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In the study by Papanastassiou and Papachristodoulos, 2009 the notion of p-convergence in
measure was introduced. In a natural way p-convergence in measure induces an equivalence
relation on the space M of all sequences of measurable functions converging in measure to zero.
We show that the quotient spaceM is a complete but not compact metric space.

1. Introduction

Convergence in measure plays a fundamental role in several branches of Mathematics, for
example in integration theory and in stochastic processes. In [1] a “Bochner-type” integration
theory was developed in the context of Riesz spaces with respect to a convergence introduced
axiomatically, and in particular some Vitali convergence theorems and Lebesgue dominated
convergence theorems were proved. Similar subjects were investigated by Haluška and
Hutnı́k [2, 3] in the setting of operator theory for Bochner- and Dobrakov-type integrals (see
also [4, 5]) and in [6–8] for the Kurzweil-Henstock integral in Riesz spaces.

In several contexts of integration theory it could be advisable to extend the concept of
convergence inmeasure in order to get applications, for example, in the study of the stochastic
integral and stochastic differential equations (see, e.g., [9]).

This paper is a continuation of [10], where the notion of p-convergence in measure
was introduced. In this paper we investigate a structure related to the vector space M of all
converging sequences of measurable functions.

Let (Γ,Σ, μ) be an arbitrary measure space, where μ is a [0,∞]-valued measure, and
let fn, f : Γ → �, n = 1, 2, . . ., be measurable functions.
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We adopt the following usual terminology. By the notation fn
μ→ f we denote that the

sequence of measurable functions (fn)n converges in measure to f . Also for a pair ((fn)n, f)
and ε ≥ 0 we set

Aε
n =

{
γ ∈ Γ :

∣
∣fn

(
γ
) − f

(
γ
)∣∣ ≥ ε

}
=
{∣∣fn − f

∣
∣ ≥ ε

}
, n = 1, 2, . . . . (1.1)

We denote by � the set of all positive integers and c+0 the set of all real-valued nonnegative
sequences (εn)n converging to 0. Also for p > 0 we set

�+p =

{

(εn)n : εn ≥ 0 for n = 1, 2, . . . ,
∞∑

n=1

ε
p
n < ∞

}

. (1.2)

Convergence in measure is characterized by elements (εn)n of c
+
0 as follows:

fn
μ−→ f iff there exists (εn)n ∈ c+0

such that lim
n→∞

μ
(
Aεn

n

)
= 0.

(1.3)

Taking into account that the sequence (εn)n above expresses the quality of approximation of
(fn)n to f , in [10] the authors introduced the following notion of convergence which we call
p-convergence in measure.

More precisely we say that, given p > 0, (fn)n p-converges in measure to f (and we

write fn
p−μ−−−→ f) if and only if there exists an element (εn)n ∈ �+p such that

lim
n→∞

μ
(
Aεn

n

)
= 0. (1.4)

Obviously p-convergence in measure implies convergence in measure. It is proved (see [10,
Preposition 2.3]) that if the measure μ is not trivial and 0 < p < q, then p-convergence in
measure implies q-convergence inmeasure, while the converse implication in general fails. So
p-convergence in measure is strictly stronger than convergence in measure. As a consequence
of the above result we have that

M0 �Mp �Mq �M∞ �M, 0 < p < q, (1.5)

where

M =
{(

fn
)
n
: fn

μ−→ 0
}
,

Mp =
{(

fn
)
n
: fn

p−μ−−−→ 0
}
, p > 0,

M0 =
⋂

p>0

Mp, M∞ =
⋃

p>0

Mp.

(1.6)

We note that M is considered as a vector space under usual operations and the notation
N �M means that N is a proper vector space of M.
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2. Metric Spaces of Sequences of Measurable Functions

In a natural way p-convergence in measure induces an equivalence relation on the vector
space M = {(fn)n : fn

μ→ 0}. We consider M as a subspace of L0(Γ)�, ℵ0 copies of the vector
space L0(Γ) of all real-valued measurable functions with the usual operations.

Definition 2.1. Let (fn)n, (gn)n be elements of M. We say that (fn)n, (gn)n are equivalent
((fn)n ∼ (gn)n) if and only if for each positive real number p there exists an element (εn)n
of �+p such that

lim
n→∞

μ
([∣∣fn − gn

∣∣ > εn
])

= 0 (2.1)

or equivalently

fn − gn
p−μ−−−→ 0, ∀p > 0 ⇐⇒ (

fn − gn
)
n
∈ M0. (2.2)

Since M0 is a vector subspace of M the relation ∼ is an equivalence one. We set M =
M ∼= M/M0.

In the sequel we will define a metric d on M under which M turns to be a complete
metric space, similarly as a Fréchet space.

Definition 2.2. Let (fn)n ∈ M. We define

∥∥(fn)n
∥∥ = arctan

(
infA

(
fn
))
, (2.3)

where

A
(
fn
)
=
{
p > 0 : fn

p−μ−−−→ 0
}
=
{
p > 0 :

(
fn
)
n ∈ Mp

}
. (2.4)

By (1.5) it follows that A(fn) is an interval in �.

Remarks 2.3. (i)We note that the above setA(fn) could be empty. In this case we set ‖(fn)n‖ =
π/2.

(ii) If (fn)n ∼ (gn)n, then ‖(fn)n‖ = ‖(gn)n‖.
(Indeed, as (gn)n = (gn − fn)n + (fn)n and (fn)n ∈ Mp, it follows that (fn)n ∈ Mp if and only
if (gn)n ∈ Mp.)

(iii) We set Mp = Mp/ ∼, p > 0, and hence Mp is a proper vector subspace of M and
the following strict inclusion holds:

Mp1 �Mp2 if 0 < p1 < p2 (see (1.5)). (2.5)

Proposition 2.4. The function ‖ ‖ : M → � satisfies the following properties:

(i) ‖(fn)n‖ ≥ 0

(ii) ‖(fn)n‖ = 0 iff (fn)n ∼ (0)n
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(iii) ‖a(fn)n‖ = ‖(fn)n‖ for a/= 0

(iv) ‖(fn + gn)n‖ ≤ ‖(fn)n‖ + ‖(gn)n‖.

Hence, M becomes a metric space and the metric d((fn)n, (gn)n) = ‖(fn − gn)n‖ is
invariant under translations.

Proof. (i) It is obvious.
(ii) If (fn)n ∼ (0)n, then ‖(fn)n‖ = 0.

Conversely, if ‖(fn)n‖ = 0, then, (fn)n
p−μ−−−→ 0 for each p > 0, and hence (fn)n ∈ M0 and

consequently (fn) ∼ (0)n.
(iii) For a/= 0, it holds that

Aεn
n =

[∣∣fn
∣∣ ≥ εn

]
=
[∣∣afn

∣∣ ≥ |a|εn
]
,

∞∑

n=1

ε
p
n < ∞ ⇐⇒

∞∑

n=1

(|a|εn)p < ∞,
(2.6)

for each sequence (εn)n of positive real numbers. Hence,

(
fn
)
n

p−μ−−−→ 0 iff
(
afn

)
n

p−μ−−−→ 0, (2.7)

which means that ‖(fn)n‖ = ‖(afn)n‖.
(iv) The inequality is obvious if ‖(fn)n‖ = π/2 or ‖(gn)n‖ = π/2.
Suppose ‖(fn)n‖ ≤ ‖(gn)n‖ < π/2. Then we conclude that A(gn) ⊂ A(fn). Hence,

(gn)n
p−μ−−−→ 0 implies (fn)n + (gn)n

p−μ−−−→ 0. SoA(gn) ⊆ A(fn + gn), which implies that

∥∥(fn + gn
)
n

∥∥ ≤ ∥∥(gn
)
n

∥∥ ≤ ∥∥(fn
)
n

∥∥ +
∥∥(gn

)
n

∥∥. (2.8)

Theorem 2.5. The space (M, d) is a complete metric space.

Proof. Let (Fn)n be a Cauchy sequence in M, where Fn = (fn,i)i, n = 1, 2, . . .. Hence, there
exists an increasing sequence of positive integers (nk)k such that

‖Fn − Fm‖ < arctan
1
k
, for n,m ≥ nk, k = 1, 2, . . . . (2.9)

This means that, for each n,m ≥ nk, there exists a sequence (εn,m,i)i of positive real numbers
with

∑∞
i=1 ε

1/k
n,m,i < ∞ such that

μ(An,m,i) −→ 0, i −→ ∞, where An,m,i =
[∣∣fn,i − fm,i

∣∣ ≥ εn,m,i

]
. (2.10)

Then,

∞∑

i=1

(
max

n�≤ n≤ nk+1
εn,nk+1,i

)1/�

< ∞, for � = 1, 2, . . . , k, k ∈ �. (2.11)
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From (2.10) and (2.11), proceeding by induction, it follows that there exists an increasing
sequence (ik)k of positive integers such that for each k we have

μ(An,nk+1,i) <
1
k

for i ≥ ik, n1 ≤ n ≤ nk+1, k = 1, 2, . . . , (2.12)

∞∑

i=ik

(
max

n�≤ n≤ nk+1
εn,m,i

)1/�

<
1
2k

, for � = 1, 2, . . . , k, (2.13)

μ

[∣
∣fnk+1,i

∣
∣ ≥ 1

k

]
<

1
k
, for i ≥ ik, (2.14)

which express the uniform convergence to zero of finite number of sequence which converges
to zero and a finite number of tails of convergence series.

We set

F =
(
fn1,1, fn1,2, . . . , fn1,i1−1; fn2,i1 , . . . , fn2,i2−1; . . . ; fnk+1,ik , . . . , fnk+1,ik+1−1; . . .

)

=
(
fi
)
i
.

(2.15)

By (2.14) it follows that F = (fi)i ∈ M.
We have to show that

‖Fn − F‖ −→ 0, n −→ ∞ ⇐⇒ ∀� ∈ � ∃n0 ∈ � :
(
fn,i − fi

)
i

(1/�)−μ−→ 0, for n ≥ n0. (2.16)

This means that we have to find n0 ∈ � and for n ≥ n0 a sequence of positive real numbers
(εi)i with

∑∞
i=1 ε

1/�
i < ∞ such that

μ(Ai) −→ 0, i −→ ∞, where Ai =
[∣∣fn,i − fi

∣
∣ ≥ εi

]
. (2.17)

Indeed let � ∈ �, n ≥ n0 = n� , and n� ≤ nk < n < nk+1 for some k ∈ �.
We set

εi = 1, if i = 1, 2, . . . , ik − 1,

εi = εn,nk+1 ,i, if i = ik, . . . , ik+1 − 1,

εi = εn,nk+2 ,i, if i = ik+1, . . . , ik+2 − 1,

(2.18)

and so on.
It holds that

∞∑

i=1

ε1/�i ≤ (ik − 1) +
1
2k

+
1

2k+1
+ · · · < ∞ (

by(2.13)
)
. (2.19)

Also, for im ≤ i ≤ im+1, m ≥ k, we have that

Ai =
[∣∣fn,i − fi

∣
∣ ≥ εi

]
=
[∣∣fn,i − fnm+1,i

∣
∣ ≥ εn,nm+1,i

]
(2.20)
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(by definition of fi). Hence, by (2.12), we take

μ(Ai) <
1
m
. (2.21)

This implies (2.17), and the proof is complete.

Remarks 2.6. It is easy to see the following

(a) The addition + : ((fn)n, (gn)n) �→ (fn + gn)n is continuous.

(b) The translation T(gn)n : (fn)n �→ (fn)n + (gn)n = (fn + gn)n is a homeomorphism.
Hence, the system of neighborhoods of (0)n determines the topology of (M, d).

(c) The multiplication operator

Ha :
(
fn
)
n
�−→ a · (fn

)
n
, a /= 0, (2.22)

is a homeomorphism.

(d) The multiplication (a, (fn)n) �→ a(fn)n is not continuous. (If an → 0, an /= 0, n =
1, 2, . . ., and F = (fn)n ∈ M, F /= 0, and Fn = F for n = 1, 2, . . ., it holds that

an −→ a/= 0, Fn
d−→ F, (2.23)

but ‖anFn − 0F‖ = ‖anFn‖ = ‖Fn‖ = ‖F‖� 0).

(e) The family (Mp)p>0 is a system of neighborhoods of (0)n. (Indeed, if Sr =
S((0)n, r) = {(fn)n : ‖(fn)n‖ < r} for r > 0, then for 0 < r1 < p < r2 we have
Sr1 ⊂ Mp ⊂ Sr2 .)

Though (M, d) is not a topological vector space, (M, d) is complete and the subspaces
Mp, p > 0 constitute a system of closed and convex neighborhoods of (0)n, as we will see in
the sequel (Proposition 2.7). Hence, (M, d) is something like a Fréchet space. For example,
the principle of uniform boundedness holds true, as for this principle only continuity of Ha

is needed (see [11]).

Proposition 2.7. The subspaces Mp are closed for each p > 0.

Proof. Suppose that p > 0 and (Fn)n is a sequence in Mp, where Fn = (fn,i)i, n = 1, 2, . . ., and
F = (fn)n ∈ M such that

Fn
d−→ F ⇐⇒ ‖Fn − F‖ −→ 0, n → ∞. (2.24)

Hence, there exist p′ < p and n0 such that

Fn0 − F
p′−μ−−−−→ 0. (2.25)

This implies that Fn0 − F ∈ Mp′ ⊂ Mp, and, since Fn0 ∈ Mp, it follows that F ∈ Mp.
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Proposition 2.8. M∞ =
⋃

p>0 Mp is a closed subspace ofM.

Proof. Suppose F0 = (f0,i)i /∈ M∞, then F0+Mq, q > 0 is a neighborhood of F0 and (F0+Mq)∩
Mp = ∅ for all p > 0.

Indeed, if F0 + F1 = F2 for some F1 ∈ Mq and some F2 ∈ Mp, then F0 ∈ Mr , where
r = max(p, q), which is a contradiction. Hence, (F0 +Mq) ∩M∞ = ∅, which implies that M∞
is closed.

Remark 2.9. If S((0)n, r) denotes the open sphere with center (0)n and radius r, it is easy to see
that the family

{S((0)n, r)}r>0 ∪ {F + S((0)n, r)}F/∈M∞ , r > 0 (2.26)

is an open covering of M without a finite subcovering. Hence M is not compact.
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