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We develop a new application of the Mittag-Leffler Function method that will extend the
application of the method to linear differential equations with fractional order. A new solution
is constructed in power series. The fractional derivatives are described in the Caputo sense. To
illustrate the reliability of the method, some examples are provided. The results reveal that the
technique introduced here is very effective and convenient for solving linear differential equations
of fractional order.

1. Introduction

Fractional differential equations have excited, in recent years, a considerable interest both
in mathematics and in applications. They were used in modeling of many physical and
chemical processes and engineering (see, e.g., [1–6]). In its turn, mathematical aspects of
fractional differential equations and methods of their solutions were discussed by many
authors: the iteration method in [7], the series method in [8], the Fourier transform technique
in [9, 10], special methods for fractional differential equations of rational order or for
equations of special type in [11–16], the Laplace transform technique in [3–6, 16, 17],
and the operational calculus method in [18–23]. Recently, several mathematical methods
including the Adomian decomposition method [18–25], variational iteration method [23–26]
and homotopy perturbation method [27, 28] have been developed to obtain the exact and
approximate analytic solutions. Some of these methods use transformation in order to reduce
equations into simpler equations or systems of equations, and some other methods give the
solution in a series form which converges to the exact solution.

The reason of using fractional order differential (FOD) equations is that FOD equations
are naturally related to systems with memory which exists in most biological systems. Also
they are closely related to fractals which are abundant in biological systems. The results
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derived from the fractional system are of a more general nature. Respectively, solutions to the
fractional diffusion equation spread at a faster rate than the classical diffusion equation and
may exhibit asymmetry. However, the fundamental solutions of these equations still exhibit
useful scaling properties that make them attractive for applications.

The concept of fractional or noninteger order derivation and integration can be traced
back to the genesis of integer order calculus itself [29]. Almost all of the mathematical theory
applicable to the study of noninteger order calculus was developed through the end of the
19th century. However, it is in the past hundred years that the most intriguing leaps in
engineering and scientific application have been found. The calculation techniques in some
cases meet the requirement of physical reality. The use of fractional differentiation for the
mathematical modeling of real-world physical problems has beenwidespread in recent years,
for example, the modeling of earthquake, the fluid dynamic traffic model with fractional
derivatives, and measurement of viscoelastic material properties. Applications of fractional
derivatives in other fields and related mathematical tools and techniques could be found in
[30–41]. In fact, real-world processes generally or most likely are fractional order systems.

The derivatives are understood in the Caputo sense. The general response expression
contains a parameter describing the order of the fractional derivative that can be varied to
obtain various responses.

2. Fractional Calculus

There are several approaches to the generalization of the notion of differentiation to fractional
orders, for example, the Riemann-Liouville, Grünwald-Letnikov, Caputo, and generalized
functions approach [42]. The Riemann-Liouville fractional derivative is mostly used by
mathematicians but this approach is not suitable for real-world physical problems since
it requires the definition of fractional order initial conditions, which have no physically
meaningful explanation yet. Caputo introduced an alternative definition, which has the
advantage of defining integer order initial conditions for fractional order differential
equations [42]. Unlike the Riemann-Liouville approach, which derives its definition from
repeated integration, the Grünwald-Letnikov formulation approaches the problem from the
derivative side. This approach is mostly used in numerical algorithms.

Here, we mention the basic definitions of the Caputo fractional-order integration and
differentiation, which are used in the upcoming paper and play the most important role in
the theory of differential and integral equation of fractional order.

The main advantages of Caputo approach are the initial conditions for fractional
differential equations with the Caputo derivatives taking on the same form as for integer
order differential equations.

Definition 2.1. The fractional derivative of f(x) in the Caputo sense is defined as

Dαf(x) = Im−αDmf(x)

=
1

Γ(m − α)

∫x

0
(x − t)m−α+1f (m)(t)dt

(2.1)

for m − 1 < α ≤ m,m ∈ N, x > 0.
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For the Caputo derivative we have DαC = 0, C is constant,

Dαtn =

⎧⎪⎪⎨
⎪⎪⎩

0, (n ≤ α − 1),

Γ(n + 1)
Γ(n − α + 1)

tn−α, (n > α − 1).

⎫⎪⎪⎬
⎪⎪⎭
. (2.2)

Definition 2.2. Form to be the smallest integer that exceeds α, the Caputo fractional derivative
of order α > 0 is defined as

Dαu(x, t) =
∂αu(x, t)

∂tα

=

⎧⎪⎪⎨
⎪⎪⎩

1
Γ(m − α)

∫ t
0 (t − τ)m−α+1 ∂mu(x, τ)

∂τm
dτ, for m − 1 < α < m

∂mu(x, t)
∂tm

, for α = m ∈ N

⎫⎪⎪⎬
⎪⎪⎭
.

(2.3)

3. Analysis of the Method

The Mittag-Leffler (1902–1905) functions Eα and Eα,β [42], defined by the power series

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, Eα,β(z) =

∞∑
k=0

zk

Γ
(
αk + β

) , α > 0, β > 0, (3.1)

have already proved their efficiency as solutions of fractional order differential and integral
equations and thus have become important elements of the fractional calculus theory and
applications.

In this paper, we will explain how to solve some of differential equations with
fractional level through the imposition of the generalized Mittag-Leffler function Eα(z). The
generalized Mittag-Leffler method suggests that the linear term y(x) is decomposed by an
infinite series of components:

y = Eα(axα) =
∞∑
n=0

an xnα

Γ(nα + 1)
. (3.2)

We will use the following definitions of fractional calculus:

Dαy =
∞∑
n=1

an x(n−1)α

Γ((n − 1)α + 1)
, (3.3)

D2αy =
∞∑
n=2

an x(n−2)α

Γ((n − 2)α + 1)
. (3.4)

This is based on the Caputo fractional is derivatives. The convergence of the Mittag Leffler
function discussed in [42].
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4. Applications and Results

In this section, we consider a few examples that demonstrate the performance and efficiency
of the generalized Mittag-Leffler function method for solving linear differential equations
with fractional derivatives.

Example 4.1. Consider the following fractional differential equation [43]:

dαy

dxα
= Ay. (4.1)

By using (3.3) into (4.1)we find

∞∑
n=1

an x(n−1)α

Γ((n − 1)α + 1)
−A

∞∑
n=0

an xnα

Γ(nα + 1)
= 0. (4.2)

Combining the alike terms and replacing (n) by (n + 1) in the first sum, we assume the form

∞∑
n=0

an+1 xnα

Γ(nα + 1)
−A

∞∑
n=0

an xnα

Γ(nα + 1)
= 0,

∞∑
n=0

(
an+1 −Aan

) xnα

Γ(nα + 1)
= 0.

(4.3)

With the coefficient of xnα equal to zero and identifying the coefficients, we obtain recursive

an+1 −Aan = 0 =⇒ an+1 = Aan,

at n = 0, a1 = Aa0 = A,

at n = 1, a2 = Aa1 =⇒ a2 = A2,

at n = 2, a3 = Aa2 =⇒ a3 = A3.

(4.4)

Substituting into (3.2)

y(x) = a0 + a1 xα

Γ(α + 1)
+ a2 x2α

Γ(2α + 1)
+ a3 x3α

Γ(3α + 1)
+ · · · ,

y(x) = 1 +A
xα

Γ(α + 1)
+A2 x2α

Γ(2α + 1)
+A3 x3α

Γ(3α + 1)
+ · · · .

(4.5)

The general solution is

y(x) =
∞∑
n=0

Anxnα

Γ(nα + 1)
. (4.6)
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We can write the general solution in the Mittag-Leffler function form as

y(x) = Eα(Anxα). (4.7)

As α = 1, we have the exact solution:

y(x) =
∞∑
n=0

(Ax)n

Γ(n + 1)
= eAx, (4.8)

which is the exact solution of the standard form.

Example 4.2. Consider the fractional differential equation [44]

d2αy

dx2α
− y = 0. (4.9)

By using (3.2) and (3.4) into (4.9) we find

∞∑
n=2

an x(n−2)α

Γ((n − 2)α + 1)
−

∞∑
n=0

an xnα

Γ(nα + 1)
= 0. (4.10)

Combining the alike terms and replacing (n) by (n + 2) in the first sum, we assume the form

∞∑
n=0

an+2 xnα

Γ(nα + 1)
−

∞∑
n=0

an xnα

Γ(nα + 1)
= 0,

∞∑
n=0

(
an+2 − an

) xnα

Γ(nα + 1)
= 0.

(4.11)

With the Coefficient of xnα equal to zero and identifying the coefficients, we obtain recursive

an+2 = an. (4.12)

Substituting into (3.2), we find that:

y(x) = 1 + a
xα

Γ(α + 1)
+

x2α

Γ(2α + 1)
+ a2 x3α

Γ(3α + 1)
+ · · · . (4.13)

If a = 1, we can write the general solution in the Mittag-Leffler function form as

y(x) =
∞∑
n=0

xα

Γ(nα + 1)
= Eα(xα) (4.14)

which is the exact solution of the linear fractional differential equation (4.9).
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Example 4.3. Consider the fractional differential equation [43]

d2αy

dx2α
+
dαy

dxα
− 2y = 0. (4.15)

By using (3.2) and (3.4) into (4.15)we find

∞∑
n=2

an x(n−2)α

Γ((n − 2)α + 1)
+

∞∑
n=1

an x(n−1)α

Γ((n − 1)α + 1)
− 2

∞∑
n=0

an xnα

Γ(nα + 1)
= 0. (4.16)

Combining the alike terms and replacing (n) by (n + 2) in the first sum, we assume the form

∞∑
n=0

an+2 xnα

Γ(nα + 1)
+

∞∑
n=0

an+1 xnα

Γ(nα + 1)
− 2

∞∑
n=0

an xnα

Γ(nα + 1)
= 0,

∞∑
n=0

(
an+2 + an+1 − 2an

) xnα

Γ(nα + 1)
= 0

(4.17)

With the coefficient of xnα equal to zero and identifying the coefficients, we obtain recursive

an+2 = 2an − an+1. (4.18)

Substituting into (3.2), we find that:

y(x) = 1 + a
xα

Γ(α + 1)
+ (2 − a)

x2α

Γ(2α + 1)
+ (a − 2)

x3α

Γ(3α + 1)
+ · · · . (4.19)

If a = 1, we can write the general solution in the Mittag-Leffler function form as

y(x) =
∞∑
n=0

xα

Γ(nα + 1)
= Eα(xα) (4.20)

which is the solution of the linear fractional differential equation (4.15).

5. Conclusions

A new generalization of the Mittag-Leffler function method has been developed for linear
differential equations with fractional derivatives. The new generalization is based on the
Caputo fractional derivative. It may be concluded that this technique is very powerful and
efficient in finding the analytical solutions for a large class of linear differential equations of
fractional order.
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[44] A. A. Kilbas, M. Rivero, L. Rodrı́guez-Germá, and J. J. Trujillo, “α-analytic solutions of some linear
fractional differential equations with variable coefficients,” Applied Mathematics and Computation, vol.
187, no. 1, pp. 239–249, 2007.


