for x ∈ (0, a) and (a, π), respectively. In the following lemma, we write this
asymptotic formulas over all [0, π] for both ϕ(x, λ) and ψ(x, λ).

Lemma 2.3. The solutions ϕ(x, λ) and ψ(x, λ) of the Dirichlet problem (1.2)-(1.3) have the following
asymptotic formula:

ϕ(x, λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin sx
s

+©
(
e| Im s|x

|s2|

)

, 0 ≤ x ≤ a,

β(x)
sβ(a)

[sin sa cosh s(a − x) − cos sa sinh s(a − x)],

+ ©
(
e| Im s|a+|Rs|(a−x)

|s2|

)

, a < x ≤ π,

(2.11)

ψ(x, λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(x)
sα(a)

[cos s(x − a) sinh s(π − a) − sin s(x − a) cosh s(π − a)],

+ ©
(
e| Im s|(x−a)+|Rs|(π−a)

|s2|

)

, 0 ≤ x ≤ a,

sinh s(π − x)
s

+©
(
e|Rs|(π−x)

|s2|

)

, a ≤ x ≤ π,

(2.12)

where

α(x) =
1
2

∫x

0
q(t)dt, β(x) =

1
2

∫π

x

q(t)dt, λ = s2. (2.13)
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Proof. Following [4], the solutions ϕ(x, λ) and ψ(x, λ) of the Dirichlet problem (1.2)-(1.3) have
the representation

ϕ(x, λ) =
sin sx
s

+©
(
e|Is|x

|s2|

)

, x ∈ [0, a], (2.14)

ψ(x, λ) =
sinh s(π − x)

s
+©
(
e|Rs|(π−x)

|s2|

)

, x ∈ [a, π]. (2.15)

We can see, from [6], that the solution y(x, s) of the equation −y′′ + q(x)y = s2y 0 ≤ x ≤
a, y(0) = 0 has the representation

y(x, s) = eisx
[
α(x)
s

+©
(

1
s2

)]

, y′(x, s) = eisx
[

iα(x) +©
(
1
s

)]

, (2.16)

and the solution z(x, s) of the equation −y′′ + q(x)y = −s2y, a < x ≤ π, z(π) = 0 has the
representation

z(x, s) = es(π−x)
[
β(x)
s

+©
(

1
s2

)]

, z′(x, s) = es(π−x)
[

−β(x) +©
(
1
s

)]

, (2.17)

where α(x) and β(x) are given by (2.13), so that, ϕ(x, λ) can be extended to (a, π) in terms of
the two linearly independent solutions z(x, s), z(x,−s) as

ϕ(x, λ) = m1z(x, s) +m2z(x,−s). (2.18)

From the continuity of ϕ(x, λ) at x = a and by using the asymptotic relations, (2.14), of ϕ(x, λ)
and (2.17) of z(x, s), the constantsm1, m2 are calculated in the form

m1 = es(a−x)
β(x)
2β(a)

[
sin sa − cos sa

s
+©
(
e| Im s|a

s2

)]

,

m2 = es(π−a)
1

2β(a)

[

− sin sa − cos sa +©
(
e| Im s|a

s

)]

.

(2.19)

Substituting from (2.19) into (2.18), we have, for x ∈ (a, π]

ϕ(x, λ) =
β(x)
sβ(a)

[sin sa cosh s(a − x) − cos sa sinh s(a − x)] +©
(
e| Im s|a+|Res|(a−x)

|s2|

)

. (2.20)

From (2.20) together with (2.14), the relation (2.11) is followed. The proof of the relation
(2.12) is quite similar to the proof of (2.11). Indeed ψ(x, λ), x ∈ (a, π] is a linear combination
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of the two linearly independent solutions y(x, s), y(x,−s) as ψ(x, λ) = k1y(x, s) + k2y(x,−s),
where

k1 =
e−isa

2α(a)
[sinh s(π − a) + i cosh s(π − a)] +©

(
e|Res|(π−a)

|s|

)

,

k2 =
eisa

2α(a)
[− sinh s(π − a) + i cosh s(π − a)] +©

(
e|Res|(π−a)

|s|

)

,

(2.21)

and by using the asymptotic formulas (2.16) of y(x,±s) and (2.15) of ψ(x, λ), we have, for
x ∈ [0, a],

ψ(x, λ) =
α(x)
sα(a)

[cos s(x − a) sinh s(π − a) − sin s(x − a) cosh s(π − a)]

+©
(
e| Im s|(x−a)+|Res|(π−a)

|s2|

)

.

(2.22)

The relation (2.20) together with (2.14) and the relation (2.22) together with (2.15) complete
the proof of lemma.

The following inequality proves an inequality satisfied by R(x, ξ, λ).

Lemma 2.4. Under the conditions of Lemma 2.3, the resolvent R(x, ξ, λ) satisfies the following
inequality:

R(x, ξ, λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

©
(
e−| Im s||2a−x−ξ|

|s|

)

, x, ξ ∈ [0, a],

©
(
e−|Res||x+ξ−2a|

|s|

)

, x, ξ ∈ [a, π],

©
(
e−| Im s|(a−x)−|Res|(ξ−a)

|s|

)

, 0 ≤ x ≤ a < ξ ≤ π,

©
(
e−| Im s|(a−ξ)−|Res|(x−a)

|s|

)

, 0 ≤ ξ ≤ a < x ≤ π.

(2.23)

Proof. From (2.11) and (2.12), we have

ϕ(x, λ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

©
(
e−| Im s|x

|s|

)

, 0 ≤ x ≤ a,

©
(
e−| Im s|a+|Res|(a−x)

|s|

)

, a < x ≤ π,
(2.24)

ψ(x, λ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

©
(
e−| Im s|(x−a)+|Res|(π−a)

|s|

)

, 0 ≤ x ≤ a,

©
(
e−|Res|(π−x)

|s|

)

, a < x ≤ π.
(2.25)
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It can be easily seen that, for s ∈ Γn, we have

Ψ(λ) ≥ Ce
| Im s|a+|Res|(π−a)

|s| , s ∈ Γn, (2.26)

where sΓn is the quadratic contour, as defined in [4]

Γn =
{

|Res| ≤ π

a

(

n − 1
4

)

+
π

2a
, |Im s| ≤ π

π − a
(

n − 1
4

)

+
π

2(π − a)
}

. (2.27)

From (2.1) we have six possibilities, three of which for x ≤ ξ and the other three for ξ ≤ x.
Now for ξ ≤ x we have the following situation: (i) 0 ≤ x ≤ ξ ≤ a, (ii) a < x ≤ ξ ≤ π , and (iii)
0 ≤ x ≤ a ≤ ξ ≤ π . In cases (i), (ii), and (iii) by direct substitution from (2.24), (2.25), (2.26)
into the first branch of (2.1), we obtain

(i) R(x, ξ, λ) = ©
(
e−| Im s||2a−x−ξ|

|s|

)

, 0 ≤ x ≤ ξ ≤ a, (2.28)

(ii) R(x, ξ, λ) = ©
(
e−|Res||x+ξ−2a|

|s|

)

, a ≤ x ≤ ξ ≤ π, (2.29)

(iii) R(x, ξ, λ) = ©
(
e−| Im s|(a−x)−|Res|(ξ−a)

|s|

)

, 0 ≤ x ≤ a < ξ ≤ π. (2.30)

In the case of ξ ≥ x, we discuss (i∗) 0 ≤ ξ ≤ x ≤ a, (ii∗) a ≤ ξ ≤ x ≤ π , and (iii∗) 0 ≤ ξ ≤ a ≤ x ≤
π .

Again by substituting (2.24), (2.25), and (2.26) into the second branch of (2.1), we get

(i∗) R(x, ξ, λ) = ©
(
e−| Im s||2a−x−ξ|

|s|

)

, 0 ≤ ξ ≤ x ≤ a, (2.31)

(ii∗) R(x, ξ, λ) = ©
(
e−|Res||x+ξ−2a|

|s|

)

, a ≤ ξ ≤ x ≤ π, (2.32)

(iii∗) R(x, ξ, λ) = ©
(
e−| Im s|(a−ξ)−|Res|(x−a)

|s|

)

, 0 ≤ ξ ≤ a < x ≤ π. (2.33)

From (2.28) and (2.31), we have

R(x, ξ, λ) = ©
(
e−|Ims||2a−x−ξ|

|s|

)

, x, ξ ∈ [0, a], (2.34)
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and from (2.29) and (2.32), we have

R(x, ξ, λ) = ©
(
e−|Res||x+ξ−2a|

|s|

)

, x, ξ ∈ [a, π]. (2.35)

From (2.30) and (2.33) together with (2.34) and (2.35), the lemma is proved. In the following
lemma, we prove an integral formula which is satisfied by R(x, ξ, λ) and help in proving the
eigenfunction expansion formula

Lemma 2.5. If the function f(x) on [0, π] has a second-order integrable derivatives and satisfies the
Dirichlet condition f(0) = f(π) = 0, then the following integral formula is true:

∫π

0
R(x, ξ, λ)ρ(ξ)f(ξ)dξ =

−f(x)
λ

+
∫π

0

R(x, ξ, λ)
λ

[−f ′′(x) + q(x)f(ξ)
]
dξ, (2.36)

where R(x, ξ, λ) is the kernel of the resolvent of the nonhomogenous Dirichlet problem (2.2).

Proof. By the aid of (2.1), we have

∫π

0
R(x, ξ, λ)ρ(ξ)f(ξ)dξ =

−1
Ψ(λ)

{

ψ(x, λ)
∫x

0
ϕ(ξ, λ)ρ(ξ)f(ξ)dξ + ϕ(x, λ)

∫π

x

ψ(ξ, λ)ρ(ξ)f(ξ)dξ
}

,

(2.37)

where the functions ϕ(x, λ) and ψ(x, λ) are the solutions of the homogenous Dirichlet
problem (1.2)-(1.3), so that

∫π

0
R(x, ξ, λ)ρ(ξ)f(ξ)dξ =

−1
Ψ(λ)

{
ψ(x, λ)

λ

∫x

0

[
ϕ′′(ξ, λ) + q(ξ)ϕ(ξ, λ)

]
f(ξ)dξ

+
ϕ(x, λ)
λ

∫π

x

[
ψ ′′(ξ, λ) + q(ξ)ψ(ξ, λ)

]
f(ξ)dξ

} (2.38)

from which we have

∫π

0
R(x, ξ, λ)ρ(ξ)f(ξ)dξ =

1
Ψ(λ)

{
ψ(x, λ)

λ

∫x

0
ϕ′′(ξ, λ)f(ξ)dξ +

ϕ(x, λ)
λ

∫π

x

ψ ′′(ξ, λ)f(ξ)dξ
}

+
1
λ

∫π

0
R(x, ξ, λ)q(ξ)f(ξ)dξ.

(2.39)
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Integrating by parts twice the terms
∫x
0 and

∫π
x , in (2.39), and then using the boundary

conditions f(0) = f(π) = ϕ(0, λ) = 0 and f(0) = f(π) = ψ(π, λ) = 0, respectively, and
keeping in mind (2.1), we deduce that

ψ(x, λ)
∫x

0
ϕ′′(ξ, λ)f(ξ)dξ + ϕ(x, λ)

∫π

x

ψ ′′(ξ, λ)f(ξ)dξ

= −Ψ(λ)f(x) −Ψ(λ)
∫π

0
R(x, ξ, λ)f ′′(ξ)dξ.

(2.40)

Substituting from (2.40) into (2.39), we get the required result.

3. The Eigenfunctions Expansion Formula

We now construct and prove the eigenfunction expansion formula for the Dirichlet problem
(1.2)-(1.3). Let λ+n, n = 0, 1, 2, . . . and λ−n, n = 0, 1, 2, . . . be the nonnegative and the negative
eigenvalues of the problem (1.2)-(1.3), and let also

a+n =
∫π

0
ρ(x)ϕ2(x, λ+n)dx, a−n =

∫π

0
ρ(x)ϕ2(x, λ−n

)
dx (3.1)

be the normalization numbers of the corresponding eigenfunctions ϕ(x, λ±n). We put

v±
k(x) =

ϕ
(
x, λ±

k

)

√
a±
k

, k = 0, 1, 2, . . . . (3.2)

The set {v±
k(x)}

∞
k=0 is an orthonormal system of eigenfunctions of the Dirichlet problem (1.2)-

(1.3).

Theorem 3.1. Let f(x) be a second-order integrable derivatives on [0, π] and satisfy the conditions
f(0) = f(π) = 0; then the following formula of eigenfunction expansion is true:

f(x) =
∞∑

k=0

b+kv
+
k(x) +

∞∑

k=0

b−kv
−
k(x), (3.3)

where b±
k
=
∫π
0 v

±
k
(ξ)f(ξ)ρ(ξ)dξ and the series uniformly converges to f(x), x ∈ [0, π].

Notice that, the expansion (3.3) can be written, more explicitly, in terms of ϕ(x, λ±
k
) as

f(x) =
∞∑

k=0

1
a+k
ψ
(
x, λ+k

)
∫π

0
ψ
(
ξ, λ+k

)
f(ξ)ρ(ξ)dξ +

∞∑

k=0

1
a−
k

ψ
(
x, λ−k

)
∫π

0
ψ
(
ξ, λ−k

)
f(ξ)ρ(ξ)dξ (3.4)
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or in terms of ψ(x, λ±k)

f(x) =
∞∑

k=0

1
(
r+k
)2
a+k

ϕ
(
x, λ+k

)
∫π

0
ϕ
(
ξ, λ+k

)
f(ξ)ρ(ξ)dξ

+
∞∑

k=0

1
(
r−
k

)2
a−
k

ϕ
(
x, λ−k

)
∫π

0
ϕ
(
ξ, λ−k

)
f(ξ)ρ(ξ)dξ,

(3.5)

where r±k are defined by ψ(x, λ±k) = r
±
k ϕ(x, λ

±,
k ), 0 ≤ x ≤ π .

Proof. We write (2.36) in the form

∫π

0
R(x, ξ, λ)ρ(ξ)f(ξ)dξ =

−f(x)
λ

+ r(x, λ), (3.6)

where

r(x, λ) =
∫π

0

R(x, ξ, λ)
λ

[−f ′′(x) + q(x)f(ξ)
]
dξ. (3.7)

By the aid of Lemma 2.3 and the condition of the theorem imposed on q(x), it can be easily
seen that

|r(x, λ)| ≤ Mo

|λ|3/2
, s ∈ Γn, (3.8)

where Mo is constant which is independent of x, ξ, λ and the contour Γn, as defined in [4],
is given by (2.27). Let λ = s2; we denote by Γ+n the upper half of the Γn; let also Łn denote the
image of the contour Γ+n under the transformation λ = s2. We multiply both sides of (3.6) by
1/2πi and integrating with respect to λ on the contour Ln:

1
2πi

∮

Ln

{∫π

0
R(x, ξ, λ)f(ξ)ρ(ξ)dξ

}

=
−f(x)
2πi

∮

Ln

dλ

λ
+

1
2πi

∮

Ln

r(x, λ)dλ. (3.9)

Among the poles of the function R(x, ξ, λ), as a function of λ, lie only λ±o, λ
±
1 , . . . , λ

±
n inside Ln.

By using the residues formula and (2.10), we have

1
2πi

∮

Ln

{∫π

0
R(x, ξ, λ)f(ξ)ρ(ξ)dξ

}

=
n∑

k=0

Resλ=λ±
k

{∫π

0
R(x, ξ, λ)f(ξ)ρ(ξ)dξ

}

= −
n∑

k=0

ϕ
(
x, λ+

k

)

a+k

∫π

0
ϕ
(
ξ, λ+k

)
ρ(ξ)f(ξ)dξ −

n∑

k=0

ϕ
(
x, λ−

k

)

a−
k

∫π

0
ϕ
(
ξ, λ−k

)
ρ(ξ)f(ξ)dξ.

(3.10)
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Further

−f(x)
2πi

∮

Ln

dλ

λ
= −f(x). (3.11)

By using (3.8), we have

∣
∣
∣
∣
∣

1
2πi

∮

Ln

r(x, λ)dλ

∣
∣
∣
∣
∣
≤ Mo

2π

∮

Ln

|dλ|
|λ|3/2

, (3.12)

from which, by using the substitution λ = s2, we have

∣
∣
∣
∣
∣

1
2πi

∮

Ln

r(x, λ)dλ

∣
∣
∣
∣
∣
≤ Mo

π

∫

Γ+n

|ds|
s2

≤ constant
n

. (3.13)

By substitution from (3.10), (3.11), and (3.13) into (3.9), we obtain

∣
∣
∣
∣
∣
f(x) −

n∑

k=0

(
b+kv

+
k + b

−
kv

−
k

)
∣
∣
∣
∣
∣
≤ constant

n
, x ∈ [0, π] ∀n, (3.14)

where

b±k =
∫π

0

ϕ
(
ξ, λ±

k

)

√
a±
k

f(ξ)ρ(ξ)dξ, v±
k =

ϕ
(
ξ, λ±

k

)

√
a±
k

, (3.15)

which completes the uniform convergence of the series
∑∞

k=0[b
+
kv

+
k +b

−
kv

−
k] to f(x), x ∈ [0, π].

That is,

f(x) =
∞∑

k=0

[
b+kv

+
k(x) + b

−
kv

−
k(x)

]
. (3.16)

It can be proved that the series (3.16) is not only uniformly but also absolutely convergent, to
show this we use the asymptotic relations of v±

k
and b±

k
for n → ∞. Following [4], we have

a+n =
d1
n2

+©
(

1
n3

)

, a−n = −d2
2e

2nd2e−d2
[
1
n2

+©
(

1
n3

)]

, (3.17)

where d1 = a3/2π2 and d2 = (π − a)/π , from which we can write

√

a±n = ©
(
1
n

)

. (3.18)
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Using (3.18), (2.11) and (3.2), we deduce that

∣
∣v±

k

∣
∣ ≤M±, ∀x ∈ [0, π], and all k, (3.19)

where M± are some constants. Further, arguing as in Lemma 2.4 and noticing that f(0) =
f(π) = 0, we have

b±k =
∫π

0
v±
k(x)f(x)ρ(x)dx =

1
λ±
k

∫π

0

[
f ′′(x) + q(x)f(x)

]
v±
k(x)dx. (3.20)

From [4], we have λ±k = ±k2 +©(1), and using (3.20) we have

∣
∣b±kv

±
k(x)

∣
∣ ≤ costant

k2
, k −→ ∞, (3.21)

which complete the proof of absolute convergence of the series (3.16). It should be noted here
that, in the proof of the absolute convergence of the series (3.16) we did not give the sum of
the series as in the proof of uniform convergence (Theorem 3.1). In the following lemma, as a
consequence of Theorem 3.1, we prove the Parsval’s identity which insures the convergence
of the series (3.16) and helps in the proof of Theorem 3.3.

Lemma 3.2. Let f(x) satisfy the conditions of Theorem 3.1; then the following Parsval’s identity
holds true

∫π

0
ρ(x)

∣
∣f(x)

∣
∣2dx =

∞∑

k=0

(∣
∣b+k
∣
∣2 +

∣
∣b−k
∣
∣2
)
, (3.22)

where

b±k =
∫π

0
v±
k(x)f(x)ρ(x)dx. (3.23)

Proof. From Theorem 3.1, we have

f(x) =
∞∑

k=0

(
b+kv

+
k(x) + b

−
kv

−
k(x)

)
, (3.24)

where b±
k
are given by (3.22). Multiplying both sides of (3.24) by f(x)ρ(x) and integrating

with respect to x ∈ [0, π], we have

∫π

0
ρ(x)

∣
∣f(x)

∣
∣2dx =

∫π

0

∞∑

k=0

(
b+kv

+
k(x) + b

−
kv

−
k(x)

)
f(x)ρ(x)dx. (3.25)
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By the aid of uniform convergence of the series (3.16), the integration and summation can be
interchanged and we have

∫π

0
ρ(x)

∣
∣f(x)

∣
∣2dx =

∞∑

k=0

b+k

∫π

0
v+
k(x) f(x) ρ(x)dx +

∞∑

k=0

b−k

∫π

0
v−
k(x) f(x) ρ(x)dx, (3.26)

where ρ(x) and v±
k(x) are real (see introduction) which complete the proof of the lemma. In

the following theorem, the validity of eigenfunction expansion and the Parsval’s identity can
be extended to any function of L2(0, π ; ρ) but the convergence of the expansion will be in
some weak sense, that is, in the metric sense of L2(0, π ; ρ).

Theorem 3.3. Suppose that f(x) is any function from L2(0, π ; ρ); then the following Parsval’s
identity (3.22) and the eigenfunction expansion (3.24) are true and the convergence of the series
(3.16) to f(x) is in the metric sense of the space L2(0, π ; ρ).

Proof. Let f(x) be any function that belongs to L2(0, π ; ρ). It is known that the set of infinitely
differential functions which vanish at the neighbourhood of the points x = 0, x = π are
dense in L2(0, π ; ρ), so that there exists a sequence {fn(x)} of finite smooth functions (and
consequently, satisfy the conditions of the theorem) which converges to f(x) in the metric of
L2(0, π ; ρ); in equation notation this is can be written as

∥
∥fn(x) − f(x)

∥
∥
L2

=
(∫π

0
ρ(x)

∣
∣fn(x) − f(x)

∣
∣2dx

)1/2

−→ 0, as n −→ ∞. (3.27)

By the last lemma, every function fn(x) satisfies the parseval’s identity

∫π

0
ρ(x)

∣
∣fn(x)

∣
∣2dx =

∞∑

k=0

(∣
∣
∣b

(n)+
k

∣
∣
∣
2
+
∣
∣
∣b

(n)−
k

∣
∣
∣
2
)

, (3.28)

where b(n)±
k

=
∫π
0 ρ(x)fn(x)v

±
k
(x)dx, k = 0, 1, 2, . . .

The identity (3.28) can be written as

∥
∥fn(x)

∥
∥2
L2

=
∥
∥
∥b

(n)+
k

∥
∥
∥
2

l2
+
∥
∥
∥b

(n)−
k

∥
∥
∥
2

l2
. (3.29)

Consider the difference

∥
∥fn(x) − fm(x)

∥
∥2
L2

=
∥
∥
∥b

(n)+
k − b(m)+

k

∥
∥
∥
2

l2
+
∥
∥
∥b

(n)−
k − b(m)−

k

∥
∥
∥
2

l2
. (3.30)

By the aid of (3.27), it follows that {fn(x)} is a fundamental sequence and hence by the
completeness of l2 the sequences {bn±

k
} are fundamentals, so, that there exists a limiting b+

k

and b−
k
such that ‖b(n)+

k
− b+

k
‖2
l2

→ 0 and ‖b(n)−
k

− b−
k
‖2
l2

→ 0; by using the continuity of the
norm and passing to the limit as n → ∞ in (3.29), we obtain

∥
∥f(x)

∥
∥2
L2

=
∥
∥b+k
∥
∥2
l2
+
∥
∥b−k
∥
∥2
l2
, (3.31)
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which is the Parsval’s identity. Now we prove the eigenfunction expansion formula by the
help of Parsval’s identity. For any n, we have

∫π

0
ρ(x)

∣
∣
∣
∣
∣
f(x) −

n∑

k=0

(
b+kv

+
k(x) + b

−
kv

−
k(x)

)
∣
∣
∣
∣
∣

2

dx

=
∫π

0
ρ(x)

{[

f(x) −
n∑

k=0

(
b+kv

+
k(x) + b

−
kv

−
k(x)

)
]

×
[

f(x) −
n∑

k=0

(
b+
k
v+
k(x) + b

−
k
v−
k(x)

)
]}

dx;

(3.32)

after calculation, we have

∫π

0
ρ(x)

∣
∣
∣
∣
∣
f(x) −

n∑

k=0

(
b+kv

+
k(x) + b

−
kv

−
k(x)

)
∣
∣
∣
∣
∣
dx =

∫π

0
ρ(x)

∣
∣f(x)

∣
∣2dx −

n∑

k=0

(∣
∣b+k
∣
∣2 +

∣
∣b−k
∣
∣2
)

(3.33)

from which, and by using Parseval identity (3.22), we have

lim
n→∞

∫π

0
ρ(x)

∣
∣
∣
∣
∣
f(x) −

n∑

k=0

(
b+kv

+
k(x) + b

−
kv

−
k(x)

)
∣
∣
∣
∣
∣

2

dx −→ 0. (3.34)

So that,
∑∞

k=0(b
+
k
v+
k
(x) + b−

k
v−
k
(x)) → f(x) in the metric of L2(0, π ; ρ), which completes the

proof.
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