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We introduce a new iterative scheme and a new mapping generated by infinite family of
nonexpansive mappings and infinite real number. By using both of these ideas, we obtain strong
convergence theorem for finding a common element of the set of solution of equilibrium problem
and the set of variational inequality and the set of fixed-point problems of infinite family of
nonexpansive mappings. Moreover, we apply our main result to obtain strong convergence
theorems for finding a common element of the set of solution of equilibrium problem and the
set of variational inequality and the set of common fixed point of pseudocontractive mappings.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let A :
C — H be a nonlinear mapping and let F : C x C — R be a bifunction. A mapping T of H
into itself is called nonexpansive if ||Tx — Ty|| < ||x — y|| for all x,y € H. We denote by F(T)
the set of fixed points of T (i.e., F(T) = {x € H : Tx = x}). Goebel and Kirk [1] showed that
F(T) is always closed convex, and also nonempty provided T has a bounded trajectory.

A bounded linear operator A on H is called strongly positive with coefficient y if there
is a constant y > 0 with the property

(Ax,x) > 7| (1.1)
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The equilibrium problem for F is to find x € C, such that
F(x,y) >0, VyeC. (1.2)

The set of solutions of (1.2) is denoted by EP(F). Many problems in physics, optimization,
and economics are seeking some elements of EP(F), see [2, 3]. Several iterative methods have
been proposed to solve the equilibrium problem, see, for instance, [2—4]. In 2005, Combettes
and Hirstoaga [3] introduced an iterative scheme for finding the best approximation to the
initial data when EP(F) is nonempty and proved a strong convergence theorem.

The variational inequality problem is to find a point u € C, such that

(v-u,Au) >0, VYveC. (1.3)

The set of solutions of the variational inequality is denoted by VI(C, A). Numerous problems
in physics, optimization, variational inequalities, minimax problems, the Nash equilibrium
problem in noncooperative games reduce to find element of (1.2) and (1.3).

A mapping A of C into H is called inverse-strongly monotone, see [5], if there exists a
positive real number a, such that

(x -y, Ax - Ay) > al| Ax - Ay|” (1.4)

forall x,y € C.

The problem of finding a common fixed point of a family of nonexpansive mappings
has been studied by many authors. The well-known convex feasibility problem reduces to
finding a point in the intersection of the fixed-point sets of a family of nonexpansive mapping
(see [6,7]).

The problem of finding a common element of EP(F) and the set of all common
fixed points of a family of nonexpansive mappings is of wide interdisciplinary interest and
importance. Many iterative methods are purposed for finding a common element of the
solutions of the equilibrium problem and fixed-point problem of nonexpansive mappings,
see [8-10].

In 2007, S. Takahashi and W. Takahashi [10] introduced a general iterative method for
finding a common element of EP(F, A) and F(T). They defined {x,} in the following way:

u, x1 € C, arbitrarily;
1
F(zwy) + T (y=2n 20— x2) 20, Vy€C, (1.5)

X1 = Puf (xn) + (1= Bu)Szs, VneN,

where {f,} C [0,1], and proved strong convergence of the scheme (1.5) to z € F(T) N EP(F),
where z = Pr)neer) f(z) in the framework of a Hilbert space, under some suitable
conditions on {f,}, {1, } and bifunction F.

In this paper, by motive of (1.5), we prove strong convergence theorem for finding
a common element of the set of solution of equilibrium problem and the set of variational
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inequality and the set of fixed-point problems by using a new mapping generated by infinite
family of nonexpansive mapping and infinite real number. Moreover, we apply our main
result to obtain strong convergence theorems for finding a common element of the set of
solution of equilibrium problem and the set of variational inequality and the set of common
fixed point of pseudocontractive mappings.

2. Preliminaries

In this section, we collect and give some useful lemmas that will be used for our main result
in the next section.

Let C be closed convex subset of a real Hilbert space H, and let Pc be the metric
projection of H onto C, that is, for x € H, Pcx satisfies the property

l|xx — Pex|| =r;1€igllx—yll~ (2.1)

The following characterizes the projection Pc.

Lemma 2.1 (see [11]). Given x € H and y € C, then Pcx = y if and only if there holds the
inequality

(x-y,y-2z)>0, VzeC (2.2)

Lemma 2.2 (see [12]). Let E be a uniformly convex Banach space, let C be a nonempty closed convex
subset of E, and let S : C — C be a nonexpansive mapping, then I — S is demiclosed at zero.

Lemma 2.3 (see [13]). Let {s,} be a sequence of nonnegative real numbers satisfying

Spi1= (1 —ay)s,+6,, Yn>0, (2.3)

where {a,} is a sequence in (0,1) and {6,} is a sequence, such that
(1) 3255 an = oo,
(2) limsup,, , 64/, <0o0r 377,64 <0

then lim, _, S, = 0.

For solving the equilibrium problem for a bifunction F : C x C — R, let us assume
that F satisfies the following conditions:

(A1) F(x,x) =0, for all x € C,

(A2) F is monotone, thatis, F(x,y) + F(y,x) <0, for all x,y € C,
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(A3) forallx,y,z € C,

tlirgl—"(tz +(1-tx,y) <F(x,y), (2.4)

(A4) for all x € C,y — F(x,y) is convex and lower semicontinuous.

The following lemma appears implicitly in [2].

Lemma 2.4 (see [2]). Let C be a nonempty closed convex subset of H, and let F be a bifunction of
C x C into R satisfying (A1)—(A4). Let r > 0 and x € H, then there exists z € C, such that

F(z,y) + %(y -z,z-X), (2.5)

forall x € C.

Lemma 2.5 (see [3]). Assume that F : CxC — R satisfies (A1)—(A4). For r > 0 and x € H, define
a mapping T, : H — C as follows:

Tr(x):{zeC:F(z,y)+%<y—z,z—x>EO,V]/EC}, (2.6)

forall z € H, then the following hold:

(1) T, is single valued,

(2) T, is firmly nonexpansive, that is,

|7 (x) - T:(y) ||2 <(Ty(x)-T,(y),x-y) VYx,yeH, (2.7)

(3) F(T;) = EP(F),
(4) EP(F) is closed and convex.

Lemma 2.6 (see [14]). Let H be a Hibert space, let C be a nonempty closed convex subset of H, and
let A be a mapping of C into H. Let u € C, then for A > 0,

u=Pc(I-AA)u=ueVICA), (2.8)

where Pc is the metric projection of H onto C.
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Definition 2.7. Let C be a nonempty convex subset of a real Hilbert space. Let T;, i = 1,2,...

be mappings of Cintoitself. Foreachj =1,2,..., let aj = (ajll,zx]zl, zx;) € IxIxIwherel € [0,1]

and &/ + a), + (xé = 1. For every n € N, we define the mapping S,, : C — C as follows:

un,n+1 = I/
n n n
U, = oy T U1 +ayUy pi + (2% I,

-1 -1 -1
un,n—l = “;l Ty un,n + “;l un,n + ag I,

k+1 k+1 k+1
un,k+1 =ay Tk+1un,k+2 +a, lln,k+2 +ag I, (2.9)

k k k
un,k =y Tkun,k+1 + a, un,k+1 + as I/

2 2 2
LI,Lz = aszun,g + txzun,g; + 0631,

Sp=Uy1 = alTiU,s + ajU o + ail.

This mapping is called S-mapping generated by Ty, ..., T and a,, a1, ..., a1.
Lemma 2.8. Let C be a nonempty closed convex subset of a real Hilbert space. Let {T;}Z; be

nonexpansive mappings of C into itself with N2, F(T;) #0, and let a; = (o, al, aé) eIxIxl,

where I = [0,1], a]1 +o\<]2+ac]3 =1, zx]1 +zx; <b<1,and a{,ajz,aé €(0,1), forall j =1,2,.... For

every n € N, let S,, be S-mapping generated by Ty, ..., Ty and a, ay_1, ..., a1, then for every x € C
and k € N, lim,,_, .U, kX exists.

Proof. Let x € Cand y € N2, F(T3). Fix k € N, then for every n € N with n > k, we have

2 k k k
U1 kx = U pex||” = ||a1 Tl i1 k41X + Ay U1 k1 X + azx
k k k 2
—ay Tkun,k+1x - azlln,ka - a3x||
= |[«F (T U -T U ku -u ?
= |lay (Tl it k1 = Tl 1) + oy (Upat a1 X — Uy ey )

< af | Tl g1 X = Tl ear X[ + 8 | U 126 = U s x|

< a11<||un+1,k+1x - LIn,k+1x||2 + lxlz(||un+1,k+1x - un,k+1X||2

< <1 - lX’;) ||Un+1,k+1x - l/[n,kJrl-x”2
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N

<TT(t - @) st max = UnsaxI?
0-)
(1-x)
10-)

<TT1(1-a) (ITuax =yl + 1y - xI))*
=k

2
n+l n+1 n+l
ay Tn+lun+1,n+2x + a, un+1,n+2x + az X — x||

.
]
kN

N

2
M Tpax + (1 - h)x - x”

~

—.

n+1 T _ 2
af" (T x — x)

=~

.
=

—

N

<TT(1-ab)x =yl + lly - xI)*

Lk

-

n

<T1(1-) @l -y’

i

—

<b® D (2)x -y

(2.10)
It follows that
Utk = U jex]] < 6" D72 (2]|x — y|))
bn/z
= ponz Gl =vl) (2.11)
a?l
= FM,
where a = b'/? € (0,1) and M = 2||x - .
Forany k,n,peN, p>0, n>k, we have
||un+p,kx - un,kx” < ||un+p,kx - un+p—1,kx|| + ||un+p—1,kx - un+p—2,kx||
+eet ”un+1,kx - un,kx“
n+p-1
= Z U1,k = Ujrx|]
j=n (2.12)
n+p-1 j
a
S [N
al’l
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Since a € (0,1), we have lim,_,,a" = 0. From (2.12), we have that {U,xx} is a Cauchy
sequence. Hence, lim,, _, . .U, kX exists. O

For every k € Nand x € C, we define mapping U x and S : C — C as follows:

lim Uy ex = U kX,

n—oo

(2.13)
lim S,x = lim U, 1x = Sx.

n—oo n—oo

Such a mapping S is called S-mapping generated by T, T;,_1,... and ay,, a, 1, .. ..

Remark 2.9. For each n € N, S,, is nonexpansive and lim,, _, ,sup, . [|S,x — Sx|| = 0 for every
bounded subset D of C. To show this, let x,y € C and D be a bounded subset of C, then we
have

2
|| Snx - S,,y”2 = ”(x%(Tlun,zx ~T1U oY) + ay U pox = Upoy) + a3 (x —y) “
< a}||Tillnx = Tillnay ||* + @3 ||Unox = Unay||* + agf|x -y’

< o} [[Unax = U2y ||* + o |[Unox = Unzy || + a3l -y

(1-a3) [ Unox =~ Unay|* + @ lx -y

< (1-a) ((1- @) [Unax - Unay P + Bflx - y ) + il - ]

(1-a) (1~ @) U = Uyl + 23(1 - ) [ -y + el -y

:|N

(1 o)) |Unsx = Uy +<1_f[<1 a3>>||x y|®

j=1

.
Il
—_

:|N

I
—_

j j=1

<1 lx3>||unn+1x llnn+1y|| +<1_f[<1 a3>>||x y”

2
= [lx-y|"
(2.14)
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Then, we have that S : C — C is also nonexpansive, Indeed, observe that for each x,y € C,

1% = Syll = lim [|Syx = Suyll < [lx - yll- (2.15)
By (2.11), we have
||Sn+1x - Snx” = ”un+l,1x - un,lx”
(2.16)
<a'M.

This implies that for m > nand x € D,

m-1
[|Smx — Syux|| < Z ISj1x = Sjx||
j=n
m-1
< ZajM (2.17)
j=n
an
<
“1-a
By letting m — oo, for any x € D, we have
aTl
[|Sx = S,x|| < M. (2.18)
1-a
It follows that
li OQsup||Snx - Sx|| =0. (2.19)

n—=% xeD

Lemma 2.10. Let C be a nonempty closed convex subset of a real Hilbert space. Let {T;}2; be
nonexpansive mappings of C into itself with (\2, F(T;) # 0, and let a; = (zx{, zxé, zxé) € I xIxI, where
I=10,1], ai + a£ + aé =1, ai + aé <b<1,and ai,aé,aé € (0,1) forall j =1,2,.... For every
n €N, let S, and S be S-mappings generated by Ty, ..., Ty and ay, ap_1, ..., 00 and T, Ty1, ..., and
®An, Ay_1, . . ., respectively, then F(S) = N2, F(Ty).
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Proof. It is easy to see that (2; F(T;) C F(S). For every n, k € N, with n > k, let xo € F(S) and
x* € N2, F(T;), then we have

1Snx0 = x*||* =

||“%(T1Un,2xo = x*) + ay(Uynpx0 — x*) + az(xp — x¥) ”2
< af|TiU,px0 — x| + e[ UL px0 — x°|° + a3 [lco — x*|*

— aj oy | TiU %0 = Uy p20]|* — ayaty U2 %0 — Xol|*
< aj U pxo — x°| + a UL, 00 — x|

+ a3||xo = x°||* = ag ey | TiUn 2200 — Un2xoll” = ayas U220 — X0
= (1-ad)Unxo = x*II° + aflxo - x°I

— aj a3 | T\l 2x0 — Unpxol” - aas U220 — Xo
< (1 - a;) ((1 - a§)||un,3x0 — |2 + a2l — x*|?

~aad|[Tol 30 = U o | = adadUnaxo = xo1*) + achflxo = x|

—ajoy | T\ U0 — Uy p20]|” — ayety U 2x0 — xol|*
= (1-ad) (1 - @) Uyzx0 = x| + o (1 = b ) o = x*|1” + i lco — x|
- a3 (1= o} ) T2l xo = Unaxoll” - aad (1 - a3 ) U0 = ol

— | TiU 00 — U, 20| - ayal||Unx0 — xol|?

(1- ) so -+ (1-TT(1 ) Yo -1

j=1

.5N

]
—_

]

- a1a2<1 a3> I T2U 330 — Uy a0l — a2a3<1 tx3> U320 — x|

— aj || T\ U 230 = Un 20| — ayay |[Un2x0 — xol|
2 .
<TT(1-) ((1-8) Wnaxo = x| + @3l - x°
j=1
—ay 3| TsU 430 — U a0l — a3 |[U a0 — Xo| )
2 j 2 2
#(1-TT(-ad) Jlixo—xI* — e (1 - ad ) I Tolly 30 = Uy 30
j=1
- 33 (1= o) U0 - ol = bl T1 U 2% — Una ol — ket | U %0 = o

=f[(1 (x3><1 a3>||lln4x0—x|| +a31_[(1 a3>||x0—x||

j=1
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—a1a2H<1 113)||T3 na%xo = Uy axo|?

j=1
2 .
—a2a31—[<1 a3)||un,4x0—x0|| + 1-]"[(1-04) o — x*|2
j=1 j=1

- a1a2<1 a3> I ToU 30 — l,ln,3x0||2 - a2a3 (1 a3> U350 — xo||

—aj o) | TiU 20 = Uy p20]|* — agety U 20 — xol|*

(1= ) 1U 0 = x°[12 + 1—ﬁ(1—a’3') o - x|

j=1

.ﬁp

-
1l
—_

2 .
- “1“21_[(1 “3) IT3U 420 — n,4x0|| - “2“31_[(1 - “é) 1,420 = x0||2
j=1 j=1

— alaz <1 LX3> ||T2Un 3X0 — Lln,3x0||2 - a2a3 <1 zx3> ||l,In 3X0 — xo||

- d%a;”Tlun,zXo - unrsz” zxza3||lln 2X0 — JC()“

k+1 . ) k+1 . )
<TT(1-a))nkoxo - x'1P+ ( 1-TT(1-ab) )l -l

-1 i1

k
. 2
’1<+1 +1H<1 - aé) 1 Ties1Up k20 — Uy kX0
=1

k .
a’z"'la’;”l_[(l - aé) U k420 = xo|*
j=1

=~

-1

k  k

- aja; | (1 - txé) I Tl 10 = U a1 0]

amt

=~

1 )
- a’z‘a’g (1 - zx’3> [|U, k10 — xol[?

-
Il
—_

k=2 .
—ay oy 11_[(1 - “é) I Tk U xo = U jexol?
j=1

»
I\)

— a1k (1 - aé) U k0 = 0]

.
Il
—_
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2

j 2

—alaZH(l &) Tl 260 = U a0 = a3 T (1 = o} ) UL, 40 = x|
j=1

j=1
-a a2<1 a3> I TaU 30 — Uy axo|* - 062063<1 “3) [U3x0 = x0|>

— alal| TiU,, %0 — Uy px0|1* — e U200 — X0

n n
j 2 j 2
<TT( - ) Unmaxo—x 1P+ ( 1-TT(1-ad) Jllxo -l
= 1
n-1 X )
- a1 (1 - @) 1Tl i1 X0 - Uppir o
j=1
n-1 X )
- il [T(1 - &) Uy ir xo — x|
j=1

K
j 2
- a’f*la’;*lH(l - aé) [ Th1Un kes2x0 = U s 0|
j=1

k
j 2
1T (1- b ) Urao = ol
j=1

77.

-1 .
(1 - aé) I Tl 10 = U ka1 X0

|
R
H?r-
N»
-
I
N

=~

-1
j 2
- kb T (1- &) Ity 60 — x|

.
]
—_

=~

-2

k-1 k-1

—ay oy <1 - aé) | T U xex0 — l,I,,,kon2

s

».
I\)

j 2
(1~ ) Lo —

-
Il
—_

—“1“21_[(1 “3) |T3U 40 — U axo||* — aax H(l “3)||Un,4xo—xo||

j=1

2
~ e (1- &) I Tolly 30 — U 30]” = o (1 - ) UL 320 = ol

11
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— aj || T\ U, 230 — U0l — ayay |[Un2x0 — xolI
= [lxo — x*|I?
n-1 i )
- “?“; <1 - “;) ||Tnun,n+1x0 - un,n+1x0”
j=1

K
j 2
eyt ] <1 - tlé) [ Th1U i kes2x0 = U s 0|
j=1

k
j 2
- aé*lzx’;*ln(l - aé) IU k20 = X0l
j=1

=~

-1

- a1 az (1 “3) ITeel k10 — U, k+1x0||

::l

k-1
] 2
- aya; (1 - “é) IU k120 — Xol|
j=1
k-2 _ .
-y 11_[(1 - “é) (I TkaUin kX0 = U kol
j=1

»
N

j 2
b (1 ) Ui —

-
Il
—_

“1“21_[(1 “3>||T3un4x0— n,4xo|| —ﬂz H(l a3>||llnl4x0 —x0||
j=1 j=1

- a1a2<1 a3> U, 3x0 — Lln,3x0||2 - a2a3 (1 a3> U350 — xoll?

- aj | TiU 260 — U201 — aya|[Un 20 — X0
(2.20)
For k € N and (2.20), we have
k-2 _
7S T (1= o) 1Ugaxo = xoll” < llxo = x> = [|Snaxo = °I1, (2.21)
j=1

asn — oo. This implies that U, xxo = xp, for all k € N.
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Again by (2.20), we have

k- .
S [T(1 - ) 1Tl xo = Upgaxol < o = 2 = S0 =212, (222)

j=

—

asn — oo. Hence,

=~

1 )
| (1 - a;) I Tl oo 10 — Uos 10| < 0. (2.23)

-
Il
—_

From Uy xxo = xp, for all k € N, and (2.23), we obtain that Trxxg = xp, for all k € N. This
implies that xo € (72 F(T}). O

3. Main Result

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let F be bifunctions
from C x C into R satisfying (A1)—(A4). Let A : C — H be a a-inverse-strongly monotone mapping.
Let {T;}2; be infinite family of nonexpansive mappings with § = N2 F(T;) NEP(F) N VI(C, A),

and let p; = (a), apab) € I xIx I, wherel = [0,1], aj +ay+a} =1, &) +a} < b <1,

and a{,ajz, cxé € (0,1) forall j =1,2,.... For every n € N, let S,, and S be S-mappings generated

by T,,..., Ty and py, pn-1,...,p1 and T, Tyq, ..., and py, pn-1, . .., vespectively. Let {x,}, {u,} be
sequences generated by x1,u € C and

F(un,y) + l(y —Up, Un—Xn) 20, YyeC,
T 3.1)

Xn+1 = U + P Pc(I = AA)xy + YuSnPc(I = AA)u,, Vn>1,

where {an}, {Pn}, {yn} € (0,1), such that a + . + v, = 1, B, € [c,d] C (0,1) 1, € [a,b] C
(0,2a), A C (0,2a). Assume that

(i) imy, oty =0 and X7y = oo,
(ii) >0y a;l < oo,
(iii) Z;.lozl [Tne1 = 7ul, Zle |Yn+1 - Ynlf Z;.zozl lan1 — anl, 2120:1 |,Bn+1 - ﬂn| < oo,

then the sequence {x,}, {u,} converge strongly to z = Pzu.
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Proof. First, we show that (I -1 A) is nonexpansive. Let x, y € C. Since A is a-inverse-strongly
monotone and A < 2a, we have

(T - 14)x - (T -2 A)y|]* = [|x - y - MAx - Ay)||?
= |x - yl* - 20(x - y, Ax - Ay) + 1?|| Ax - Ay’
< |l = y||” - 2a0]| Ax - Ay|)* + 22| Ax - Ay||® (3.2)
= [lx = y|I* + A - 2a) | Ax - Ay|]®

<Jlx-yl*

Thus, (I - LA) is nonexpansive. We will divide our proof into 5 steps.

Step 1. We shall show that the sequence {x,} is bounded. Since
1
F(un,y) + r—(y —Up, Uy —Xxy) 20, YyeC. (3.3)

By Lemma 2.5, we have u,, = T, x, and EP(F) = F(T},).
Let z € §. By nonexpansiveness of I — LA and T;,, we have

lx¢n+1 = 2|l = llanu + B Pc(I — LA) Xy + ¥ Sy Pc(I — AA)u, — z||
= |lan(u = z) + Pu(Pc(I = XA)xp = 2) + Yu(SuPc(I = XA)uy, — z)||
< apllu =zl + ullPe(I = XA)xy = z|| + yull SuPc(I = AA)uy - 2]
< anllu =zl + Bullxn — 2|l + yallun - z|| (3.4)
= anllu =zl + Pullxn — 2l + ¥l T, xn — 2]
< anllu - z|| + (1 - an)llxn - 2|l

< max({|ju - z||, |xn - z||}-

By induction, we can prove that {x,} is bounded and so is {u,}.
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Step 2. We will show that lim,, ., o, [|x4+1 — x5 || = 0. By definition of x,, we have

%041 = Xull = ||ttt + B Pc(I = AA) Xy + ¥nSnPc(I = LA)uy
—tp1u = 1 Pe(I = LA)xp-1 = Y1 Spo1 P (I = LA)uy ||
= |[(etn = an-1)u + puPc(I = AA)xy = Bu1Pc(I = AA)xy + Bp1 Po(I = LA)x,
+YuSnPc(I = XA)uy = Yn1SaPe(I = AA)uy + Y1 SpPe(I — LA)u,
~Pu1Pc(I = AA) X1 = Yn1Su1Pe(I = AA)uy 4 ||
= |[(an = an-1)u+ (B = Pu1) Pc(I = LA)xy,
+ Pr-1(Pe(I = LA)xy = Po(I = AA)Xy-1) + (Yn = Yn-1) SnPc(I = LA)uy,
+Yn-1(SnPc(I = MA)uy — Sp1 Pe(I = LA) 1) ||
< lan = anallull + | Bn = Bua [P (I = LA)x,| 35)
+ Pr-1l|Pc(I = LA)x, = Po(I = XA) Xl + |Yn = Yu1 [1SnPe (I = LA)uy |
+ Yn-1|SnPc (I = XA)uy — Sy Pe(I = MA) w1 ||
<y = analllull + |Bu = Bua [IPe(I = LA) x|
+ Buctlln = Xnall + |Yn = Yuo1 | ISaPe(I = LA)uy||
+ Yn-1([SnPe(I = AA)uy — SuPe(I = LA)up ||
+|SuPc(I = AA)up-1 = Sp-1 Po(I = LA) uy-1]])
< lan = an-alllull + |Bn = P ||Pc(I = LA) x|
+ B llxn = Xl + |yn = Ynot | 1SaPe(I = XA)uy||
+ Yot llttn — Upa || + Yu1l|SnPe(I = AA)uy—1 — SpaPe(I = AA) 1,1

Since u, = T;,x,, by definition of T,,, we have
1
F(T),xn,y) + r—<y =Ty %n, Ty, xn —x4) 20, VyeC. (3.6)
Similarly,

1
F(Tr,,+1xn+1r y) + ﬁ(V =T, Xne1, Trp X1 — xn+1> >0, Vy eC. (3.7)
n+
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From (3.6) and (3.7), we obtain

1
F(Tr,,xn/ Tr,m xn+1) + T_<Tr,,+1 Xn+1 — Trnxn/ Trnxn - xn> >0,
n

1 (3.8)
F(Trnﬂ Xn+1, Tr,,xn) + ﬁ <Trnxn - Trn+1xn+1/ Trn+1xn+l - xn+l> > 0.
n+
By (3.8), we have
1 1
_<Trn+1xn+l - Trnxn/ Trnxn - xn> + _<Tr,,xn - Trnﬂxn-%—l/ Trnﬂxn-%—l - xn+1> > 0. (39)
n T+l
It follows that
T, - T, -
<Tr,,xn “T, X, raa Xl ~ Xnal L, Xn xn> > 0. (3.10)
Tnt1 n
This implies that
T,
0< <Tr,,+1xn+l =T, %0, Ty xn = Ty X1 + T Xpi1 — X — " nl (Trnﬂ Xn+l — xn+1)>- (3.11)
n+

It follows that

2 n
”Trnﬂ Xn+l — Tr,,xn” < <Tr,,+1 Xn+l — Trnxn/ Tr,,ﬂ Xn+l — Xp — r_(Tr,,H Xn+l — xn+1)>
n+1

Tn
= < e X+l = Ty Xy Xppa1 — X + <1 - )(Trnn Xn+l — xﬂ+1)>

Tn+1

< ||Trn+1 Xn+l = Trnxn”

Tn
Xn+1l — Xp t <1 - >(Trn+1 Xn+l — xn+1)
Tn1

1-In

< T e - menn(uxml x|+ T, 0 - xmn)

Tn+l

n+1

1
= || T, Xns1 = T, Xl <||xn+1 = Xl + r_|rn+1 = Tl Ty X1 — xn+1||>
< ”Tr,,ﬂ Xn+l — Trnan(

1
002 = %l + 1 = 1l Ty 1 = 5]

(3.12)
It follows that

1
||un+1 - un” < ||xn+1 - xn” + E|rn+1 - rn|||un+l - xn+1||- (313)
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Putting v, = Pc(I — LAA)u,, then {y,} is bounded. By definition of S,,, for all n € N, we have

1Snvn-1 = Sn-1Yn-1ll = {UniYn-1 — Up-11Yn-1ll
= |l TaUyoyn1 + ayU o Yn1 + Aiyn1
—a iU 1201 — U p-12Yn-1 — a3yn|

< 1- >||un2yn 1_ n— 1,2yn—1”

1- ><1 a3>||lln3yn 1= Un-13Ynll

1] IN
z /N /N
N

<1 “3>”un3yn 1= U 1,3]/71—1”

= (3.14)
n-1
H(l a3>“unn]/n 1= n 1,nyn—1”
j=1
< ||un,nyn—1 - yn71||
= ”“TTnyn—l + (1 - a?)yn—l - ]/n—l”
= a;l”Tnyn—l - ]/n—l“
< af2||yn1 - z|.
Substituting (3.13) and (3.14) into (3.5), we have
1241 = Xl < lan — apa|||ull + |ﬂn _ﬂn—1|”PC(I - LA)x,||
+ ﬁn—l“xn - xn—l” + |Yn - Yn—ll“SnPC(I - )‘A)un”
+ Yn,1||un - un,1|| + yn,1||SnPC (I - )LA)un,l - Sn,lpc(I - )LA)un,l ||
<y = ana|llull + | B = Bua [IPc(I = LA)x, |
+ ﬁn—l”xn — Xn-1 ” + |Yn ~ Yn-1 I ||SnPC(I - ~)LAA)un”
1
3ot (It = %l + 11t = Pl = )
(3.15)

+ 2ypa7 |Yn-1 = zl|
<law = analllull + |Bn = Bua|lIPc(I = LA)x, ||
+ (1= an-1) 10 = Xncall + [y = Y1 | ISnPe (I = LAYy, |

1
+ E|7’n+1 = Tullltns1 = Xnaa || + 2yn-1a [Yn-1 — z||
< (T =an-1)llxn — x|l + |ﬁn _ﬁn—1|M1

1
+ |ty — a1 | My + |yn = Yuor [ M1 + E|rn+l = Tu| M + 2a{ M3,
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where My = maxuen{|[ul, [|Pc(I = AA)xul, [[SnPc(I=AA)unll, lun—xull, lyn—zll}. By (3.15),
Lemma 2.3, and conditions (i)—(iii), we obtain

Jim 12641 = x| = 0. (3.16)

Step 3. We shall show that lim,, _, o, ||, — || = 0.
Let v € §. Since u,, = T;,,x, and T}, is firmly nonexpansive, we have

o = T, xall” = | T, 0 = Ty, 2l

< (T, v =Ty, xn,0—xy) (3.17)

1
)

(I, = oI + 1 = 01 = 1Ty, 00 = ).
Hence,
i = I < 160 = 01 = it = (3.18)

By (3.18), we have

l%pe1 —0|* = ||an(u =) + Bp(Pc(I = LA)xy, — ©) + yn(SpPc(I = AA)u, — v)||2

< anllu =0l + ullxn = 0l + yalln - ol

, , , , (3.19)
< anllue =0l + Balln = oI + ¥ (0w = I = [l = ]
2 2 2
< ayllu = ol + [0 = 0| = Yulltn =
it implies that
Yallttn = 20l < aullte = 0| + [J2y = 0| = |21 = 0]
< i = 0| + (I = 0l = lPnes = o) (n = 0ll + i = 0l)  (3:20)

< ayllu = o|* + [0 = Xpaal| (0 = 0|l + 001 = o).
By (3.16) and condition (i), we have

Jim [l = un[| = 0. (3.21)
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Let z € § and by nonexpansiveness of I — LA, we have
Pnst = 2I” < ulle = 2| + Bull Pe(l = AA)x = 2I1° + Yl SuPe(I = AA)uy — 2
= BuyullPc(I = LA)xy = SpPc(I = AA)uy||

< aullu = 2|* + (1= an) |25 - 2|

(3.22)
- ﬁnYn“PC(I - AA)xy, — Sy Pc(I - )LA)unH
< atyllu = 2|7 + ||x, — 2l
- ﬁnYn”PC(I - XA)x, = 5, Pc(I — AA)uy||.
It implies that
ﬁnYn”PC(I - )LA)xn - SnPC(I - /\A)un”
< an”u - Z”2 + ”xn - Z”z - ”xn+1 - Z||2
) (3.23)
= apllu—z||” + (|xn = 2|l = |xns1 = 2l (2 = 2[| + | X041 = 2])
= ayllu = z|* + [0 = Xpa1 | (130 = 2|| + 12041 — 2I]).-
By (3.16) and condition (i), we have
lim || Pc(I - AA)x, — SpPc(I = LA)u,|| = 0. (3.24)
Since
|[Pc(I — AA)x), — SpPc(I — LA)xy|| < [|Pc(I = LMA)x, — SuPo(I — AA)u,||
+ [|SuPc(I — AA)u,, — S, Pc(I — LA)x,|| (3.25)
<|[Pe(I = AA)xy = SpPe(I = AMA)ug|| + |un — xal|,
by (3.24) and (3.21), we have
lim [|[Pc(I = AA)x, — SpPc(I — LA)x,| = 0. (3.26)
Since
Iy = Po(I = AA) x|l < [ln = Xpia || + [ X041 = Pe(I = AA)x, ||
< ||xn _xn+1” +an”u_PC(1_-XA)xn” (3.27)

+ Yn“SnPC(I - AA)uy — Pc(I = MA) x|,
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by (3.24), (3.16), and condition (i), we have
lim ||x,, — Pc(I = LA)x,]|| = 0.

Since

|2 = SpPc(I = XA)uy|| < |0 — Xpaa || + | %01 = SnPc (I = LA) ||
< lxen = xuaall + anllu = SpPe(l — AA)uy,||

+ ﬂn”PC(I - AA)x, = SpPc(I = LA)u,l|,
again by (3.24), (3.16), and condition (i), we have

lim [|x, — SpPc(I = AA)u,]|| = 0.

Since

(3.28)

(3.29)

(3.30)

|y — SuPc(I = AA) x| < ||xy — SuPc(I — MA)uy|| + ||SnPc(I — AA)uy, — Sy Pe(I — LA)x,||

<|lxn = SpPc(I = MA)uy|| + |lun — x4l

by (3.21) and (3.30), we have

1im [|x,; — SpPe(I — AA)xn]| = 0.

Step 4. Putting zy = Pzu, we will show that

lim sup(u — zo, x, — z9) <0.

n—oo
To show this inequality, take a subsequence {x,,, } of {x,}, such that

lim sup(u — zo, x,, — zo) = lim sup(u — zo, X, — z0)-

n—oo m— oo

(3.31)

(3.32)

(3.33)

(3.34)

Without loss of generality, we may assume that x,,, — wasm — oo where w € C. By
nonexpansiveness of Pc(I — 1A), (3.28), and Lemma 2.2, we have w € F(Pc(I — 1A)). By
Lemma 2.6, we obtain that w € VI(C, A). Since ||u,, — xn,|| — 0as m — oo, we have

Uy, — w as m — oo. Since

F(un,y) + rl(y—un,un -x,) 20, VyeC.

(3.35)
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By (A2), we have

%(y —Un, Uy — Xn) > F(y,u,), VyeC. (3.36)
In particular,
1
<y_”nmrr_(unm _xnm)> 2 F(y,unm). (3.37)

By condition (A4), F(y, -) is lower semicontinuous and convex, and thus weakly semicontin-
uous. By (3.21) imply that (1/7,,,) (4, — Xpn,,) — 0 in norm. Therefore, letting m — oo in
(3.37), we have

F(y,w) < lim F(y,u,,) <0, VYyeC. (3.38)

Replacing y with y; := ty + (1 - H)w, t € (0,1], we have y; € C, and using (Al), (A4), and
(3.38), we obtain

0=F(y,y:) <tF(yr,y) + 1 -)F(y1,w) <tF(yiy). (3.39)

Hence, F(ty + (1 -Hw,y) 2 0, for all t € (0,1] and for all y € C. Letting t — 0% and using
assumption (A3), we can conclude that

F(w,y) >0,y €C. (3.40)

Therefore, w € EP(F).
We will show that w € (2, F(T;). By Lemma 2.10, we have F(S) = N2, F(T;). Assume
that w # Sw. Using Opial s’ property, (3.32), w € F(Pc(I — LA)), and Remark 2.9, we have

lim inf||x,,, — w|| < lim inf||x,, — Sw]||
< liminf(|[xy,, — Sy, Pc(I = AA) x4, ||
4 1S, Pl = AA)x,, = Sy, Pe(I - LAY
+[|Sn, Pc(I = LA)w - Swl|)

(3.41)
= liminf(||x,, — Su, Pc(I — LA)x,, ||
m— oo

+11Sn, Pc(I = AA)xn, — Sn, Pc(I - AA)w]|
S, = Seoll)

< liminf||x,, — w|-.
m— oo

This is a contradiction, then w € N2, F(T;). Hence, w € §.
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Since x,,, — w and w € §, we have

lim sup(u — zo, X, — zo) = imsup(u — 2o, x,,, — 20) = (U — zo,w — z9) < 0. (3.42)

Step 5. Finally, we show that {x,} and {u,} converse strongly to zg = Pzu. Putting zo = Psu,
by nonexpansiveness of Pc(I — 1A), S,,, and T, we have

%1 = 2oll* = ||@n (1 = 20) + Bu(Pc(I = LA) Xy = 20) + Yu(SnPc(I = AA)u, — zo)||2
<||Bn(Pc(I = LA)xy — 20) + Yu(SuPc(I = LA)uy, — zo)”2 + 20, (U — Zo, Xps1 — Z0)
< PullPe(I = XA)xy = zol* + Yull SuPe (I = LAYy = zol|* + 26t {1t = 20, Xns1 = Z0)
< Bullxn = Zoll* + ¥ull Tr, n — Z0lI* + 22 (1 — 2o, X1 — 20)

< (1= an)||xn = zoll* + 20, (1 — 20, X1 — Z0)-
(3.43)
O

From Step 4 and Lemma 2.3, we obtain that {x,} converse strongly to zy = Pzu. By
using (3.21), we have {u,} converse strongly to zo = Pzu.

4. Application

Using our main theorem (Theorem 3.1), we obtain the following strong convergence
theorems involving infinite family of x-strict pseudocontractions.

To prove strong convergence theorem in this section, we need definition and lemma
as follows.

Definition 4.1. A mapping T : C — C is said to be a x-strongly pseudocontraction mapping,
if there exists x € [0, 1), such that

|Tx = Ty|)* < ||x - y||* + || -T)x - I -Dy|’, V¥x,yeC. (4.1)

Lemma 4.2 (see [15]). Let C be a nonempty closed convex subset of a real Hilbert space H and
T : C — Cax-strict pseudocontraction. Define S : C — C by Sx = ax + (1 — a)Tx for each x € C.
Then, as a € [x,1) S is nonexpansive, such that F(S) = F(T).

Theorem 4.3. Let C be a nonempty closed convex subset of a Hilbert space H. Let F be
bifunctions from C x C into R satisfying (A1)—(A4). Let A : C — H be a a-inverse-strongly
monotone mapping. Let {T;}2, be infinite family of w;-pseudocontractions mappings with § =
Nicy F(T;) NEP(F) N VI(C, A). Define a mapping Ty, by Ty, = xix+(1-x;)Tix, for all x € C, i €N,
and let p; = (a]l,aé,aé) € I x1IxI, where I = [0,1],0({ + aé + aé = 1,a§ + tlé <b<x<l1,and

aj,ay,al € (0,1) forall j = 1,2,.... For every n € N, let S, and S be S-mappings generated by

Teps---» Ty and pu, pu-i,...,p1and Ty, Ty, ., ..., and py, pu-1,..., respectively. Let {x,}, {u,} be
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sequences generated by x1,u € C and

F(un,y) + l(y —Up, Un—Xn) 20, YyeC,
n (4.2)

Xn+1 = U + P Pc(I = XA)xy + YuSnPc(I = AA)u,, Vn>1,

where {a,}, {Pn}, {yn} € (0,1), such that a, + f +yn = 1, B € [c,d] C (0,1)r, € [a,b] C
(0,2a), A C (0,2a). Assume that

(i) imy oty =0 and >7 aty = oo,
(i) X2 af < oo,

(iii) Zf:l [Tns1 = 7l Z:loﬂ |Yn+1 - Yn|r Z;ﬁl o1 — anl, Zle |ﬁn+1 - ﬂn| <o,

then the sequence {x,}, {u,} converges strongly to z = Pzu.

Proof. For every i € N, by Lemma 4.2, we have that T}, is nonexpansive mappings. From
Theorem 3.1, we could have the desired conclusion.
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