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Solutions of the equation y(f) = —f(t y;) are considered for t — oo. The existence of two
classes of positive solutions which are asymptotically different is proved using the retract method
combined with Razumikhin’s technique. With the aid of two auxiliary linear equations, which

are constructed using upper and lower linear functional estimates of the right-hand side of the
equation considered, inequalities for both types of positive solutions are given as well.

1. Introduction

Let C([a,b],R"), where a,b € R, a < b, be the Banach space of the continuous mappings from
the interval [a, b] into R" equipped with the supremum norm

||</f||c=es?li;]||qf(9), ¢ € C([a,b],R"), (1.1)
c[a,

where || - || is the maximum norm in R". In the case of a = —r < 0 and b = 0, we will denote
this space as Cy, that is,

C" = C([-1,0], R"). (1.2)

IfoeR', A>0,andy € C([oc — 1,0+ A],R"), then, for each t € [0,0 + A], we define
vt € Cl by y(0) = y(t +0), 0 € [-1,0].
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The present article is devoted to the problem of the existence of two classes of
asymptotically different positive solutions of the delayed equation

y(t)=—f(t,y), (1.3)

fort — +oo, where f : Q — R is a continuous quasibounded functional that satisfies a local
Lipschitz condition with respect to the second argument and Q is an open subset in R x C}
such that conditions which use f are well defined.

The main supposition of our investigation is that the right-hand side of (1.3) can be
estimated as follows:

Cat)yi(=r) < f(t,yi) < Cp(t)ys(-1), (1.4)

where (f, ;) € Q,and Cs,Cp : [ty —1,00) — R* := (0, ), ty € R are continuous functions
satisfying

0<Ca(t) <Cp(t) <

< (rl—e) L [t 1,00), (15)

F Cp(t)dt < 1. (1.6)

to -r

Quite lots of investigations are devoted to existence of positive solutions of different classes
of equations (we mention at least monographs [1-6] and papers [7-12]). The investigation
of two classes of asymptotically different solutions of (1.3) has been started in the paper [13]
using a monotone iterative technique and a retract principle. Assumptions of results obtained
are too cumbersome and are applied to narrow classes of equations. In the presented paper
we derive more general statements under weaker conditions. This progress is related to more
general inequalities (1.4) for the right-hand side of (1.3) which permit to omit utilization of
properties of solutions of transcendental equations used in [13].

1.1. Wazewski’s Principle

In this section we introduce Wazewski’s principle for a system of retarded functional
differential equations

y(t) = F(t,yr), (1.7)

where F : Q" — R" is a continuous quasibounded map which satisfies a local Lipschitz
condition with respect to the second argument and Q* is an open subset in R x C;. We recall
that the functional F is quasibounded if F is bounded on every set of the form [t1, £,] x C; C
Q*, where t; < t,, C}; := C([-r,0],L) and L is a closed bounded subset of R” (compare [2,
page 305]).

In accordance with [14], a function y(t) is said to be a solution of system (1.7) on [0 —
r,0+ A) if there are 0 € Rand A > O such thaty € C([c —r,0 + A),R"), (¢, y:) € Q*, and y(t)
satisfies the system (1.7) fort € [0,0+A).Foragiven o € R, ¢ € C, we say y(o, ¢) is a solution
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of the system (1.7) through (o, ¢) € Q* if there is an A > 0 such that y(o, ¢) is a solution of the
system (1.7) on [0 —r,0 + A) and y, (0, @) = . In view of the above conditions, each element
(0, ) € QF determines a unique solution y (o, ¢) of the system (1.7) through (o, ¢) € Q* on its
maximal interval of existence I, = [0,a), 0 < a < co which depends continuously on initial
data [14]. A solution y(o, ¢) of the system (1.7) is said to be positive if

vi(o,9) >0 (1.8)

on [0 —1,0] U, for eachi = 1,2,...,n. A nontrivial solution y(c, ¢) of the system (1.7)
is said to be oscillatory on I, (under condition I, = [0, %)) if (1.8) does not hold on any
subinterval [01, ) C [0, ), 01 > O.

As a method of proving the existence of positive solutions of (1.3), we use Wazewski’s
retract principle which was first introduced by Wazewski [15] for ordinary differential
equations and later extended to retarded functional differential equations by Rybakowski
[16] and which is widely applicable to concrete examples. A summary of this principle is
given below.

As usual, if a set w C R x R, then intw and 0w denote the interior and the boundary
of w, respectively.

Definition 1.1 (see [16]). Let the continuously differentiable functions Ii(t,y), i = 1,2,...,p
and m;(t,y),j=1,2,...,q, p* + g* > 0 be defined on some open set wy C R x R". The set

w'={(ty) ewo : li(t,y) <0,m;(t,y) <0, i=1,...,p, j=1,...,9} (1.9)

is called a regular polyfacial set with respect to the system (1.7), provided that it is nonempty;,
if (a) to (y) below hold.

(a) For (t,r) € R x C} such that (t + 0, 7(0)) € w* for 6 € [-r,0), we have (t, ) € Q*.

(B) Foralli=1,2,...,p,all (t,y) € 0w* for which l;(t,y) = 0, and all = € C} for which
x(0) =yand (t+6,7(0)) € w*, 0 € [-r,0). It follows that DI;(t, y) > 0, where

ali (t, y)

oli(t, y)f(t )+ = (1.10)

DI;i(t,y) Ei

k=1

(y) Forallj=1,2,...,q,all (t,y) € ow" for which m;(t,y) =0,and all 7r € C} for which
m(0) =yand (t+6,7(0)) € w*, 0 € [-1,0). It follows that Dm;(t, y) < 0, where

Dm(t,y) = Z (t ) t,ﬂ)+w. (1.11)

k=1

The elements (¢, or) € R x C! in the sequel are assumed to be such that (¢, 1) € Q*.

In the following definition, a set w* is an arbitrary set without any connection with a
regular polyfacial set w* defined by (1.9) in Definition 1.1.
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Definition 1.2. A system of initial functions p 4 .~ with respect to the nonempty sets A and w*,
where A C w* C Rx R" is defined as a continuous mapping p : A — CJ such that (a) and ()
below hold.

(a) If z = (t,y) € Anintw®, then (t + 0, p(2)(0)) € w* for 6 € [-r,0].
(P) If z = (t,y) € Anow*, then (t + 0,p(z)(0)) € w* for O € [-r,0) and (t,p(2)(0)) = z.

Definition 1.3 (see [17]). If &# C B are subsets of a topological space and or : B — 4 is a
continuous mapping from B onto <4 such that s (p) = p for every p € &, then i is said to be
a retraction of B onto &#. When a retraction of B onto «f exists, &/ is called a retract of B.

The following lemma describes the main result of the paper [16].

Lemma 1.4. Let w* C wy be a regular polyfacial set with respect to the system (1.7), and let W be
defined as follows:

W={(ty) €edw" :mj(ty) <0, j=1,2,...,9}. (1.12)

Let Z C W U w" be a given set such that Z N W is a retract of W but not a retract of Z. Then for
each fixed system of initial functions pz,., there is a point zo = (0o, Yo) € Z N w* such that for the
corresponding solution y(oo, p(zo))(t) of (1.7), one has

(t,y (00, p(20)) (1)) € w* (1.13)

for each t € Dg, p(z).-

Remark 1.5. When Lemma 1.4 is applied, a lot of technical details should be fulfilled. In order
to simplify necessary verifications, it is useful, without loss of generality, to vary the first
coordinate t in definition of the set w* in (1.9) within a half-open interval open at the right.
Then the set w* is not open, but tracing the proof of Lemma 1.4, it is easy to see that for
such sets it remains valid. Such possibility is used below. We will apply similar remark and
explanation to sets of the type €, Q* which serve as domains of definitions of functionals on
the right-hand sides of equations considered.

For continuous vector functions
pr= (p’l‘,pz,...,p;‘l), o = (6*,6’2‘,...,6,’;) t[to—7,00) — R", (1.14)

with p*(t) < 6*(t) for t € [to — r,0) (the symbol « here and below means that p; (t) < 6;(t)
foralli=1,2,...,n), continuously differentiable on [ty, o), we define the set

w* = {(t,y) :t € [to, ), p*(t) Ky < &*(t)}. (1.15)

In the sequel, we employ the following result from [18, Theorem 1], which is proved with the
aid of the retract technique combined with Razumikhin’s approach.
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Theorem 1.6. Let therebeap € {0,...,n} such that

(i) ift > to, ¢ € C and (t + 6, p(0)) € w* for any 6 € [-r,0), then

<6*i>’(t) < Fi(t, ¢), when ¢i(0) = 6(1),

, (1.16)
(P) 1) > Fi(t, ), when ¢'(0) = p(£)
foranyi=1,2,...,p, (Ifp = 0, this condition is omitted.)
(i) ift > to, ¢ € C and (t + 6, ¢(0)) € w* for any 6 € [-r,0) then
(P") () <F'(t,$), when $(0) = p" (1),
(1.17)

<6*i>’(t) > Fi(t,(p), when ¢i(0) = 6(t)

foranyi=p+1,p+2,...,n (If p = n, this condition is omitted.)

Then, there exists an uncountable set Y of solutions of (1.7) on [to—7r, oo) such that each y € Y
satisfies

pr(t) < y(t) < 6*(t), tel[tg—r,00). (1.18)

1.2. Structure of Solutions of a Linear Equation

In this section we focus our attention to structure of solutions of scalar linear differential
equation of the type (1.3) with variable bounded delay of the form

x(t) = —c(Hx(t - 7(t)) (1.19)

with continuous functions ¢ : [fp —7,0) — R" and 7 : [fg,0) — (0,7].

In accordance with above definitions of positive or oscillatory solutions, we call a
solution of (1.19) oscillatory if it has arbitrary large zeros, otherwise it is called nonoscillatory
(positive or negative).

Let us mention properties of (1.19) which will be used later. Theorem 13 from [19]
describes sufficient conditions for existence of positive solutions of (1.19) with nonzero limit.

Theorem 1.7 (see [19, Theorem 13]). Linear equation (1.19) has a positive solution with nonzero
limit if and only if

f - c(t)dt < co. (1.20)
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Remark 1.8. Tracing the proof of Theorem 1.7, we conclude that a positive solution x = x(t) of
(1.19) with nonzero limit exists on [ty — 7, o0) if

foo c(t)dt < 1. (1.21)

to—r

The following theorem is a union of parts of results from [20] related to the structure
formulas for solutions of (1.19).

Theorem 1.9. Suppose the existence of a positive solution of (1.19) on [to — 1, 00). Then there exist
two positive solutions x4 and x5 of (1.19) on [to — r, oo) satisfying the relation

xs(t) _
M0 eatt) =

0 (1.22)

such that every solution x = x(t) of (1.19) on [ty — r, 00) can be represented by the formula
x(t) = Kxa(t) + O(xs(t)), (1.23)

where the constant K depends on x.

The symbol O, applied in (1.23) and below, is the Landau order symbol frequently
used in asymptotic analysis.

Moreover, Theorem 9 in [20] gives a possibility to replace the pair of solutions x4(t)
and x,(t) in (1.23) by another pairs of solutions X, (f) and X,(t) if

Xs(t) _
i~ Xa(t)

0 (1.24)

as given in the following theorem.

Theorem 1.10. Let X4(t) and Xs(t) be positive solutions of (1.19) on [ty — r, 00) such that (1.24)
holds. Then every solution x = x(t) of (1.19) on [ty — r, 00) can be represented by the formula

x(t) = K*%4(t) + O(Zs (1)), (1.25)

where the constant K* depends on x.

The next definition is based on the properties of solutions x4, X4, x5, and X5 described
in Theorems 1.9 and 1.10.

Definition 1.11 (see [20, Definition 2]). Suppose that the positive solutions x4 and x, of (1.19)
on [ty — 1, 00) satisfy the relation (1.22). Then, we call the solution x4 a dominant solution and
the solution x4 a subdominant solution.

Due to linearity of (1.19), there are infinitely many dominant and subdominant
solutions. Obviously, another pair of a dominant and a subdominant solutions is the pair
X4(t), Xs(t) in Theorem 1.10.
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2. Main Results

Let us consider two auxiliary linear equations:

x(t) = -Ca(t)x(t—71), (2.1)

z(t) = —Cp(t)z(t - 1), (2.2)

where r € R" and C4, Cp are positive continuous functions on [ty — 1, o), tp € R. According
to the Theorems 1.7 and 1.9, both (2.1) and (2.2) have two types of positive solutions
(subdominant and dominant). Let us denote them x;(t), xs(t) for (2.1) and z4(t), zs(t) for
(2.2), respectively, such that

xs(t) _ . ozs(t)
= xg(f) 0, tlgga za(t)

0. (2.3)

Without loss of generality, we can suppose that x, () < x4(t) and zs(t) < z4(t) on [tg — 1, 00).

2.1. Auxiliary Linear Result

The next lemma states that if z;(t), zs(t) are dominant and subdominant solutions for (2.2),
then there are dominant and subdominant solutions x%(t), x;(t) for (2.1) satisfying certain
inequalities.

Lemma 2.1. Let (1.5) be valid. Let z4(t), zs(t) be dominant and subdominant solutions for (2.2).
Then there are positive solutions x3(t), x(t) of (2.1) on [ty — 1, 00) such that:

(a) x¢(t) < zs(t), t € [to -7, 00),
(b) za(t) < x}(t), t € [to—1,00),

(c) x(t) and x3(t) are dominant and subdominant solutions for (2.1).
Proof. (a) To prove the part (a), we employ Theorem 1.6 with p = n = 1; that is, we apply the

case (i). Consider (2.1), set F(t, ¢) := —Ca(t)p(-1), p*(t) := 0, 6*(t) := zs(t), and assume (see
the case (i)):

0<p(0) <zs(t+6), 0€[-r0), $(0)=z(t), t > to. (2.4)
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Now we have to verify the inequalities (1.16), that is, in our case:
F(t,¢) - (6%)'(t) = -Ca(t)yp(-r) - (6%)'(t)

= —-Ca(t)p(-r) - z,(t)
= —Ca()p(~1) + Cp(t)zs(t— 1)

(2.5)
> (we use (1.5))
> —-Cp(t)p(-r) + Cp(t)zs(t — 1)
>Cp(t)[zs(t—1) —zs(t-7)] =0
and F(t, ¢) > (6*)'(t) if t € [ty, o). Further, we have
—F(t,$) + (p")'(t) = Ca(t)p(-r) + 0= Ca(t)p(-r) >0 (2.6)

and F(t,$) < (p*)'(t) if t € [ty, o). Since both inequalities are fulfilled and all assumptions
of Theorem 1.6 are satisfied for the case in question, there exists a solution x}(¢) of (2.1) on
[to — 7, 00) such that x}(t) < zs(t) for t € [ty — 1, ).

(b) To prove the part (b), we consider a solution x = x(t) of the following initial
problem:

X(t) = -Ca()x(t—7), te[to—r, 00), 2.7)

x(t) = za(t), te€([to—r,to]. (2.8)
Now, let us define a function
W(t,x) =z4(t) —x(t), te€[tp—1,00). (2.9)

We find the sign of the full derivative of W along the trajectories of (2.7) if t € [t, to + 7]:

dW (¢, x)

=—Cp(H)za(t —1) + Ca(t)x(t - 1)
dt te[to,to+r]

= (due to (2.8)) (2.10)
=—-Cp(t)zqg(t — 1)+ Ca(t)za(t — 1)
< [Ca(t) = Cp(t)]za(t — ) < (due to (1.5)) <0.

It means that function W is nonincreasing and it holds

W (to, x(to)) = za(to) — x(to) = za(to) — za(to)

=0>W(to+e,x(to+¢€)) =zq(to+e) —x(to+¢), €€]0,7],

(2.11)
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and hence z4(ty + €) < x(tg + €). It will be showed that this inequality holds also for every
t>ty+r.

On the contrary, let us suppose that the inequality is not true, that is, there exists a point
t = t** such that z4(#**) > x(+**). Then there exists a point t* € [y, #**) such that z4(t*) < x(t*),
otherwise z;(t) = x(t) on [t, t**]. Without loss of generality, we can suppose that x(t) = z4(t)
on [to, ***] with a £*** € [to, t*) and x(t) > z4(t) on (#***,#*). Then, there exists a point ° €
(t**,t*) such that x(t°) = Kz4(t°) for a constant K > 1 and

Kzi(t) > x(t), fort € [ty,t°). (2.12)

Hence, for a function W*(t, x) defined as W*(t, x) := Kz4(t) — x(t), t € [to,t°], we get

dW*(t, x)

ar = K(-Cp(H)za(t—1)) + Ca(t)x(t - 1)
t=t®

< (due to (2.12)) (2.13)
< K(-Cp(t)za(t—1)) + Ca(t)Kz4(t — 1)
= Kzi(t - r)[Ca(t) - Cp(t)] < (by (1.5)) <0.

It means that Kz,(t) < x(t) on a right-hand neighborhood of t°. This is a contradiction with
inequality

za(t) < Kza(t) < x(t), (2.14)

hence it is proved that the existence of a solution x(t) satisfies z,4(t) < x7(t) on [t — 7, o0).
(c) To prove the part (c), we consider lim; . x5 (t)/x;(t). Due to (a) and (b), we get

0 < lim xf(t) < 1i zs(t) _
MU0 ey S 2

0, (2.15)

and x%(t) and x;(t) are (by Definition 1.11) dominant and subdominant solutions for (2.1).
O

2.2. Existence of Positive Solutions of (1.3)

The next theorems state that there exist two classes of positive solutions of (1.3) such
that graphs of each solution of the first class are between graphs of dominant solutions
of (2.1) and (2.2), and graphs of each solution of the second class are between graphs of
subdominant solutions of (2.1) and (2.2), respectively. It means that we prove there are two
classes of asymptotically different positive solutions of (1.3). Without loss of generality (see
Remark 1.5), we put Q := [tp, ) x C,. In the following, we will use our main supposition
(1.4); that is, we assume that for (t, ¢) € Q inequalities,

Cat)p(-r) < f(t,¢) <C(t)p(-1) (2.16)

hold, where ¢ is supposed to be positive.
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Theorem 2.2. Let f : Q — R be a continuous quasibounded functional. Let inequality (1.5) be
valid, and (2.16) holds for any (t, $) € Q with ¢(0) > 0, 8 € [-r,0]. Let x(t) be a positive solution of
(2.1) on [to— 1, 00), and let z(t) be a positive solution of (2.2) on [ty —r, 00) such that x(t) < z(t) on
[to — 1, 00). Then there exists an uncountable set Y of positive solutions of (1.3) on [ty — r, o0) such
that each solution y € Y satisfies

x(t) <y(t) < z(t) (2.17)

fort e [ty —r, ).

Proof. To prove this theorem, we employ Theorem 1.6 with p = n = 1; that is, we apply the

case (i). Set F(t,y;) = —f(t, ys), p*(t) :== x(t), 6" (t) := z(t); hence, the set w* will be defined as
w*={(ty):teto—r o), x(t) <y(t) <z(t)}. (2.18)

Now, we have to verify the inequalities (1.16). In our case

F(t,¢) - (6")'(t) = -f(t, ) - (6")'(t)
= f(t,9) -2 ()
=—f(t,¢) +Cp(t)z(t —7)
> (we use (2.16))
> —Cp(t)p(-r) + Cp(t)z(t — 1)
> (we use (2.18) : ¢(~r) < z(t— 1))
> Cp(t)[z(t-7) - z(t-7)] =0,

(2.19)
~F(t,9) + (p")' (1) = f(,9) + (p*) (1)
=f(t, ) +x'(t)
= f(t,¢) - Ca(t)x(t-r)
> (we use (2.16))
2 Ca(t)Pp(=r) - Ca(t)x(t - 1)
> (we use (2.18) : p(-r) > x(t—71))
>Ca(t)[x(t—1)—x(t-1)] =0.
Therefore,
F(t,¢) - (6 (t) >0,
(2.20)

—F(t,$) + (p*) () > 0.
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Both inequalities (1.16) are fulfilled, and all assumptions of Theorem 1.6 are satisfied for the
case in question. There exists class of positive solutions Y of (1.3) on [ty — 7, o) that for each
solution y € Y from this class it is satisfied that x(t) < y(t) < z(t) for t € [ty — 1, o0). O

Corollary 2.3. Let, in accordance with Lemma 2.1, x4(t) be the subdominant solution of (2.1), and
let z,(t) be the subdominant solution of (2.2), that is, xs(t) < zs(t) on [ty — 1, 00). Then, there exists
an uncountable set Y of positive solutions of (1.3) on [ty — r, o0) such that each solution ys € Y
satisfies

xs() < ys(t) < zs(t). (2.21)

If inequality (1.6) holds, then dominant solutions x4(t) of (2.1) and z4(t) of (2.2) have
finite positive limits

Cy = tlim xq(t), Cyx>0,

(2.22)
C, = tlim z4(t), C;>0.

This is a simple consequence of positivity of solutions x,(t), z4(t) and properties of dominant
and subdominant solutions (see Theorem 1.7, Remark 1.8, Theorem 1.9, formulas (1.22)—
(1.25) and (2.3)). Then, due to linearity of (2.1) and (2.2), it is clear that there are dominant
solutions x4(t), z4(t) of both equations such that z,(t) < x4(t) on [ty — 1, 00). In the following
lemma, we without loss of generality suppose that x,(t) and z,(t) are such solutions and
their initial functions are nonincreasing on initial interval [t — 7, fo]. We will need constants
M and L satisfying

M>M" = 7xd(t0 _ r),
C.
M ) (2.23)
za(to—r
L>L":= ————=.
> C.

Lemma 2.4. Let f : Q — R be a continuous quasibounded functional. Let inequalities (1.5) and
(1.6) be valid, and (2.16) holds for any (t, ¢) € Qwith $(0) > 0,0 € [-r,0]. Let x4(t), t € [ty—7,0)
be a dominant solution of (2.1), nonincreasing on [to—r, to], and let z4(t), t € [to—r, 00) be a dominant
solution of (2.2), nonincreasing on [ty — 1, to], such that z4(t) < x4(t), t € [to — r, 00). Then there
exists another dominant solution z};(t) of (2.2) and a positive solution y = ya(t) of (1.3) on [to—7, )
such that it holds that

xq(t) <ya(t) < zj(t) (2.24)

fort € [to —r,00) and z}j(t) = Mz(t).
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Proof. Both dominant solutions x4(t) and z4(t), of (2.1) and (2.2), respectively, have nonzero
positive limits C, and C.. From linearity of (2.1) and (2.2), it follows that solutions multiplied
by an arbitrary constant are also solutions of (2.1) and (2.2), respectively. It holds that

z4(to—1) = Mzg(tg— 1) > Mza(t) = z3;(t) > MC. > xq(to — 1) > xa(t), (2.25)

where t € [t — 1, 0).
Now, we define the set w* in the same way as (2.18) in the proof of Theorem 2.2, but
with x,(t) instead of x(t) and with z7(t) instead of z(¢), that is,

w* = {(ty):teto—r,0)x4(t) <y(t) < z5(t)}. (2.26)

According to the Theorem 2.2 (with x,(t) instead of x(t) and with z7(t) instead of z(t)), it is
visible that there exists a positive solution y = y,(t) of (1.3) satisfying

xa(t) < ya() < (1), (2.27)

where t € [y, 00); that is, inequalities (2.24) hold. O

Theorem 2.5. Let all suppositions of Lemma 2.4 be valid, and let y,(t) be a solution of (1.3)
satisfying inequalities (2.24). Then, there exists a positive solution x7 (t) of (2.1) on [ty — 1, 0)
satisfying

za(t) < ya(t) < x5 (1), (2.28)
where x7 (t) = Lxa(t) and t € [ty — 1, 0).

Proof. Multiplying solution x,(t) by the constant L, we have

Lxa(t) > LCyx > Mza(t — 7). (2.29)

Using (2.29) and (2.24), we get
X7 (t) = Lxg(t) > Mza(to—r) = z;(to — 1) > z3;(t) > ya(t) > xa(t) > za(t), (2.30)

where t € [ty — 1, o0). Hence, there exists a solution y4(t) of (1.3) such that inequalities (2.28)
hold. O

2.3. Asymptotically Different Behavior of Positive Solutions of (1.3)

Somewhat reformulating the statement of Theorem 2.5, we can define a class of positive
solutions Y, of (1.3) such that every solution y; € Y, is defined on [ty — 7, o0) and satisfies

Cza(t) < ya(t) < Cx7 (1), (2.31)
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where t € [t) — 1, o0) for a positive constant C and, for every positive constant C, there exists
a solution y4 € Y4 satisfying (2.31) on [ty — 1, o0).

The following theorem states that positive solutions y(t) and y,(t) of (1.3) have a
different order of vanishing.

Theorem 2.6. Let all the assumptions of Corollary 2.3 and Theorem 2.5 be met. Then there exist two
classes Y and Y4 of positive solutions of (1.3) described by inequalities (2.21) and (2.31). Every two
solutions ys, ya, such that ys € Ys and ya € Yga, have asymptotically different behavior, that is,

im ys(t) _
t—+00 yd(t)

0. (2.32)

Proof. Let the solution ys(t) be the one specified in Corollary 2.3 and the solution y,(t)
specified by (2.31) with a positive constant C. Now let us verify that (2.32) holds. With the
aid of inequalities (2.21) and (2.31), we get

St . S
0< lim y()< lim Zs(t)

= 2.33
Tt—+oo yYg(t) T t—+e Czy(t) ( )

in accordance with (1.22), since z4(t) and z4(t) are positive (subdominant and dominant)
solutions of linear equation (2.2). O

Another final statement, being a consequence of Lemma 2.1 and Theorems 2.2 and 2.5,
is the following.

Theorem 2.7. Let f : Q — R be a continuous quasibounded functional. Let inequalities (1.5) and
(1.6) be valid, and (2.16) holds for any (t, ¢) € Q with ¢(6) > 0,0 € [-r,0]. Then on [ty — r, )
there exist

(a) dominant and subdominant solutions x4(t), xs(t) of (2.1),
(b) dominant and subdominant solutions z,(t), zs(t) of (2.2),
(c) solutions y4(t), ys(t) of (1.3)

such that

0 <x5(t) <ys(t) < zs(t) < za(t) <ya(t) <xa(t), (2.34)

. xs(t) T Zs(t) 1 ys(t) _
tILn;J xa(t) t1—>oo za(t) t1—>oo ya(t)

(2.35)

Example 2.8. Let (1.3) be reduced to

y(t) =—f(t,y:) := -3t exp<—3t + % cos(ty(t - 1))> cy(t-1), (2.36)
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and let auxiliary linear equations (2.1) and (2.2) be reduced to

x(t) = —4texp(2 —4t) - x(t - 1), (2.37)
Z(t) = 2texp(1-2t) - z(t - 1), (2.38)

that is,
Ca(t) :=4texp(2 —4t), Cg(t) :==2texp(1-2t), r=1. (2.39)

Let to be sufficiently large. Inequalities (1.5), (1.6), and (2.16) hold. In view of linearity and
by Remark 1.8, we conclude that there exist dominant solutions x4(t) of (2.37) and z4(t) of
(2.38) such that

tlim xq(t) =11, tlim za(t) =2, za(t) <x4(t), t € [to—1,00). (2.40)

Moreover, there exist subdominant solutions x;(t) of (2.37) and z4(t) of (2.38) such that
xs(t) < z5(t), t € [tp — 1, 00) which are defined as

xs(t) := exp<—2t2>, zs(t) := exp (—t2>. (2.41)

By Theorem 2.7, we conclude that there exist solutions y4(t) and y,(t) of (2.36) satisfying
inequalities (2.34), and (without loss of generality) inequalities

0 < xs(t) = exp (—2t2> < s(t) < zs(t) = exp <—t2) <1<za(t) <yalt) <10 < xq(t)  (2.42)
hold on [ty — 1, o0).

3. Conclusions and Open Problems

The following problems were not answered in the paper and present interesting topics for
investigation.

Open Problem 3.1. In Lemma 2.4 and Theorems 2.5-2.7 we used the convergence assumption
(1.6) being, without loss of generality, equivalent to

r Cp(t)dt < co. (3.1)

It is an open question whether similar results could be proved if the integral is divergent, that
is, if

fw Cp(t)dt = co. (3.2)
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Open Problem 3.2. Dominant and subdominant solutions are used for representation of family
of all solutions of scalar linear differential delayed equation, for example, by formula (1.25).
Investigation in this line of the role of solutions y,(t) and ys(t) of (1.3) (see Theorems 2.6
and 2.7) is an important question. Namely, it seems to be an interesting question to establish
sufficient conditions for the right-hand side of (1.3) such that its every solution v = y(t) can
be represented on [ty — r, o0) by the formula

y(t) = Kya(t) + O(ys(t)), (3.3)

where the constant K depends only on y/(t).

Open Problem 3.3. The notions dominant and subdominant solutions are in the cited papers
defined for scalar differential delayed equations only. It is a rather interesting question if the
results presented can be enlarged to systems of differential delayed equations.

Remark 3.4. Except for papers and books mentioned in this paper we refer, for example, to
sources [21-23], treating related problems as well. Note that the topic is connected with
similar questions for discrete equations (e.g., [24-27]).
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