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We give an extension of Jensen’s inequality for n-tuples of self-adjoint operators, unital n-tuples
of positive linear mappings, and real-valued continuous convex functions with conditions on the
operators’ bounds. We also study operator quasiarithmetic means under the same conditions.

1. Introduction

We recall some notations and definitions. Let B(H) be the C∗-algebra of all bounded linear
operators on a Hilbert spaceH and 1H stands for the identity operator. We define bounds of
a self-adjoint operator A ∈ B(H):

mA = inf
‖x‖=1

〈Ax, x〉, MA = sup
‖x‖=1

〈Ax, x〉 (1.1)

for x ∈H . If ��(A) denotes the spectrum of A, then ��(A) is real and ��(A) ⊆ [mA,MA].
Mond and Pečarić in [1] proved the following version of Jensen’s operator inequality

f

(
n∑
i=1

wiΦi(Ai)

)
≤

n∑
i=1

wiΦi

(
f(Ai)

)
, (1.2)

for operator convex functions f defined on an interval I, where Φi : B(H) → B(K), i =
1, . . . , n, are unital positive linear mappings, A1, . . . , An are self-adjoint operators with the
spectra in I, andw1, . . . , wn are nonnegative real numbers with

∑n
i=1wi = 1.
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Hansen et al. gave in [2] a generalization of (1.2) for a unital field of positive linear
mappings. Recently, Mićić et al. in [3] gave a generalization of this results for a not-unital
field of positive linear mappings.

Very recently, Mićić et al. gave in [4, Theorem 1] a version of Jensen’s operator
inequality without operator convexity as follows.

TheoremA. Let (A1, . . . , An) be an n-tuple of self-adjoint operatorsAi ∈ B(H)with boundsmi and
Mi,mi ≤ Mi, i = 1, . . . , n. Let (Φ1, . . . ,Φn) be an n-tuple of positive linear mappings Φi : B(H) →
B(K), i = 1, . . . , n, such that

∑n
i=1 Φi(1H) = 1K. If

(mC,MC) ∩ [mi,Mi] = ∅ for i = 1, . . . , n, (1.3)

wheremC andMC,mC ≤ MC, are bounds of the self-adjoint operator C =
∑n

i=1 Φi(Ai), then

f

(
n∑
i=1

Φi(Ai)

)
≤

n∑
i=1

Φi

(
f(Ai)

)
(1.4)

holds for every continuous convex function f : I → � provided that the interval I contains all
mi,Mi.

If f : I → � is concave, then the reverse inequality is valid in (1.4).

In the same paper [4], we study the quasiarithmetic operator mean:

Mϕ(A,Φ, n) = ϕ−1
(

n∑
i=1

Φi

(
ϕ(Ai)

))
, (1.5)

where (A1, . . . , An) is an n-tuple of self-adjoint operators in B(H) with the spectra in I,
(Φ1, . . . ,Φn) is an n-tuple of positive linear mappings Φi : B(H) → B(K) such that∑n

i=1 Φi(1H) = 1K, and ϕ : I → � is a continuous strictly monotone function.
The following results about the monotonicity of this mean are proven in [4,

Theorem 3].

Theorem B. Let (A1, . . . , An) and (Φ1, . . . ,Φn) be as in the definition of the quasiarithmetic mean
(1.5). Let mi and Mi, mi ≤ Mi, be the bounds of Ai, i = 1, . . . , n. Let ϕ, ψ : I → � be continuous
strictly monotone functions on an interval I which contains all mi,Mi. Let mϕ andMϕ, mϕ ≤ Mϕ,
be the bounds of the mean Mϕ(A,Φ, n), such that

(
mϕ,Mϕ

) ∩ [mi,Mi] = ∅, for i = 1, . . . , n. (1.6)

If one of the following conditions

(i) ψ ◦ ϕ−1 is convex and ψ−1 is operator monotone,

(i′) ψ ◦ ϕ−1 is concave and −ψ−1 is operator monotone,

is satisfied, then

Mϕ(A,Φ, n) ≤ Mψ(A,Φ, n). (1.7)
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If one of the following conditions

(ii) ψ ◦ ϕ−1 is concave and ψ−1 is operator monotone,

(ii′) ψ ◦ ϕ−1 is convex and −ψ−1 is operator monotone,

is satisfied, then the reverse inequality is valid in (1.7).

In this paper we study an extension of Jensen’s inequality given in Theorem A.
As an application of this result, we give an extension of Theorem B for a version of the
quasiarithmetic mean (1.5) with an n-tuple of positive linear mappings which is not unital.

2. Extension of Jensens Operator Inequality

In Theorem A we prove that Jensen’s operator inequality holds for every continuous convex
function and for every n-tuple of self-adjoint operators (A1, . . . , An), for every n-tuple of
positive linear mappings (Φ1, . . . ,Φn) in the case when the interval with bounds of the
operator A =

∑n
i=1 Φi(Ai) has no intersection points with the interval with bounds of the

operator Ai for each i = 1, . . . , n, that is, when

(mA,MA) ∩ [mi,Mi] = ∅, for i = 1, . . . , n, (2.1)

wheremA andMA,mA ≤MA, are the bounds of A, andmi andMi,mi ≤ Mi, are the bounds
of Ai, i = 1, . . . , n.

It is interesting to consider the case when (mA,MA) ∩ [mi,Mi] = ∅ is valid for several
i ∈ {1, . . . , n}, but not for all i = 1, . . . , n. We study it in the following theorem.

Theorem 2.1. Let (A1, . . . , An) be an n-tuple of self-adjoint operators Ai ∈ B(H) with the bounds
mi and Mi, mi ≤ Mi, i = 1, . . . , n. Let (Φ1, . . . ,Φn) be an n-tuple of positive linear mappings Φi :
B(H) → B(K), such that

∑n
i=1 Φi(1H) = 1K. For 1 ≤ n1 < n, one denotesm = min{m1, . . . , mn1},

M = max{M1, . . . ,Mn1}, and
∑n1

i=1 Φi(1H) = α 1K,
∑n

i=n1+1 Φi(1H) = β 1K, where α, β > 0,
α + β = 1. If

(m,M) ∩ [mi,Mi] = ∅, for i = n1 + 1, . . . , n, (2.2)

and one of two equalities

1
α

n1∑
i=1

Φi(Ai) =
1
β

n∑
i=n1+1

Φi(Ai) =
n∑
i=1

Φi(Ai) (2.3)

is valid, then

1
α

n1∑
i=1

Φi

(
f(Ai)

) ≤ n∑
i=1

Φi

(
f(Ai)

) ≤ 1
β

n∑
i=n1+1

Φi

(
f(Ai)

)
(2.4)

holds for every continuous convex function f : I → � provided that the interval I contains all
mi,Mi, i = 1, . . . , n.

If f : I → � is concave, then the reverse inequality is valid in (2.4).
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Proof. We prove only the case when f is a convex function.
Let us denote

A =
1
α

n1∑
i=1

Φi(Ai), B =
1
β

n∑
i=n1+1

Φi(Ai), C =
n∑
i=1

Φi(Ai). (2.5)

It is easy to verify that A = B or B = C or A = C implies A = B = C.
(a) Let m < M. Since f is convex on [m,M] and [mi,Mi] ⊆ [m,M] for i = 1, . . . , n1,

then

f(t) ≤ M − t
M −mf(m) +

t −m
M −mf(M), t ∈ [mi,Mi] for i = 1, . . . , n1, (2.6)

but since f is convex on all [mi,Mi] and (m,M) ∩ [mi,Mi] = ∅ for i = n1 + 1, . . . , n, then

f(t) ≥ M − t
M −mf(m) +

t −m
M −mf(M), t ∈ [mi,Mi] for i = n1 + 1, . . . , n. (2.7)

Sincemi1H ≤ Ai ≤Mi1H , i = 1, . . . , n1, it follows from (2.6) that

f(Ai) ≤ M1H −Ai

M −m f(m) +
Ai −m1H
M −m f(M), i = 1, . . . , n1. (2.8)

Applying a positive linear mapping Φi and summing, we obtain

n1∑
i=1

Φi

(
f(Ai)

) ≤ Mα1K −∑n1
i=1 Φi(Ai)

M −m f(m) +

∑n1
i=1 Φi(Ai) −mα1K

M −m f(M), (2.9)

since
∑n1

i=1 Φi(1H) = α1K. It follows that

1
α

n1∑
i=1

Φi

(
f(Ai)

) ≤ M1K −A
M −m f(m) +

A −m1K
M −m f(M). (2.10)

Similarly to (2.10) in the casemi1H ≤ Ai ≤Mi1H , i = n1 + 1, . . . , n, it follows from (2.7)

1
β

n∑
i=n1+1

Φi

(
f(Ai)

) ≥ M1K − B
M −m f(m) +

B −m1K
M −m f(M). (2.11)

Combining (2.10) and (2.11) and taking into account that A = B, we obtain

1
α

n1∑
i=1

Φi

(
f(Ai)

) ≤ 1
β

n∑
i=n1+1

Φi

(
f(Ai)

)
. (2.12)
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It follows that

1
α

n1∑
i=1

Φi

(
f(Ai)

)
=

n1∑
i=1

Φi

(
f(Ai)

)
+
β

α

n1∑
i=1

Φi

(
f(Ai)

) (
by α + β = 1

)

≤
n1∑
i=1

Φi

(
f(Ai)

)
+

n∑
i=n1+1

Φi

(
f(Ai)

) (
by (2.12)

)

=
n∑
i=1

Φi

(
f(Ai)

)

=
n1∑
i=1

Φi

(
f(Ai)

)
+

n∑
i=n1+1

Φi

(
f(Ai)

)

≤ α

β

n∑
i=n1+1

Φi

(
f(Ai)

)
+

n∑
i=n1+1

Φi

(
f(Ai)

) (
by (2.12)

)

=
1
β

n∑
i=n1+1

Φi

(
f(Ai)

) (
by α + β = 1

)
,

(2.13)

which gives the desired double inequality (2.4).
(b) Let m = M. Since [mi,Mi] ⊆ [m,M] for i = 1, . . . , n1, then Ai = m1H and f(Ai) =

f(m)1H for i = 1, . . . , n1. It follows that

1
α

n1∑
i=1

Φi(Ai) = m1K,
1
α

n1∑
i=1

Φi

(
f(Ai)

)
= f(m)1K. (2.14)

On the other hand, since f is convex on I, we have

f(t) ≥ f(m) + l(m)(t −m) for every t ∈ I, (2.15)

where l is the subdifferential of f . Replacing t by Ai for i = n1 + 1, . . . , n, applying Φi and
summing, we obtain from (2.15) and (2.14) that

1
β

n∑
i=n1+1

Φi

(
f(Ai)

) ≥ f(m)1K + l(m)

(
1
β

n∑
i=n1+1

Φi(Ai) −m1K

)

= f(m)1K =
1
α

n1∑
i=1

Φi

(
f(Ai)

)
.

(2.16)

So (2.12) holds again. The remaining part of the proof is the same as in the case (a).

As a special case of Theorem 2.1 we can obtain Theorem A. We give this proof as
follows.

Another Proof of Theorem A. Let the assumptions of Theorem A be valid. We prove only the
case when f is a convex function.
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We define operators Bi ∈ B(H), i = 1, . . . , n + 1, by B1 = C =
∑n

i=1 Φi(Ai) and Bi = Ai−1,
i = 2, . . . , n + 1. Then mB1 = mC, and MB1 = MC are the bounds of B1 and mBi = mi−1, and
MBi =Mi−1 are the ones of Bi, i = 2, . . . , n + 1. We have

(mB1 ,MB1) ∩ [mBi ,MBi] = ∅ for i = 2, . . . , n + 1, (2.17)

since (1.3) holds. Also, we define mappings Ψi : B(H) → B(K) by Ψ1(B) = (1/2)B and
Ψi(B) = (1/2)Φi−1(B), i = 2, . . . , n + 1. Then we have

∑n+1
i=1 Ψi(1H) = 1K and

n+1∑
i=1

Ψi(Bi) = Ψ1(B1) +
n+1∑
i=2

Ψi(Bi) =
1
2

n∑
i=1

Φi(Ai) +
1
2

n∑
i=1

Φi(Ai) = B1. (2.18)

It follows that

2Ψ1(B1) =
n+1∑
i=1

Ψi(Bi) = 2
n+1∑
i=2

Ψi(Bi). (2.19)

Taking into account (2.17) and (2.19), we can apply Theorem 2.1 for n1 = 1 and Bi, Ψi as
above. We get

2Ψ1
(
f(B1)

) ≤ n+1∑
i=1

Ψi

(
f(Bi)

) ≤ 2
n+1∑
i=2

Ψi

(
f(Bi)

)
, (2.20)

that is,

f

(
n∑
i=1

Φi(Ai)

)
≤ 1

2
f

(
n∑
i=1

Φi(Ai)

)
+
1
2

n∑
i=1

Φi

(
f(Ai)

) ≤ n∑
i=1

Φi

(
f(Ai)

)
, (2.21)

which gives the desired inequality (1.4).

Remark 2.2. We obtain the equivalent inequality to the one in Theorem 2.1 in the case when∑n
i=1 Φi(1H) = γ 1K, for some positive scalar γ . If α + β = γ and one of two equalities

1
α

n1∑
i=1

Φi(Ai) =
1
β

n∑
i=n1+1

Φi(Ai) =
1
γ

n∑
i=1

Φi(Ai), (2.22)

is valid, then

1
α

n1∑
i=1

Φi

(
f(Ai)

) ≤ 1
γ

n∑
i=1

Φi

(
f(Ai)

) ≤ 1
β

n∑
i=n1+1

Φi

(
f(Ai)

)
(2.23)

holds for every continuous convex function f .
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Remark 2.3. Let the assumptions of Theorem 2.1 be valid.
(1)We observe that the following inequality

f

(
1
β

n∑
i=n1+1

Φi(Ai)

)
≤ 1
β

n∑
i=n1+1

Φi

(
f(Ai)

)
, (2.24)

holds for every continuous convex function f : I → �.
Indeed, by the assumptions of Theorem 2.1 we have

mα1H ≤
n1∑
i=1

Φi

(
f(Ai)

) ≤ Mα1H,
1
α

n1∑
i=1

Φi(Ai) =
1
β

n∑
i=n1+1

Φi(Ai), (2.25)

which implies that

m1H ≤
n∑

i=n1+1

1
β
Φi

(
f(Ai)

) ≤ M1H. (2.26)

Also (m,M) ∩ [mi,Mi] = ∅ for i = n1 + 1, . . . , n and
∑n

i=n1+1(1/β)Φi(1H) = 1K hold. So we can
apply Theorem A on operators An1+1, . . . , An and mappings (1/β)Φi and obtain the desired
inequality.

(2)We denote bymC andMC the bounds ofC =
∑n

i=1Φi(Ai). If (mC,MC) ∩ [mi,Mi] =
∅, i = 1, . . . , n1 or f is an operator convex function on [m,M], then the double inequality
(2.4) can be extended from the left side if we use Jensen’s operator inequality (see [3,
Theorem 2.1]):

f

(
n∑
i=1

Φi(Ai)

)
= f

(
1
α

n1∑
i=1

Φi(Ai)

)

≤ 1
α

n1∑
i=1

Φi

(
f(Ai)

) ≤ n∑
i=1

Φi

(
f(Ai)

)

≤ 1
β

n∑
i=n1+1

Φi

(
f(Ai)

)
.

(2.27)

Example 2.4. If neither assumptions that (mC,MC)∩[mi,Mi] = ∅, i = 1, . . . , n1 nor f is operator
convex in Remark 2.3(2). is satisfied and if 1 < n1 < n, then (2.4) cannot be extended by
Jensen’s operator inequality, since it is not valid. Indeed, for n1 = 2 we define mappings
Φ1,Φ2 : M3(� ) → M2(� ) by Φ1((aij)1≤i,j≤3) = (α/2)(aij)1≤i,j≤2, Φ2 = Φ1. Then Φ1(I3) +
Φ2(I3) = αI2. If

A1 = 2

⎛
⎜⎜⎝

1 0 1

0 0 1

1 1 1

⎞
⎟⎟⎠, A2 = 2

⎛
⎜⎜⎝

1 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠, (2.28)
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then

(
1
α
Φ1(A1) +

1
α
Φ2(A2)

)4

=
1
α4

(
16 0

0 0

)
�

1
α

(
80 40

40 24

)
=

1
α
Φ1

(
A4

1

)
+
1
α
Φ2

(
A4

2

)
(2.29)

for every α ∈ (0, 1). We observe that f(t) = t4 is not operator convex and (mC,MC) ∩
[mi,Mi]/= ∅, since C = A = (1/α)Φ1(A1) + (1/α)Φ2(A2) = (1/α)

( 2 0
0 0

)
, [mC,MC] = [0, 2/α],

[m1,M1] ⊂ [−1.60388, 4.49396], and [m2,M2] = [0, 2].

With respect to Remark 2.2, we obtain the following obvious corollary of Theorem 2.1.

Corollary 2.5. Let (A1, . . . , An) be an n-tuple of self-adjoint operators Ai ∈ B(H) with the bounds
mi and Mi, mi ≤ Mi, i = 1, . . . , n. For some 1 ≤ n1 < n, one denotes m = min{m1, . . . , mn1},
M = max{M1, . . . ,Mn1}. Let (p1, . . . , pn) be an n-tuple of nonnegative numbers, such that 0 <∑n1

i=1 pi = pn1 < pn =
∑n

i=1 pi. If

(m,M) ∩ [mi,Mi] = ∅ for i = n1 + 1, . . . , n, (2.30)

and one of two equalities

1
pn1

n1∑
i=1

piAi =
1
pn

n∑
i=1

piAi =
1

pn − pn1

n∑
i=n1+1

piAi (2.31)

is valid, then

1
pn1

n1∑
i=1

pif(Ai) ≤ 1
pn

n∑
i=1

pif(Ai) ≤ 1
pn − pn1

n∑
i=n1+1

pif(Ai) (2.32)

holds for every continuous convex function f : I → � provided that the interval I contains all
mi,Mi, i = 1, . . . , n.

If f : I → � is concave, then the reverse inequality is valid in (2.32).

3. Quasiarithmetic Means

In this section we study an application of Theorem 2.1 to the quasiarithmetic mean with
weight. For a subset {Ap1 , . . . , Ap2} of {A1, . . . , An} one denotes the quasiarithmetic mean by

Mϕ

(
γ,A,Φ, p1, p2

)
= ϕ−1

⎛
⎝1
γ

p2∑
i=p1

Φi

(
ϕ(Ai)

) ⎞⎠, (3.1)

where (Ap1 , . . . , Ap2) are self-adjoint operators in B(H)with the spectra in I, (Φp1 , . . . ,Φp2) are
positive linear mappings Φi : B(H) → B(K) such that

∑p2
i=p1

Φi(1H) = γ 1K, and ϕ : I → � is
a continuous strictly monotone function.

The following theorem is an extension of Theorem B.
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Theorem 3.1. Let (A1, . . . , An) be an n-tuple of self-adjoint operators in B(H) with the spectra in
I, and let (Φ1, . . . ,Φn) be an n-tuple of positive linear mappings Φi : B(H) → B(K) such that∑n

i=1 Φi(1H) = 1K. Let mi and Mi, mi ≤ Mi be the bounds of Ai, i = 1, . . . , n. Let ϕ, ψ : I →
� be continuous strictly monotone functions on an interval I which contains all mi,Mi. For 1 ≤
n1 < n, one denotes m = min{m1, . . . , mn1}, M = max{M1, . . . ,Mn1}, and

∑n1
i=1 Φi(1H) = α 1K,∑n

i=n1+1 Φi(1H) = β 1K, where α, β > 0, α + β = 1. Let

(m,M) ∩ [mi,Mi] = ∅, for i = n1 + 1, . . . , n, (3.2)

and let one of two equalities

Mϕ(α,A,Φ, 1, n1) = Mϕ(1,A,Φ, 1, n) = Mϕ

(
β,A,Φ, n1 + 1, n

)
(3.3)

be valid.
If one of the following conditions

(i) ψ ◦ ϕ−1 is convex, and ψ−1 is operator monotone,

(i′) ψ ◦ ϕ−1 is concave and −ψ−1 is operator monotone,

is satisfied, then

Mψ(α,A,Φ, 1, n1) ≤ Mψ(1,A,Φ, 1, n) ≤ Mψ

(
β,A,Φ, n1 + 1, n

)
. (3.4)

If one of the following conditions

(i) ψ ◦ ϕ−1 is concave and ψ−1 is operator monotone,

(ii′) ψ ◦ ϕ−1 is convex and −ψ−1 is operator monotone,

is satisfied, then the reverse inequality is valid in (3.4).

Proof. We only prove the case (i). Suppose that ϕ is a strictly increasing function. Sincem1H ≤
Ai ≤ M1H , i = 1, . . . , n1, implies ϕ(m)1K ≤ ϕ(Ai) ≤ ϕ(M)1K, then

(m,M) ∩ [mi,Mi] = ∅ for i = n1 + 1, . . . , n (3.5)

implies

(
ϕ(m), ϕ(M)

) ∩ [ϕ(mi), ϕ(Mi)
]
= ∅, for i = n1 + 1, . . . , n. (3.6)

Also, by using (3.3), we have

1
α

n1∑
i=1

Φi

(
ϕ(Ai)

)
=

n∑
i=1

Φi

(
ϕ(Ai)

)
=

1
β

n∑
i=n1+1

Φi

(
ϕ(Ai)

)
. (3.7)
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Taking into account (3.6) and the above double equality, we obtain by Theorem 2.1

1
α

n1∑
i=1

Φi

(
f
(
ϕ(Ai)

)) ≤ n∑
i=1

Φi

(
f
(
ϕ(Ai)

)) ≤ 1
β

n∑
i=n1+1

Φi

(
f
(
ϕ(Ai)

))
(3.8)

for every continuous convex function f : J → � on an interval J which contains all
[ϕ(mi), ϕ(Mi)] = ϕ([mi,Mi]), i = 1, . . . , n.

Also, if ϕ is strictly decreasing, then we check that (3.8) holds for convex f : J → �
on J which contains all [ϕ(Mi), ϕ(mi)] = ϕ([mi,Mi]).

Putting f = ψ ◦ ϕ−1 in (3.8), we obtain

1
α

n1∑
i=1

Φi

(
ψ(Ai)

) ≤ n∑
i=1

Φi

(
ψ(Ai)

) ≤ 1
β

n∑
i=n1+1

Φi

(
ψ(Ai)

)
. (3.9)

Applying an operator monotone function ψ−1 on the above double inequality, we obtain the
desired inequality (3.4).

As a special case of Theorem 3.1 we can obtain Theorem B as follows.

Another Proof of Theorem B. We give the short version of the proof, since it is essentially the
same as the one of Theorem A in Section 2.

Let the assumptions of Theorem B be valid, ψ ◦ ϕ−1 is convex and ψ−1 is operator
monotone.

Let B1 = ϕ−1(
∑n

i=1 Φi(ϕ(Ai))) and Bi = Ai−1, i = 2, . . . , n + 1. ThenmB1 = mϕ, andMB1 =
Mϕ are the bounds of B1, andmBi = mi−1, andMBi = Mi−1, are the ones of Bi, i = 2, . . . , n + 1.
We have

(mB1 ,MB1) ∩ [mBi ,MBi] = ∅ for i = 2, . . . , n + 1, (3.10)

since (1.6) holds. Also, we define mappings Θ1(B) = (1/2)B and Θi(B) = (1/2)Φi−1(B), i =
2, . . . , n + 1. Then we have

∑n+1
i=1 Θi(1H) = 1K and

n+1∑
i=1

Θi

(
ϕ(Bi)

)
=
1
2

n∑
i=1

Φi

(
ϕ(Ai)

)
+
1
2

n∑
i=1

Φi

(
ϕ(Ai)

)
= ϕ(B1). (3.11)

It follows that

B1 = Mϕ

(
1
2
,B,Θ, 1, 1

)
= Mϕ(1,B,Θ, 1, n + 1) = Mϕ

(
1
2
,B,Θ, 2, n + 1

)
. (3.12)

So the assumptions of Theorem 3.1 are valid and it follows that

B1 = Mψ

(
1
2
,B,Θ, 1, 1

)
≤ Mψ(1,B,Θ, 1, n + 1) ≤ Mψ

(
1
2
,B,Θ, 2, n + 1

)
(3.13)
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holds. Therefore, it follows that

ϕ−1
(

n∑
i=1

Φi

(
ϕ(Ai)

))
= B1 ≤ ψ−1

(
n∑
i=1

Φi

(
ψ(Ai)

))
, (3.14)

which is the desired inequality (1.7).
In the remaining cases the proof is essentially the same as in the above cases.

Remark 3.2. Let the assumptions of Theorem 3.1 be valid.
(1)We observe that if one of the following conditions

(i) ψ ◦ ϕ−1 is convex and ψ−1 is operator monotone,

(i′) ψ ◦ ϕ−1 is concave and −ψ−1 is operator monotone,

is satisfied, then the following obvious inequality (see Remark 2.3(1))

Mϕ

(
β,A,Φ, n1 + 1, n

) ≤ Mψ

(
β,A,Φ, n1 + 1, n

)
(3.15)

holds.
(2)We denote bymϕ andMϕ the bounds ofMϕ(1,A,Φ, 1, n). If (mϕ,Mϕ) ∩ [mi,Mi] =

∅, i = 1, . . . , n1, and one of two following conditions

(i) ψ ◦ ϕ−1 is convex and ψ−1 is operator monotone

(ii) ψ ◦ ϕ−1 is concave and −ψ−1 is operator monotone

is satisfied, or if one of the following conditions

(i′) ψ ◦ ϕ−1 is operator convex and ψ−1 is operator monotone,

(ii′) ψ ◦ ϕ−1 is operator concave and −ψ−1 is operator monotone,

is satisfied (see [4, Theorem B]), then the double inequality (3.4) can be extended from the
left side as follows:

Mϕ(1,A,Φ, 1, n) = Mϕ(1,A,Φ, 1, n1)

≤ Mψ(α,A,Φ, 1, n1) ≤ Mψ(1,A,Φ, 1, n)

≤ Mψ

(
β,A,Φ, n1 + 1, n

)
.

(3.16)

(3) If neither assumptions that (mψ,Mψ) ∩ [mi,Mi] = ∅, i = 1, . . . , n1 nor ψ ◦ ϕ−1

is operator convex (or operator concave) is satisfied and if 1 < n1 < n, then (3.4) cannot
be extended from the left side by Mϕ(1,A,Φ, 1, n1) as above. It is easy to check it with a
counterexample similarly to [4, Example 2].

We now give some particular results of interest that can be derived from Theorem 3.1.
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Corollary 3.3. Let (A1, . . . , An) and (Φ1, . . . ,Φn), mi, Mi, m, M, α, and β be as in Theorem 3.1.
Let I be an interval which contains allmi, Mi and

(m,M) ∩ [mi,Mi] = ∅, for i = n1 + 1, . . . , n. (3.17)

If one of two equalities

Mϕ(α,A,Φ, 1, n1) = Mϕ(1,A,Φ, 1, n) = Mϕ

(
β,A,Φ, n1 + 1, n

)
(3.18)

is valid, then

1
α

n1∑
i=1

Φi(Ai) ≤
n∑
i=1

Φi(Ai) ≤ 1
β

n∑
i=n1+1

Φi(Ai) (3.19)

holds for every continuous strictly monotone function ϕ : I → � such that ϕ−1 is convex on I. But, if
ϕ−1 is concave, then the reverse inequality is valid in (3.19).

On the other hand, if one of two equalities

1
α

n1∑
i=1

Φi(Ai) =
n∑
i=1

Φi(Ai) =
1
β

n∑
i=n1+1

Φi(Ai) (3.20)

is valid, then

Mϕ(α,A,Φ, 1, n1) ≤ Mϕ(1,A,Φ, 1, n) ≤ Mϕ

(
β,A,Φ, n1 + 1, n

)
(3.21)

holds for every continuous strictly monotone function ϕ : I → � such that one of the following
conditions

(i) ϕ is convex and ϕ−1 is operator monotone,

(i′) ϕ is concave and −ϕ−1 is operator monotone,

is satisfied. But, if one of the following conditions

(ii) ϕ is concave and ϕ−1 is operator monotone,

(ii′) ϕ is convex and −ϕ−1 is operator monotone,

is satisfied, then the reverse inequality is valid in (3.21).

Proof. The proof of (3.19) follows from Theorem 3.1 by replacing ψ with the identity function,
while the proof of (3.21) follows from the same theorem by replacing ϕ with the identity
function and ψ with ϕ.
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As a special case of the quasiarithmetic mean (3.1) we can study the weighted power
mean as follows. For a subset {Ap1 , . . . , Ap2} of {A1, . . . , An} one denotes this mean by

M[r](γ,A,Φ, p1, p2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝1
γ

p2∑
i=p1

Φi

(
Ar
i

) ⎞⎠
1/r

, r ∈ � \ {0},

exp

⎛
⎝1
γ

p2∑
i=p1

Φi(ln(Ai))

⎞
⎠, r = 0,

(3.22)

where (Ap1 , . . . , Ap2) are strictly positive operators, and (Φp1 , . . . ,Φp2) are positive linear
mappings Φi : B(H) → B(K) such that

∑p2
i=p1

Φi(1H) = γ 1K.
We obtain the following corollary by applying Theorem 3.1 to the above mean.

Corollary 3.4. Let (A1, . . . , An) be an n-tuple of strictly positive operators in B(H) and let
(Φ1, . . . ,Φn) be an n-tuple of positive linear mappingsΦi : B(H) → B(K) such that

∑n
i=1 Φi(1H) =

1K. Letmi andMi, 0 < mi ≤ Mi, be the bounds of Ai, i = 1, . . . , n. For 1 ≤ n1 < n, one denotesm =
min{m1, . . . , mn1}, M = max{M1, . . . ,Mn1}, and

∑n1
i=1 Φi(1H) = α 1K,

∑n
i=n1+1 Φi(1H) = β1K,

where α, β > 0, α + β = 1.

(i) If either r ≤ s, s ≥ 1 or r ≤ s ≤ −1 and also one of two equalities

M[r](α,A,Φ, 1, n1) = M[r](1,A,Φ, 1, n) = M[r](β,A,Φ, n1 + 1, n
)

(3.23)

is valid, then

M[s](α,A,Φ, 1, n1) ≤ M[s](1,A,Φ, 1, n) ≤ M[s](β,A,Φ, n1 + 1, n
)

(3.24)

holds.

(ii) If either r ≤ s, r ≤ −1 or 1 ≤ r ≤ s and also one of two equalities

M[s](α,A,Φ, 1, n1) = M[s](1,A,Φ, 1, n) = M[s](β,A,Φ, n1 + 1, n
)

(3.25)

is valid, then

M[r](α,A,Φ, 1, n1) ≥ M[r](1,A,Φ, 1, n) ≥ M[r](β,A,Φ, n1 + 1, n
)

(3.26)

holds.

Proof. (i)We prove only the case (i). We take ϕ(t) = tr and ψ(t) = ts for t > 0. Then ψ ◦ϕ−1(t) =
ts/r is concave for r ≤ s, s ≤ 0, and r /= 0. Since −ψ−1(t) = −t1/s is operator monotone for s ≤ −1
and (3.23) is satisfied, then by applying Theorem 3.1(i′) we obtain (3.24) for r ≤ s ≤ −1.

But, ψ ◦ ϕ−1(t) = ts/r is convex for r ≤ s, s ≥ 0, and r /= 0. Since ψ−1(t) = t1/s is operator
monotone for s ≥ 1, then by applying Theorem 3.1(i) we obtain (3.24) for r ≤ s, s ≥ 1, and
r /= 0.
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If r = 0 and s ≥ 1, we put ϕ(t) = ln t and ψ(t) = ts, t > 0. Since ψ ◦ ϕ−1(t) = exp(st) is
convex, then similarly as above we obtain the desired inequality.

In the case (ii) we put ϕ(t) = ts and ψ(t) = tr for t > 0 and we use the same technique
as in the case (i).
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