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We present a class of numerical methods for the reaction-diffusion-chemotaxis system which
is significant for biological and chemistry pattern formation problems. To solve reaction-
diffusion-chemotaxis systems, efficient and reliable numerical algorithms are essential for pattern
generations. Along with the implementation of the method of lines, implicit or semi-implicit
schemes are typical time stepping solvers to reduce the effect on time step constrains due to the
stability condition. However, these two schemes are usually difficult to employ. In this paper, we
propose an adaptive optimal time stepping strategy for the explicit m-stage Runge-Kutta method
to solve reaction-diffusion-chemotaxis systems. Instead of relying on empirical approaches to
control the time step size, variable time step sizes are given explicitly. Yet, theorems about stability
and convergence of the algorithm are provided in analyzing robustness and efficiency. Numerical
experiment results on a testing problem and a real application problem are shown.

1. Introduction and Background

The reaction-diffusion-chemotaxis system is the most common model used to describe chem-
ical and biological processes and the most successful model used to describe the generation
of pattern formations. Numerical simulation of such system is necessary because complicated
chemotaxis terms and highly nonlinear reaction terms increase the difficulty on finding
analytical solutions for realistic systems. Even though, some of the early chemotaxis models
had analytical solution or one-dimensional simulation with reduced models [1, 2], the
development of numerical methods for solving chemotaxis systems does not seem sufficient
comparing with other type of PDEs systems. Since interesting patterns may emerge and
evolve before they reach steady state [3–8], some particular heed needs to be paid to the
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numerical methods to ensure that the numerical simulated patterns literally obey primary
model equations [5, 8].

Chemotaxis is a directed motion, shown in motile organism, which moves toward
or away from certain chemical or environment. It has been observed in microorganism,
plants, animals, even in blood vessels of cancer tumors. For bacteria, chemotaxis was first
discovered in the lab by Wilhelm Pfeffer and his associates in E. coli. in 1884 [9]. Besides
the random motion of bacteria, they also show directed random movements in response
to some higher concentration of oxygen. Keller and Segel [1] construct the first differential
chemotaxis models. They extend the reaction-diffusion model with a convection term to
simulate chemotaxis. Based on their work, many models are constructed, especially on the
development of bacteria colonies [3–8, 10].

The general form of the reaction-diffusion-chemotaxis is given by [11].

ut = DuΔu +∇(uχ(p)∇p
)
+ f
(
p, u
)
. (1.1)

Here, u represents the microorganism (bacteria) density; p stands for chemoattractant
concentration and is given or obtained from another equation. f is the reaction term which
models the interactions between the chemicals. The diffusion term, DuΔu, imitates the
randommotion of particles with positive constant diffusivityDu.∇· (uχ(p)∇p) describes the
directed random movement of particles p that are modulated by the concentration gradient
of the chemoattractant. The chemotaxis parameter function, χ, indicates the strength of the
chemotaxis, which is given by the Keller-Segal model.

χ(x) =
C0

(C1 + x)s
, (1.2)

where C0 and C1 are positive constants and s ≥ 1 is an integer power. Observe that
limx→∞χ(x) = 0 which indicates that particles tend to stay where they are when the local
concentration of chemoattractant is large.

The basic idea for illustrating patterns using reaction-diffusion-chemotaxis systems
is to demonstrate that eigenvalues of local linearization that are responsible for the growth
(decay) can have positive (negative) real parts. Therefore, it can lead to growth at some places
and decay at others, resulting in spatially inhomogeneous patterns [12, 13]. Based on this
idea, we consider the method of lines (MOL) approach in this paper because it is not only the
first step for construction of many numerical methods, but also provides good explanations
about the generation of patterns through analyzing the positive (growthmodes) and negative
(decay modes) of eigenvalues. Other numerical methods used on the chemotaxis model
include the fractional step method [14], the Alternating Direction Implicit (ADI) method
[15, 16], and the optimal two-stage scheme [5, 8] listed here for readers’s references.

The MOL approach reduces the partial differential equations to a system of ordinary
differential equations (ODEs) by approximating spatial derivatives with numerous spatial
discretization methods, for example, the finite difference, finite element, and spectral
methods. The solution can be obtained after following some suitable time integrator.
According to various spatial discretization features, the computation work can be facilitated
by developing some more sophisticated robust and efficient adaptive time integrators [5, 8].

In this paper, we use standard finite differences of center difference for the Laplacian
operator and upwind differences for the chemotaxis term. The reason for adapting upwind
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differences is the stability concern.When the chemotaxis dominates, the system behavesmore
like a hyperbolic system. Then the upwind differences are more stable methods [17]. It is
worth to mention that the following time-stepping scheme can also be applied to other
discretization methods when the domain containing the eigenvalues is known or can be
estimated. The general form of the resulting ODE system after spatial discretization reads

du
dt

= M(t)u + b(t), (1.3)

where M(t) is a time-dependent matrix and b(t) is a reaction vector which also depends on
time.

Typically, the time integrator for (1.3) can be classified as implicit or explicit methods.
Generally, the numerical scheme for solving implicit method is more complicated than
explicit method since it often involves solving systems of algebraic equations or needs to
deal with the inverse of matrices. Although implicit methods allow larger step size than
explicit ones for those spatial discretization matrices only having eigenvalues with negative
real parts, the computational cost may still be high due to the complicated implementation
for implicit methods. Most importantly, the problem regarding time constrain still exists if
the spatial matrices contain very positive real parts of eigenvalues; even for the implicit
method the use of very small time steps is yet unpreventable in order to meet the stability
condition. This situation is likely to occur for pattern formation problems forwhich the spatial
discretization matrices comprise both positive and negative real parts for their eigenvalues
[5, 8]. Besides, for pattern formation problems, those positive real eigenvalues are the
unpredictable ones which evolve along with time. Bear these factors in mind, the explicit
methods are actually better ones for the reaction-diffusion-chemotaxis systems.

In the present paper, we start with reviewing the explicit m-stage Runge-Kutta
methods and then construct their adaptive optimal time steps to enhance the computation
efficiency for the chemotaxis system. The optimal time step formulas are presentable and
easy to calculate. Only some simple estimations about the bounds for the largest and
smallest eigenvalues of the discretization spatial matrices are required at each time step. The
numerical simulations on the test and realistic problems are provided. Comparison will be
made in the testing problem to demonstrate that our method is not only stable but also more
efficient than other similar methods, referring to CPU time and the number of iterations.

2. Optimal Time Steps for Explicit Runge-Kutta Methods

2.1. Time Independence ODEs Systems

Since interesting patterns are caused by the interaction between growth and decay modes,
to analyze system (1.3) and relate it to the pattern formation model (1.1), one can do the
local linearization property of the right-hand side of (1.3). The positive and negative real
eigenvalues of the linearizationmatrix then, respectively, correspond to the growth and decay
modes. Because of this reason, we will consider the corresponding ODEs induced from the
chemotaxis system and introduce our idea by starting with the constant coefficients case, that
is,

du
dt

= Mu + b (2.1)
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then generalize it to the time-dependent coefficients case. The general formulation of the m-
stage Runge-Kutta method is

k1 = f(tn,un),

kq = f

(

tn + αqΔt,un + Δtn

q−1∑

s=1

βqsks

)

, q = 2, . . . , m,

αq =
q−1∑

s=1

βqs,

un+1 = un + Δtn

q∑

s=1

γsks, q = 2, . . . , m,

(2.2)

where m is the stage number and αq =
∑q−1

j=1 βqj , q = 2, . . . , m. The subscripts n and n + 1 are
the iteration level. For simplicity, we first look at the uniform time step size Δt = tn − tn−1 for
all n. Then un ≈ u(xn) is the numerical solution at the nth step. Equations for the unknowns
γs and βqs can be obtained by matching terms with Taylor’s expansion.

We choose single-step explicit methods, which basically are Runge-Kutta methods,
because they are easy to implement and especially efficient for ODEs systems derived from
the PDEs. The method is set to be explicit since the range of eigenvalues with negative real
parts is measurable for chemotaxis systems. In [5, 8], we have developed adaptive two-
stage time stepping scheme with optimum time step sizes for solving chemotaxis system
and verified that it is reliable and more economical when comparing with other similar
methods.We conjecture that the similar strategy used in [5, 8] could be used to derive optimal
adaptive three- and four-stage methods. In the two-stage case, the size of the optimal step is
determined by the root of the first-order equation hence it is absolute optimal within one time
step. If our conjecture is correct, the sizes of optimal steps for higher-stage methods should be
the roots of some higher-order equations. But, are these adaptive step sizes absolute optimal?
And are they easy to be found as in the two-stage case?

To answer these questions, we begin our study with the three-stage Runge-Kutta
method and set b = 0 in (2.1). As in [5, 8], we first fix all the intermediate coefficients at
t = tn for the three-stage Runge-Kutta method. The general time dependence case is proposed
in the next section. Denoting M = M(tn) and applying (2.2) to the three-stage Runge-Kutta
method with all the intermediate values being fixed at tn, we arrive at

k1 = Mun,

k2 = M(1 + α2ΔtM)un,

k3 = M
(
1 + α3ΔtM + α2β32Δt2M2

)
un,

(2.3)

un+1 =
(
1 + δ1ΔtM + δ2Δt2M2 + δ3Δt3M3

)
un, (2.4)

where δi, i = 1, 2, 3, are combinations of the coefficients βqs and γs. Since u(tn+1) = eMΔtu(tn)
and assuming un is exact up to the order Δt3, we have δ1 = 1, δ2 = (1/2!), δ3 = (1/3!). Similar
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arguments also hold for RK methods with other stages. Thus, if we treat it as a standard
iterative method, (2.4) is a one-step method [18]:

un+1 =
[
1 + ΔtM +

1
2!
(ΔtM)2 + · · · + 1

m!
(ΔtM)m

]
un.

= pm(Δt)un.

(2.5)

In the case of b/= 0, (2.5) becomes

un+1 = pm(Δt)un +
(
1 +

Δt

2!
M + · · · + Δtm

m!
Mm−1

)
b. (2.6)

Denote v as the solution by solving the system with the perturbated initial condition;
we have

vn+1 = pm(Δt)vn +
(
1 +

Δt

2!
M + · · · + Δtm

m!
Mm−1

)
b. (2.7)

From (2.6) and (2.7), the accumulation error can be written as

|un+1 − vn+1| =
∣∣pm(Δt)

∣∣ × |un − vn|. (2.8)

Note that

pm(λ) = 1 + Δtλ +
1
2!
(Δtλ)2 + · · · + 1

m!
(Δtλ)m (2.9)

is called the amplification factor, where λ is an eigenvalue of M. It is obtained when a scalar
test problem, u′ = λu, is applied to the single-step method.

Suppose that λ = a + bi = Reλ + Imλi. For pattern formation problems, what we are
interested in is the long-term behavior of the solution vectors. It is important to ensure that
observed patterns are accurate in the sense that they are not coming from the accumulation
error of numerical schemes. We therefore make the following definition of stability.

Definition 2.1. An explicit single-step method is said to be stable if |pm(λ)| < 1 when a < 0 and
|pm(λ)| ≤ 1 + aΔt +O(Δt)when a ≥ 0.

Here O(Δt) means higher order of Δt. Our definition is designed to guarantee
appropriate numerical solutions for both decay and growth cases. Based on this definition,
we get restrictions on the step size. Typically, time steps are restricted either when the scheme
is explicit and a < 0 or when the scheme is implicit and a > 0 [5, 8]. Since the amplification
factors are functions of complex numbers, it is sometimes difficult to analyze. The following
theorem shows that the amplification factor can be approximated by simpler functions of a
plus some error terms instead of functions of complex eigenvalues λ. Observe that the order
of error terms indicated in Theorem 2.2 is the same as the truncation error of the m-stage
Runge-Kutta method. Therefore, we can work with this simpler function without losing the
order of accuracy.
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2.1.1. Stability Analysis and the Optimization Method

The following theorem states that the m-stage Runge-Kutta method satisfies the stability
condition automatically for a > 0 but needs constraints on Δt when a < 0.

Theorem 2.2. |pm(λ)|2 = |pm(a+bi)|2 = (1+Δta+(1/2)Δt2a2+ · · ·+(1/m!)Δtmam)2+O(Δtm+1),
wherem = 1, . . . , 4.

Proof. The proof for m = 1 is straightforward, and the proof for m = 2 is in [5, 8]. For m = 3,

∣
∣p3(λ)

∣
∣2 =

(

1 + Δta +
Δt2

2

(
a2 − b2

)
+
Δt3

6

(
a3 − 3ab2

))2

+

(

Δtb + Δt2ab +
Δt3

6

(
3a2b − b3

))2

=
(
1 + Δta +

1
2
(Δta)2 +

1
6
(Δta)3

)2

− 2(1 + Δta)
(
1
2
Δt2b2 +

1
2
Δt3ab2

)

+O
(
Δt4
)
+

(

Δtb + Δt2ab +
Δt3

6

(
3a2b − b3

))2

=
(
1 + Δta +

1
2
(Δta)2 +

1
6
(Δta)3

)2

−Δt2b2 − 2Δt3ab2 +O
(
Δt4
)
+ Δt2b2 + 2Δt3ab2 +O

(
Δt4
)

=
(
1 + Δta +

1
2
(Δta)2 +

1
6
(Δta)3

)2

+O
(
Δt4
)
.

(2.10)

For m = 4,

∣
∣p4(λ)

∣
∣2 =

(

1 + Δta +
Δt2

2

(
a2 − b2

)
+
Δt3

6

(
a3 − 3ab2

)
+
Δt4

24

(
a4 − 6a2b2 + b4

))2

+

(

Δtb + Δt2ab +
Δt3

6

(
3a2b − b3

)
+
Δt4

24

(
4a3b − 4ab3

))2

=
(
1 + Δta +

1
2
(Δta)2 +

1
6
(Δta)3 +

1
24

(Δta)4
)2

− 2
(
1 + Δta +

1
2
(Δta)2 +

1
6
(Δta)3 +

1
24

(Δta)4
)

∗
(
1
2
Δt2b2 +

1
2
Δt3ab2 +

1
4
Δt4a2b2 − 1

24
Δt4b4

)

+
(
1
2
Δt2b2 +

1
2
Δt3ab2 +

1
4
Δt4a2b2 − 1

24
Δt4b4

)2
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+

(

Δtb + Δt2ab +
Δt3

6

(
3a2b − b3

)
+
Δt4

24

(
4a3b − 4ab3

))2

=
(
1 + Δta +

1
2
(Δta)2 +

1
6
(Δta)3 +

1
24

(Δta)4
)2

+ Δt4
(
−2a2b2 +

1
12

b4
)
− 2Δt3ab2 −Δt2b2 +O

(
Δt5
)
+
1
4
Δt4b4 +O

(
Δt5
)

+ Δt4
(
−1
3
b4 + 2a2b2

)
+ 2Δt3ab2 + Δt2b2 +O

(
Δt5
)

=
(
1 + Δta +

1
2
(Δta)2 +

1
6
(Δta)3 +

1
24

(Δta)4
)2

+O
(
Δt5
)
.

(2.11)

The geometric interpretation is that, for spatial matrices M(tn), the eigenvalues with
negative real parts are assumed to be contained in the left-plane ellipse. Let us denote
1 + Δta + (1/2)Δt2a2 + · · · + (1/m!)Δtmam as pm(a,Δt). To examine whether numerically
generated patterns truly obey the original models, one needs to verify if the negative modes
(a < 0) are diminished and positive modes (a > 0) are growing accordingly. That is, when
the negative modes occur, pm(a,Δt) is less than one, and is greater than one when the
spatial matrix M(tn) happens to have positive modes. From pm(a,Δt), we find that when
a > 0, pm(a,Δt) is definitely greater than unity, hence the stability condition is automatically
satisfied; when a < 0, pm(a,Δt) is then possible to be less than unity. It is necessary to
put the limitation on the time steps to ensure the stability condition pm(a,Δt) < 1 is
preserved. Besides, the negative modes should be diminished in an effective way so that
the computational cost can be reduced. Under these consideration, we derive the optimal
time step which not only diminishes decay modes efficiently but also guarantees the stability
conditions. Before moving on the theorems about showing how we get the optimal time
steps for m-stage Runge-Kutta method, let us recall the Gerschgorin theorem [19]. It says
that for matrices with real coefficients, the distribution for the real parts of eigenvalues can
be estimated simply by the discs centered at the diagonal elements. So we can assume that
the range of negative real parts of eigenvalues of the discretized spatial matrices is known.
Here, only negative real eigenvalues are needed as they are the only ones responsible for
the stability and restriction of the step sizes for explicit schemes. We are now ready to give
relevant theorems for constructing optimal step sizes by effectively damping the negative
modes.

Theorem 2.3. For a < 0 and m being even, pm(a,Δt) > 0 and is concave up for all Δt > 0.

Proof. For m = 2, it is a second-degree polynomial with a positive leading coefficient. The
proof is straightforward. Note that p2(a,Δt) > 0.

Assume pm−2(a,Δt) > 0 for all even m. For m being even and m > 2, we have

∂2pm(a,Δt)
∂Δt2

= a2pm−2(a,Δt) > 0. (2.12)
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Figure 1: Graphs for p3(a,Δt) where a = −6: ·, a = −10: ∗, a = −12: ◦.

It follows frommathematical induction, ∂2/∂Δt2pm(a,Δt) > 0 for all evenm. Hence, pm(a,Δt)
is concave up w.r.t. Δt if m is even.

Moreover, pm(a,Δt) > 0 for all even m, because pm(a,Δt) > exp(aΔt) > 0 for even m.

Corollary 2.4. For a < 0 and m being an odd number, pm(a,Δt) < 1 and pm(a,Δt) is strictly
decreasing for all Δt > 0.

Proof. For m = 1, the proof is trivial. For m > 1, pm(a, 0) = 1 and

∂pm(a,Δt)
∂Δt

= apm−1(a,Δt) < 0 (2.13)

since a < 0 and m − 1 is an even number.
Therefore, we conclude pm(a,Δt) < 1 for all odd m and Δt > 0. Moreover, pm(a,Δt) is

strictly decreasing with respect to Δt.

Theorem 2.5 (Case for m being odd). Assume that −amax ≤ a ≤ −amin, where amax > amin > 0
are two positive numbers. Then the solution of the following min-max problem occurs at Δt = Δtopt
in which Δt satisfies fm(−amax,Δt) = 0, where m is an odd number. The min-max problem is stated
as

min
Δt>0

max
−amax≤a≤−amin

pm(a,Δt). (2.14)

Proof. Note that pm(a1,Δt) > pm(a2,Δt) if a1 > a2 and a1, a2 < 0. For any fixed Δt,
the maximum of pm(a,Δt) is obtained at pm(−amin,Δt). So the min-max occurs when
pm(−amax,Δt) = 0. Since pm(a,Δt) is continuous, pm(a, 0) = 1 > 0, and pm(a,Δt) < 0 as
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Figure 2: Graphs for p4(a,Δt) where a = −6: ·, a = −10: ∗, a = −12: ◦.

Δt → ∞, the solution exists by Intermediate Value Theorem. Furthermore, from
Corollary 2.4, pm(a,Δt) is monotone decreasing w.r.t. Δt, so the solution is unique.

Theorem 2.6 (Case for m being even). Assume that −amax ≤ a ≤ −amin, where amax > amin > 0
are two positive numbers. Then the solution of the following min-max problem occurs at Δt = Δtopt
in which Δt satisfies pm(−amax,Δt) = pm(−amin,Δt), where m is an even number (m = 2, 4). The
min-max problem is stated as

min
Δt>0

max
−amax≤a≤−amin

pm(a,Δt). (2.15)

Proof. For each fixed a, pm(a,Δt) is a quadratic-like polynomial function in Δt. Then for
any fixed Δt, the maximum of pm(a,Δt) is obtained at pm(−amin,Δt),Δt < Δtopt, and at
pm(−amax,Δt), Δt > Δtopt. So the minimax occurs when pm(−amax,Δt) = pm(−amin,Δt), that
is,

m∑

i=0

(−amaxΔt)m

m!
=

m∑

i=0

(−aminΔt)m

m!
. (2.16)

This leads to the solution.

Let us denote gm(Δt) = pm(−amax,Δt) − pm(−amin,Δt). The following theorem states
that the optimal time step is unique for m being even. For m being odd, it is shown in
Theorem 2.5.

Theorem 2.7. If m is even, gm(Δt) has only one positive real solution.
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Proof.

gm(Δt) = Δt(amax − amin)

[
m∑

i=1

(−Δt)m−1
(
am
max − am

min

)

m!(amax − amin)

]

= Δt(amax − amin)qm(Δt).

(2.17)

It follows from (2.17) and the fact that amax /=amin, to find the zeros of gm(Δt) is enough
to solve qm(Δt) = 0. Since qm(0) = 1 and qm(Δt) < 0 as Δt tends to infinity, positive real
solutions hence exist for gm(Δt) by the Intermediate Value Theorem. Moreover, qm(Δt) is
strictly decreasing (Figures 1 and 2). Therefore, the solution is unique.

2.2. Time-Dependent ODEs Systems

In the previous section, we derived simpler forms of amplification factors as well as theorems
for setting optimal time steps for constant ODEs systems. The optimal time step is obtained
under the assumption that the intermediate values of Runge-Kutta methods are fixed at
current time. Under the stability consideration, we continue our study on searching optimal
time steps and relevant schemes when the ODEs system and Runge-Kutta methods are time
dependent. The general form of the time dependent system is

du
dt

= M(t)u + b(t). (2.18)

Derivation of Adaptive Optimal Time Step for the Three-Stage Runge-Kutta Method

We start with the three-stage Runge-kutta method. As before, we first set the reaction vector
to be zero.

k1 = Mnun,

k2 = Mn+α2

(
un + β21Δtk1

)
,

k3 = Mn+α3

(
un + Δt

(
β31k1 + β32k2

))
,

un+1 = un + Δt
(
γ1k1 + γ2k2 + γ3k3

)
.

(2.19)

Here, Mn = M(tn). Expand Mn+αi at tn by Taylor expansion, then Mn+αi = Mn +
αiΔtnM

′
n + ((αiΔtn)

2/2!)M′′
n +O(Δt3), where i = 2, 3.

Therefore,

k1 = Mnun,

k2 =

[

Mn +
(
α2M

′
n + β21M

2
n

)
Δtn +

(
α2
2

2
M′′

n + α2β21MnM
′
n

)

Δt2n

]

un +O
(
Δt3n

)
,
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k3 =

[

Mn + α3M
′
nΔtn +

(
β31 + β32

)
M2

nΔtn +
α2
3

2
M′′

nΔt2n

+
(
β31α3 + β32(α2 + α3)

)
M′

nMnΔt2n + β32β21M
3
nΔt2n

]

un +O
(
Δt3n

)
.

(2.20)

Since by consistency,

3∑

i=1

γi = 1,

αq =
q−1∑

j=1

βqj , q = 2, 3,

γ2α2 + γ3α3 =
1
2
,

γ2α
2
2 + γ3α

2
3 =

1
3
,

γ3α2β32 =
1
6
.

(2.21)

Followed by (2.20) and the consistency condition, (2.19) can be simplified as

un+1 = un +
[
MnΔtn +

1
2
M′

nΔt2n +
1
6
M′′

nΔt3n

+
1
2
M2

nΔt2n +
1
2
M′

nMnΔt3n +
1
6
M3

nΔt3n

]
un +O

(
Δt4n

)
.

(2.22)

Now, we assume

3∑

i=1

τi = 1,

τ2μ + τ3 =
1
2
,

τ2μ
2 + τ3 =

1
3
.

(2.23)

Then, we can rewrite (2.22) as

un+1 = un +
[
(τ1 + τ2 + τ3)MnΔtn +

(
τ2μ + τ3

)
M′

nΔt2n +
1
2

(
τ2μ

2 + τ3
)
M′′

nΔt3n

+
1
2
(τ1 + τ2 + τ3)2M2

nΔt2n + (τ1 + τ2 + τ3)
(
τ2μ + τ3

)
M′

nMnΔt3n

+
1
6
(τ1 + τ2 + τ3)3M3

nΔt3n

]
un +O

(
Δt4n

)
.

(2.24)
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This way, we arrive the following desirable form through rearrangement:

un+1 = un +

[

τ1Mn + τ2

(

Mn + μΔtnM
′
n +

(
μΔtn

)2

2
M′′

n

)

+ τ3

(

Mn + ΔtnM
′
n +

Δt2n
2

M′′
n

)

+
1
2

[
(τ1 + τ2 + τ3)Mn +

(
τ2 + τ3μ

)
M′

nΔtn +O
(
Δt2n

)]2
Δt2n

+
1
6
(τ1 + τ2 + τ3)3M3

nΔt3n

]

un +O
(
Δt4n

)
.

(2.25)

Let

Jn = τ1Mn + τ2Mn+μ + τ3Mn+1, (2.26)

where

τ2 = − 1
6μ
(
μ − 1

) ,

τ3 =
3μ − 2
6
(
μ − 1

) .

(2.27)

Then the previous equation implies

un+1 =
[
1 + JnΔtn +

1
2
(JnΔtn)2 +

1
3!
(JnΔtn)3

]
un +O

(
Δt4n

)
. (2.28)

The above result illustrates that the time-dependent three-stage Runge-Kutta method
can be treated as a single-step method without losing the order of accuracy. In addition, it
shares the same form with (2.5) if Jn is replaced by M. Next, we derive a similar argument
for the four-stage Runge-Kutta method.

Derivation of Adaptive Optimal Time Step for the Four-Stage Runge-Kutta Method

Applying the four-stage Runge-Kutta method to (2.18), we get

k1 = Mnun,

k2 = Mn+α2

(
un + β21Δtk1

)
,

k3 = Mn+α3

(
un + Δt

(
β31k1 + β32k2

))
,

k4 = Mn+α4

(
un + Δt

(
β41k1 + β42k2 + β43k3

))
,

un+1 = un + Δt(r1k1 + r2k2 + r3k3 + r4k4).

(2.29)
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Since Mn+αi = Mn + αiΔtnM
′
n + ((αiΔtn)

2/2!)M′′
n + ((αiΔtn)

3/3!)M′′′
n +O(Δt4)

k2 =

[

Mn +
(
α2M

′
n + β21M

2
n

)
Δtn +

(
α2
2

2
M′′

n + α2β21MnM
′
n

)

Δt2n

+

(
α3
2

3!
M′′′

n +
α2
2β21

2
M′′

nMn

)

Δt3n

]

un +O
(
Δt4n

)
,

k3 =

[

Mn + α3M
′
nΔtn +

(
β31 + β32

)
M2

nΔtn +
α2
3

2
M′′

nΔt2n

+
(
β31α3 + β32(α2 + α3)

)
M′

nMnΔt2n + β32β21M
3
nΔt2n +

α3
3

3!
M′′′

nΔt3n

+
1
2

(
β31α

2
3 + β32

(
α2
2 + α2

3

))
M′′

nMnΔt3n + β32α2α3
(
M′

n

)2Δt3n

+β32β21(α2 + α3)M′
nM

2
nΔt3n

]

un +O
(
Δt4n

)
,

k4 =
[
Mn + α4M

′
nΔtn +

(
β41 + β42 + β43

)
M2

nΔtn +
1
2
α2
4M

′′
nΔt2n

+
(
β41α4 + β42(α2 + α4) + β43(α3 + α4)

)
M′

nMnΔt2n

+
(
β42β21 + β43

(
β31 + β32

))
M3

nΔt2n +
1
3!
α3
4M

′′′
nΔt3n

+
1
2

(
β41α

2
4 + β42

(
α2
2 + α2

4

)
+ β43

(
α2
3 + α2

4

))
M′′

nMnΔt3n

+
(
β42β21(α2 + α4) + β43β31(α3 + α4) + β43β32(α2 + α3 + α4)

)
M′

nM
2
nΔt3n

+
(
β42α2α4 + β43α3α4

)(
M′

n

)2Δt3n + β43β32β21M
4
nΔt3n

]
un +O

(
Δt4n

)
.

(2.30)

By consistency of the method,

4∑

i=1

γi = 1,

αq =
q−1∑

j=1

βqj , q = 2, . . . , 4,

γ2α2 + γ3α3 + γ4α4 =
1
2
,

γ2α
2
2 + γ3α

2
3 + γ4α

2
4 =

1
3
,
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γ2α
3
2 + γ3α

3
3 + γ4α

3
4 =

1
4
,

γ3α2β32 + γ4
(
α2β42 + β43α3

)
=

1
6
,

γ3β32α2α3 + γ4β42α2α4 + γ4β43α3α4 =
1
8
,

γ3α
2
2β32 + γ4α

2
2β42 + γ4α

2
3β43 =

1
12

,

γ4α2β43β32 =
1
24

.

(2.31)

Thus,

un+1 = un +
[
MnΔtn +

1
2
M′

nΔt2n +
1
6
M′′

nΔt3n +
1
24

M′′′
nΔt4n

+
1
2
M2

nΔt2n +
1
2
M′

nMnΔt3n +
1
6
M′′

nMnΔt4n +
1
8
(
M′

n

)2Δt4n

+
1
6
M3

nΔt3n +
1
4
M′

nM
2
nΔt4n +

1
24

M4
nΔt4n

]
un +O

(
Δt5n

)
.

(2.32)

We further assume

4∑

i=1

τi = 1,

τ2μ1 + τ3μ2 + τ4 =
1
2
,

τ2μ
2
1 + τ3μ

2
2 + τ4 =

1
3
,

τ2μ
3
1 + τ3μ

3
2 + τ4 =

1
4
.

(2.33)

The previous equation hence can be written as

un+1 = un +
[
(τ1 + τ2 + τ3 + τ4)MnΔtn +

(
τ2μ1 + τ3μ2 + τ4

)
M′

nΔt2n

+
1
2

(
τ2μ

2
1 + τ3μ

2
2 + τ4

)
M′′

nΔt3n +
1
6

(
τ2μ

3
1 + τ3μ

3
2 + τ4

)
M′′′

nΔt4n

+
1
2
(τ1 + τ2 + τ3 + τ4)2M2

nΔt2n + (τ1 + τ2 + τ3 + τ4)

∗ (τ2μ1 + τ3μ2 + τ4
)
M′

nMnΔt3n

+
1
2
(τ1 + τ2 + τ3 + τ4)

(
τ2μ

2
1 + τ3μ

2
2 + τ4

)
M′′

nMnΔt4n
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+
1
2
(
τ2μ1 + τ3μ2 + τ4

)2(
M′

n

)2Δt4n +
1
6
(τ1 + τ2 + τ3 + τ4)3M3

nΔt3n

+
1
2
(τ1 + τ2 + τ3 + τ4)

(
τ2μ1 + τ3μ2 + τ4

)
M′

nM
2
nΔt4n

+
1
24

M4
nΔt4n

]
un +O

(
Δt5n

)
.

(2.34)

That is,

un+1 =
[
1 + JnΔtn +

1
2
(JnΔtn)2 +

1
3!
(JnΔtn)3 +

1
4!
(JnΔtn)4

]
un +O

(
Δt5n

)
, (2.35)

where

Jn = τ1Mn + τ2Mn+μ1 + τ3Mn+μ2 + τ4Mn+1,

τ2 =
2μ2 − 1

12
(−μ2 + μ1

)(
μ1 − 1

)
μ1

,

τ3 = − −1 + 2μ1

12μ2
(
μ1μ2 + μ2 − μ2

2 − μ1
) ,

τ4 =
6μ1μ2 − 4μ2 + 3 − 4μ1

12
(
μ2 − 1

)(
μ1 − 1

) .

(2.36)

We now turn to examine the more general situation in which the reaction term is not
zero, that is, b/= 0. In this case, we have

un+1 =

(
m∑

i=0

(ΔtnJn)i

i!

)

un + F
(
bn,bn+µ1

, . . . ,bn+1
)
+O
(
Δti+1n

)
. (2.37)

Similar to our discussion in the previous section, the accumulation error for (2.37) is

|un+1 − vn+1| =
∣∣∣∣∣

m∑

i=0

(ΔtnJn)i

i!

∣∣∣∣∣
× |un − vn| +O

(
Δti+1n

)
. (2.38)

We remark again that the amplification factor
∑m

i=0((ΔtnJn)
i/i!) in (2.38) at the nth local

step has the same formwith (2.5) exceptM being replaced by Jn. Therefore, we can apply the
strategy demonstrated in Theorems 2.5 and 2.6 to look for the optimal time steps for Runge-
Kutta schemes. The present amax and amin appeared in the optimal step size formulas then,
respectively, represent the greatest and smallest real parts of the eigenvalues of the matrix Jn.
Notice that by the similar argument outlined in the previous proofs, the stability is preserved
with this step size.



16 Journal of Applied Mathematics

An Explicit Adaptive Optimal Time Stepping Scheme for Solving (2.18)

(1) Set up initial condition u0 and initial step size Δt0.

(2) Set Jn in accordance with the stage number m, and apply m-stage Runge-Kutta
schemes.

(3) Use the Gerschgorin theorem to estimate the interval, [−an
max,−an

min] for negative
real parts of the eigenvalues of Jn.

(4) Place Δtn+1,

(i) m = 2: Δtn+1 = 2/(an
max + an

min),

(ii) m = 3: Δtn+1 = 2.512745327/an
max,

(iii) m = 4:

Δtn+1 =
1
3

(
172a6

max + 192a5
maxamin + 276a4

maxa
2
min + 448a3

maxa
3
min

+ 276a4
mina

2
max + 192amaxa

5
min + 172a6

min

+ 36
(
29a6

max + 30a5
maxamin + 51a4

maxa
2
min + 68a3

maxa
3
min + 51a4

mina
2
max

+30amaxa
5
min + 29a6

min

)1/2
a3
max

+ 36
(
29a6

max + 30a5
maxamin + 51a4

maxa
2
min + 68a3

maxa
3
min + 51a4

mina
2
max

+30amaxa
5
min + 29a6

min

)1/2
amina

2
max

+ 36
(
29a6

max + 30a5
max + 51a4
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2
min + 68a3
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3
min + 51a4

mina
2
max

+30amaxa
5
min + 29a6

min

)1/2
amaxa

2
min

+ 36
(
29a6

max + 30a5
maxamin + 51a4
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2
min + 68a3
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3
min + 51a4

mina
2
max

+30amaxa
5
min + 29a6

min

)1/2
a3
min

)1/3/(
a3
max + amina

2
max + amaxa

2
min + a3

min

)

− 4
3

(
5a4

max + 10a3
maxamin + 6a2
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2
min + 10amaxa

3
min + 5a4
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)/

((
a3
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2
max + amaxa

2
min + a3
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×
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maxamin + 276a4

maxa
2
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5
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2
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5
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5
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2
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)
,

(2.39)

and then let tn+1 = tn + Δtn+1. When an an
max is equal to or close to zero, simply

choose a reasonable step size for Δtn+1.

Note that the time step for m = 4 can be solved by mathematical software such as
MAPLE from the following equation:

4∑

i=1

1
i!

(
ai
max − ai

min

)
Δti−1n+1 = 0. (2.40)

2.2.1. The “Best” Optimal Step Size and the Time-Dependent Homogeneous Systems

We point out that for those eigenvalues with negative real parts, one may also assume they
are enclosed in an ellipse with one of the vertex lying at the origin, that is, an

min = 0. In this
way, only an

max are needed in forming optimal time step formulas and time stepsΔtn+1 in step
4 are switched as

(i) m = 2: Δtn+1 = 2/an
max,

(ii) m = 3: Δtn+1 = 2.512745327/an
max,

(iii) m = 4: Δtn+1 = 2.785293563/an
max,

where an
max is defined as before in step 2. We remark that when Δtn+1 is specified as above

values, pm(a,Δt) is equal to one. The stability condition does not seem to be satisfied.
However, this hidden problem is avoidable by requiring Gerschgorin theorem or other
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equivalent theorems in step 3 as an estimation for the distribution of real part of eigenvalues.
This is because the theorem provides an overestimation for the distribution of negative real
part of eigenvalues. As a result, pm(a,Δt) is less than one. Hence, it is safe to use the above
time step.

In particular, when the reaction vector is negligible, we can further write the m-
stage Runge-kutta method as some equivalent m-stage formulas while the order of accuracy
remains invariant. For example, m = 3, we have

u(0)
n = un +

Δtn
3

Jnun,

u(1)
n = un +

Δtn
2

Jnu
(0)
n ,

un+1 = un + ΔtJnu
(1)
n .

(2.41)

For m = 4,

u(0)
n = un +

Δtn
4

Jnun,

u(1)
n = un +

Δtn
3

Jnu
(0)
n ,

u(2)
n = un +

Δtn
2

Jnu
(1)
n ,

un+1 = un + ΔtnJnu
(2)
n .

(2.42)

Of course, Jn is defined according to their stage number.

3. Numerical Examples

3.1. Overview

In this section, we demonstrate the implementation and the efficiency of our optimal adaptive
time stepping method by setting a one-dimension testing problem and simulating some
problems from a series of real biological experiments. The 1D testing problem with the
known analytic solution is used to show the implementation process of our scheme. It is
also designed to show the rate of convergence as well as the computational cost. Those
results are illustrated through comparison with standard m-stage Runge-Kutta methods and
the Runge-Kutta-Fehlberg (RKF) method. To test our numerical methods on real biological
experiments, we apply our optimal adaptive two-stage Runge-Kutta method to a two-
dimensional reaction-diffusion-chemotaxis model for a series of biological experiments on
bacterial chemotaxis reported in [9]. Some results will be shown here.
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3.2. Testing Problems

Consider

ut = uxx − (txu)x + f, x ∈ (0, 2π), t > 0, (3.1)

where u = u(x, t) and f = (tx − 1)e−t cos(x − t) + te−t sin(x − t). The three terms on the right-
hand side represent diffusion, chemotaxis, and reaction, respectively. Assume the periodic
boundary condition: u(o, t) = u(2π, t), t ≥ 0 and the initial condition: u(x, 0) = sinx. The
analytic solution of (3.1) is

u(x, t) = e−t sin(x − t). (3.2)

To apply MOL, we simply use the difference scheme for the spatial discretization. The
standard second-order difference is applied to the diffusion term. The upwind scheme is
employed in the chemotaxis for some stability consideration [17]. After the discretization, we
then apply m-stage Runge-Kutta method with the adaptive optimal time stepping scheme
as the time integration strategy. By denoting h = 2π/N, xi = ih, i = 0, 1, . . . ,N, and the
numerical solution as ui, the resulting ODE system is

du
dt

= M(t)u + f(t), (3.3)

where

u = (u0, u1, . . . , uN)T ,

f(t) =
(
f(x0, t), f(x1, t), . . . , f(xN, t)

)T
,

M(tn)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2
h2

− x0tn−1
h

1
h2

1
h2

− tn−1 0

1
h2

+
x0tn−1
h

−2
h2

− x1tn−1
h

1
h2

0 0

1
h2

+
x1tn−1
h

−2
h2

− x2tn−1
h

1
h2

0 0

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

0
1
h2

0
1
h2

+
xN−1tn−1

h

−2
h2

− xNtn−1
h

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.4)
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Generally, the actual eigenvalues of the spatial matrix M(t) are not available. One may use
the power method and the inverse power method [20] to estimate the largest and smallest
magnitude of eigenvalues. But these methods are usually time consuming. Moreover, only
negative real parts of the eigenvalues are needed for our scheme. Therefore, we suggest
using Gerschgorin theorem to estimate the distribution of eigenvalues. As we should show
immediately, it is a simple and inexpensive way to find the range for real parts of the
eigenvalues. It is therefore adequate for implementing our scheme. In fact, if a formula for
the distribution of eigenvalues or actual eigenvalues can be found ahead of time, then it is
not necessary to use the theorem to estimate the range at each time step. A simple version of
the Gerschgorin theorem is stated as follows.

Theorem 3.1 (Gerschgorin). The union of all discs

Ki :=

⎧
⎨

⎩
μ ∈ ∣∣μ − aii

∣
∣ ≤

n∑

k=1, k /= i

|aik|
⎫
⎬

⎭
(3.5)

contains all eigenvalues of the n × n matrix A = [aik].

The theorem states that if A is a real matrix, the range of the real parts of the
eigenvalues can be easily detected by checking the intersection intervals of these discs with
the real axis.

From Gerschgorin Theorem, we obtain

−amax ≤ Re(λ) < 0, (3.6)

where

amax =
4

Δx2
+ tn

(
4π
Δx

+ 1
)
. (3.7)

Thus, for m-stages, where m = 2, . . . , 4, the optimal time steps at the current step are

m = 2: Δtopt =
2

(4/Δx2) + tn((4π/Δx) + 1)
,

m = 3: Δtopt =
2.512745327

(4/Δx2) + tn((4π/Δx) + 1)
,

m = 4: Δtopt =
2.785293563

(4/Δx2) + tn((4π/Δx) + 1)
.

(3.8)

Figure 3 shows the relative error between the numerical and the analytic solutions.
Observe that the relative error for the standard two-stage Runge-Kutta method increases
dramatically around t = 5.2, but the optimal time-stepping m-stage Runge-Kutta methods
still converge to the analytic solution.

Tables 1, 2, and 3 demonstrate the number of iteration for our scheme (Optimal m-
stage RK)with that of two other methods: standardm-stage Runge-Kutta method with fixed
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Figure 3: Relative error between numerical simulations and the analytic solution.

Table 1: Comparison for number of iterations among optimal two-stage RK, RKF 23, and standard two-
stage RK. The optimal two-stage RK method is counted twice for the function evaluation per iteration,
while the RKF 23 is counted four times per iteration. “Div” is the abbreviation for Divergent.

Method/Time 1 2 3 4 5
Optimal two-stage RK 638 1278 1918 2558 3200
RKF 23 1175 2765 4310 6075 8250
Std two-stage RK (Δt = 0.0025) 800 1600 2400 Div Div

Table 2: Comparison for number of iterations among the optimal three-stage RK, RKF 34, and standard
three-stage RK. The optimal three-stage RK method is counted three times for the function evaluation per
iteration, while the RKF 34 is five times per iteration.

Method/Time 1 2 3 4 5
Optimal three-stage RK 678 1524 2535 3717 5067
RKF 34 3925 6325 7935 9655 11570
Std three-stage RK (Δt = 0.003) 1002 2001 3000 Div Div

step size (Std m-stage RK) and the Runge-Kutta-Fehlberg methods (RKF). These tables
basically indicate that while the optimal time stepping scheme always ensure convergence,
the standard m-stage Runge-Kutta methods or other adaptive methods like RKF either
diverge or converge slower since they require a larger number of iterations. Similar results
can also be illustrated by calculating CPU time following from Tables 4, 5, and 6. The com-
putations were done on Dell Latitude D620 2600.

Tables 4–6 illustrate the computational efficiency for our method with CPU time.

3.3. Further Discussion on the Efficiency of the Optimal RK Method

We continue our discussion about the computational efficiency for optimal RK methods with
time steps mentioned in Sections 2.2. We are interested in measuring the efficiency difference
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Table 3: Comparison for number of iterations among the optimal four-stage RK, RKF 45, and standard
four-stage RK. The optimal four-stage RK method is counted four times for the function evaluation per
iteration while the RKF 45 is six times per iteration.

Method/Time 1 2 3 4 5
Optimal four-stage RK 816 1832 3052 4472 6096
RKF 45 3480 5598 7152 8910 10866
Std four-stage RK (Δt = 0.004) 1000 2000 Div Div Div

Table 4: Comparison of CPU time among the optimal two-stage RK, RKF 23, and standard two-stage RK
with Δt = 0.001.

CPU/Time 10 20 30 40 50
Optimal two-stage RK 0.5940 1.8430 3.7960 6.4690 9.7820
RKF 23 1.3910 3.9060 7.4530 12.0620 17.6090
Std two-stage RK 0.9840 3.5310 Div Div Div

Table 5: Comparison of CPU time among the optimal three-stage RK, RKF 34, and standard three-stage
RK with Δt = 0.0005 and Δt = 0.001, respectively.

CPU/Time 10 20 30 40 50
Optimal three-stage RK 0.8910 2.8280 5.7970 9.7970 15.0000
RKF 34 1.7190 4.5150 8.5630 13.6880 20.0780
Std three-stage RK 3.1710 6.6410 11.0630 13.1250 19.2340
Std three-stage RK 1.6880 3.310 Div Div Div

Table 6: Comparison of CPU time among the optimal four-stage RK, RKF 45, and standard four-stage RK
with Δt = 0.001.

CPU/Time 10 20 30 40 50
Optimal four-stage RK 1.0000 3.2030 6.5780 11.1560 16.9530
RKF 45 1.8750 5.0000 9.5000 15.3280 23.6410
Std four-stage RK 2.2660 4.6250 Div Div Div

between RKF and our method. To make one’s point, we take the optimal four-stage RK
method as an example. Let us start with the “best” optimal step size as in Section 2.2.1. Then
the current time step for the optimal four-stage RK is

Δt =
2.785293563

amax
. (3.9)

To get the “worst” case, set amax = amin. Then

Δt =
1.596071638

amax
. (3.10)

Now, let us assign Δt to be the average of (3.9) and (3.10). We obtain

Δt =
2.1906826005

amax
. (3.11)
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Table 7: Comparison of CPU time between the optimal four-stage RK with the average time step of the
“best” and the “worst” cases, and the RKF 45.

CPU/Time 10 20 30 40 50
Optimal four-stage RK 1.0000 3.2030 6.5780 11.1560 16.9530
Four-stage RK Δt = (3.11) 1.2660 4.0470 8.3600 14.2190 21.5160
RKF 45 1.8750 5.0000 9.5000 15.3280 23.6410

Table 7 shows that even with the “medium” optimal time step (3.11), our numerical
scheme still performs better than the RKF 45. In addition, the computational efficiency of RKF
45 is approximately equal to the optimal four-stage RKwhen the time step is chosen as (3.11).

3.4. Computer Simulations of Chemotaxis in Bacteria

Our numerical experiment is based on the biological experiments reported in (2.28) and the
corresponding mathematical model given in (2.28). Interesting patterns are developed when
Escherichia coli or Salmonella typhimurium is incoulated on intermediates of the tricarboxylic
acid (TCA) cycle. Bacteria form symmetrical rings of spots or strips if they are inoculated
in semisolid agar on the intermediates of TCA cycle. When placed in a liquid medium and
fed on intermediates of the TCA cycle, they secrete aspartate as a chemoattractant. Cells then
arrange themselves into high density aggregates. In this case, aggregates form randomly as
time evolves and fade in a time interval less than the bacteria generation. Here, attractant
chemicals are excreted by the bacterial themselves instead of being added into the Petri dish
artificially.

A nondimensionalized mathematical models were proposed in (2.28) for the liquid
medium experiments in (2.28). The model is a classical chemotaxis system, which reads as

∂u

∂t
= ∇ ·

(

Du∇u − αu

(1 + v)2
∇v

)

,

∂v

∂t
= Δv +ω

u2

μ + u2
,

(3.12)

where u, v, and ω represent cell density, concentration of chemotactic substance, and
succinate, respectively. Simulations were done with zero flux boundary condition for both
u and v. Initial conditions are set to be zero for v and the random perturbation at u0 = 1
for the initial condition of u. The noise amplitude is of order 10−1. They were created by the
C++ random number generator. The initial, boundary conditions for u and v, and the noise
amplitude are chosen to be the same as described in (2.28) except for the random numbers
which may not be identical due to the use of different softwares.

Numerical simulations are showed in Figure 4. Simulations did capture the character-
istics as described in (2.28) qualitatively. The aggregates first are divided into small regions
and then cojoin with others.
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Figure 4: Numerical simulations for bacterial aggregates they exposed to TCA cycle: from left to right,
top to bottom. The aggregates are separated into small regions and then cojoin other aggregates. The
aggregates become fewer but larger.

4. Conclusions and Discussions

We investigate an optimal adaptive time stepping strategy for fully explicit m-stage
Runge-Kutta methods to solve general reaction-diffusion-chemotaxis systems. It is designed
specially for handling spatially nonhomogeneous pattern formations. The method is based
on m-stage Runge-Kutta methods and simple estimation on the optimal step size at each
iteration. With some optimization techniques, we efficiently discard the decay modes and
only allow the growth modes to grow. In this way, we guarantee that the numerically
generated patterns follow the primary model equations. The scheme is proven to be
extremely robust and accurate by theoretical analysis, numerical experiments on the testing
problem, and real pattern simulations on bacterial chemotaxis. The numerical experiments
also show that our method is superior to RKF in solving reaction-diffusion-chemotaxis
systems.
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