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We are interested in the existence of solutions for Dirichlet problem associated to the degenerate
quasilinear elliptic equations _Z?ﬂ Djlwa(x)A;(x,u, Vu)] + w1 (x)g(x, u(x)) + H(x,u, Vu) ws(x) =

f(x), on Qin the setting of the weighted Sobolev spaces W[])’p(Q, w1, w,).

1. Introduction

In this paper we prove the existence of (weak) solutions in the weighted Sobolev spaces
Wé’p (Q, w1, wy) for the homogeneous Dirichlet problem:

Lu(x) = f(x), on Q,

(P)
u(x) =0, on 09,
where L is the partial differential operator:
Lu(x) = —div[ws(x)#(x,u, Vu)] + g(x, u)wi(x) + H(x,u, Vu)w,(x), (1.1)

where Q is a bounded open set in RN (N > 2), w; and w; are two weight functions, and the
functions o/ : QxRxRN — RN, ¢: QxR — R,and H : QxRxRN — R are Carathéodory
functions.

By a weight, we will mean a locally integrable function w on RN such that w(x) > 0
for a.e. x € RN, Every weight w; (i = 1, 2) gives rise to a measure on the measurable subsets
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on RV through integration. This measure will be denoted by p;. Thus, pi(E) = [ wi(x)dx
(i = 1,2) for measurable sets E ¢ RV,

In general, the Sobolev spaces W*? (Q) without weights occur as spaces of solutions
for elliptic and parabolic partial differential equations. For degenerate partial differential
equations, that is, equations with various types of singularities in the coefficients, it is natural
to look for solutions in weighted Sobolev spaces (see [1-4]).

A class of weights, which is particularly well understood, is the class of A,-weights
(or Muckenhoupt class) that was introduced by Muckenhoupt (see [5]). These classes have
found many useful applications in harmonic analysis (see [6, 7]). Another reason for studying
A,-weights is the fact that powers of distance to submanifolds of RN often belong to A,
(see [8]). There are, in fact, many interesting examples of weights (see [4] for p-admissible
weights).

Equations like (1.1) have been studied by many authors in the nondegenerate case
(i.e., with w(x) = 1) (see, e.g., [9] and the references therein). The degenerate case with
different conditions has been studied by many authors. In [2] Drébek et al. proved that under
certain condition, the Dirichlet problem associated with the equation —div(a(x,u, Vu)) = h,
h € [W&’p(Q, w)]* has at least one solution u € W;’p(Q, w), and in [1] the author proved the
existence of solution when the nonlinear term H (x, 7, ¢) is equal to zero.

Firstly, we prove an L* estimate for the bounded solutions of (P): we assume that
f/wr € L1(Q,wy), with /(1 — 1) < g < oo (Where r, > 1 as in Theorem 2.5), and we prove
thatany u € Wg’p(Q, w1, wy) N L*(Q) that solves (P) satisfies ||u||r=q) < C, where C depends
only on the data, thatis, , N, p, g, a1, a2, Co,Cy and || f/wn]|;, (©wn)" After that, we prove the
existence of solution for problem (P) if f/w1 € LI(Q,w1), withp'ra/ (12— 1) < g < 0.

Note that, in the proof of our main result, many ideas have been adapted from [9-11].

The following theorem will be proved in Section 3.

Theorem 1.1. Let wy and w, be Ap-weights, 1 < p < co, with wy < ws. Suppose the following.

(H1) x — A(x,1,¢) is measurable in Q for all (1,&) € R x RN: (,8) — A(x,1,8) is
continuous in R x RN for almost all x € Q.

(H2) [A(x,1,8) = A(x,1,8)] - (&= ¢) > 0, whenever ¢, ¢ € RN, §#¢.

(H3) A4 (x,1,¢) - ¢ > a1 )¢]P, with 1 < p < oo, where a; > 0.

(H4) [A(x,1,8)| < Ka(x) + hy(x)|n|P’? + ha(x)|EPP, where Ky, hy, and hy are positive
functions, with hy and hy € L*(Q), and Ky € LF (Q,w») (1/p+1/p' =1).

(H5) x +— g(x,1n) is measurable in Q forally € R: n — g(x,n) is continuous in R for
almost all x € Q.

(H6) |g(x,m)| < Ki(x)+h3(x) |11|P/P’, where Ky and hs are positive functions, with hy € L*(Q)
and K; e LP,(Q, wl).

(H?7) g(x,n) n > aoln|?, for all n € R, where ay > 0.

(H8) x — H(x,n,¢) is measurable in Q for all (1,&) € R x RN: (n,¢) — H(x,n,8) is
continuous in R x RN for almost all x € Q.

(H9) |H(x,1,¢)| < Co+ C1|é|P, where Cy and C; are positive constants.

(H10) f/w1 € L1(Q,wy), with r;/(r2 — 1) < q < oo (where r, > 1 as in Theorem 2.5) and

wyr/wy € Lq(Q,wl).

Let u € W&’p(Q, w1, wz) N L*(Q) be a solution of problem (P). Then there exists a constant C > 0,
which depends only on Q, n,p, a1, a9, Co, C1 and ||f/“’1||m(g,w1)/ such that ||ul| »q) < C.
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The main result of this article is given in the next theorem, which is proved in
Section 4.

Theorem 1.2. Assume that (H1)-(H9) hold true and suppose that

(H11) f/w1 € LY(Q, wy), withp'ry /(1 — 1) < g < oo;
(H12) H(x,7,¢) 20, forall n € R.

Then there exists at least one solution u € W;’p(Q, w1, wz) N L®(Q) of the problem (P).

Theorem 1.2 will be proved by approximating problem (P) with the following
problems:

—div[w, HA(x,u, Vu)] + g(x, u)wi + Hyp(x,u, Vu)w, = f(x), on Q,
(Pm)
u(x) =0, on 09,

where H,,(x,1,¢) = H(x,1,¢)/1+(1/m)|H (x, 1, ¢)|, for m € N. Note that |H,,| < |H| and that
|H,,| < m.

2. Definitions and Basic Results

Let w be a locally integrable nonnegative function in RN and assume that 0 < w(x) < oo
almost everywhere. We say that w belongs to the Muckenhoupt class A,, 1 < p < oo, or that
w is an Ap-weight, if there is a constant C = C,, such that

(% IB w(x)dx) (;ﬁ IB w/ 1P (x)dx)lv_1 <Cpw (2.1)

for all balls B ¢ RN, where | - | denotes the N-dimensional Lebesgue measure in RN. If 1 <
q < p, then A; C A, (see [4, 7, 12] or [13] for more information about A,-weights). The
weight w satisfies the doubling condition if u(2B) < Cu(B), for all balls B C R", where
u(B) = fB w(x)dx and 2B denotes the ball with the same center as B which is twice as large.
If w € A,, then w is doubling (see Corollary 15.7 in [4]).

As an example of A,-weight, the function w(x) = |x|%, x € RN, is in Ap if and only if
-N < a < N(p - 1) (see Corollary 4.4, Chapter IX in [7]). If ¢ € BMO(RY), then w(x) =
e™?™*) ¢ A, for some a > 0 (see [6]).

Definition 2.1. Let w be a weight, and let Q € RN be open. For 0 < p < oo, we define LP(Q, w)
as the set of measurable functions f on € such that

1/p
11l ) = (JQ |f(X)|pw(x)dx) < 0. (2.2)

Remark2.2. Ifw € A,,1 < p < oo, then since w VD g locally integrable, we have L?(Q, w) C
LL (Q) for every open set Q (see Remark 1.2.4 in [13]). It thus makes sense to talk about weak

loc
derivatives of functions in L7 (Q, w).
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Definition 2.3. Let Q C RN be open, 1 < p < oo, and let w; and w, be A,-weights, 1 < p < oo.
We define the weighted Sobolev space WP (Q, w1, w,) as the set of functions u € LP(Q,w;)
with weak derivatives Dju € LF(L2,w), for j =1,...,N. The norm of u in WP (Q, w1, wy) is
given by

N 1/p
||u||W1,p(Q,w],w2) = <J‘Q [t (x)Peor(x) dx + Z J‘Q |D]~u(x) Ipw2 (x)dx> . (2.3)
=1

The space W;’p(Q, w1, wy) is the closure of C{°(€2) with respect to the norm [[lyy1r(Q ;)

The dual space of Wé’p(Q, w1, wy) is the space
[Wo” (@ wr,2)] = W7 (@01, 2)

= {T:f—divg i g= (gl,...,gN),wi1 eU"(Q,wl),fTi € LP’(Q,wz)}.
(2.4)

Remark 2.4. (a) If w € Ay, 1 < p < oo, then C*(Q) is dense in W'?(Q, w) = W'P(Q, w, w) (see
Corollary 2.16 in [13]).
(b) If w1 < wy, then

Wy (Q,w2) ¢ Wy (Q, w1, w2) € W,y (Q,w1). (2.5)

In this paper we use the following four results.

Theorem 2.5 (The Weighted Sobolev Inequality). Let Q be an open bounded set in RN (N > 2)
and wy € Ap(1 < p < o). There exist constants Cq and 6 positive such that for all u € Cf°(Q) and
all ry satisfying 1 <rp < N/(N -1) + 6,

el (@00 < Ca IVUllr (@ 0n)- (2.6)

where p* = pry.
Proof. See Theorem 1.3 in [3]. O
The following lemma is due to Stampacchia (see [14], Lemma 4.1).

Lemma 2.6. Let a, B, C, and ko be real positive numbers, where > 1.
Let ¢ : Ry — R, be a decreasing function such that

o) < e o) 27)

foralll >k > ko. Then (ko + d) = 0, where d* = C [¢p(k)]P~12% P/ (P-D),
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Lemma 2.7. If w € Ay, then (|E|/|B|)” < Cp(u(E)/pu(B)), whenever B is a ball in RN and E is a
measurable subset of B.

Proof. See Theorem 15.5 Strong doubling of A,-weights in [4]. O
By Lemma 2.7, if u(E) =0, then |E| = 0.

Lemma 2.8. Let wy and w, be Ap-weights, 1 < p < oo, w1 < wa, and a sequence {u,}, u, €
Wg'p(Q, w1, wy) satisfies the following:

(1) u, —uin Wg’p(Q, w1, wsy) and pp-a.e. in Q;

(ii) [o(A(x, 1y, Vity) — A(x, 10y, Y11), V (1y — 1)) wy dx — Qwithn —  oo.
Then u, — uin WS’P(Q,wl,wz).
Proof. The proof of this lemma follows the line of Lemma 5 in [10]. O

Definition 2.9. We say that u € Wé’p(Q, w1, wy) N L*(Q) is a (weak) solution of problem (P) if
f woA(x,u,Vu) - Vo dx +I g(x, u)pewrdx + J. H(x,u, Vu) pwdx = J‘ fodx, (2.8)
Q Q Q Q

for all p € Wy " (Q, w1, ws) N L= (Q).

3. Proof of Theorem 1.1

Set A = (C1/a1) + 1 and define for k > 0 the functions ¢ € C'(R) and Gx € W' (R) by

els -1, ifs >
o |

—e?M 41, ifs <0,

\%
S

s—k, ifs > k, (3.1)
Gk(s)=10, if —k < s <k,

s+k, ifs < -k.

Ifue Wé’p (Q, w1, wy) N L*(Q) is a solution of problem (P), define the set A(k) = {x €
Q : [u(x)| > k}. We will use the test functions v(x) = ¢(Gk(u(x))). Since u € Wy (Q, wi, ws) N
L*(Q) and Q is a bounded set in RN, then v(x) = ¢(Gk(u(x))) € W&’p(Q, w1, wy) N L*(Q)
and

v(x) = ¢((lul = k)") xaw) sign(u),

(3.2)
Vo = ¢/ ((jul - k)°) xaw Vi,
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where y k) is the characteristic function of the set A(k) (by sign(u(x)) we mean the function

equal to +1 for u(x) > 0 and to -1 for u(x) <0).

Since u € W, " (Q, w1, w») N L*(Q), we have that v € W, " (Q, w1, w2) N L (Q).

Using the function v in (2.8) we obtain

J wy A (x,u, Vu) - Vo dx +f g(x,u)v widx +J‘ H(x,u,Vu) v wydx = f fodx. (3.3)
Q Q Q Q

We have the following estimates.
(i) By (H3) we obtain

f wor HA(x,u,Vu) - Vodx = I ' ((|ul - k)" )A(x,u, Vu) - Vuw,dx
Q A(K)

>an [ (TP ((ul - K ond.
A(k)

(ii) By (H7) we obtain

j g(x, u)v widx = J‘ g, u) ¢((Jul - k)" )wrdx
Q A(k)

> aof [l o ((Jul - k)" )w:dx.
A(k)

(iii) Using (H9) we obtain

f H(x,u,Vu)v wydx
Q

< J‘ |H (x,u, Vu)||v|wadx
Q

< f (Co+ Ci|VulP)p((Jul - k)" )wodx.
A(K)

And we also have

ngf vdx| < J‘A(k)|f|¢((|u| —k)")dx.

Hence in (3.3) we obtain

a1f |VulP¢' ((Jul —k)+)wzdx+(x0J‘ |u|p_1¢((|u| - k)" )wdx
A(k) A(k)

< f (Co+ Ci|VulP)P((lul - k) )ew, dx +I |f|¢((|u| -k)")dx.
A(k) A(k)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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Since A = (C1/aq) + 1, we have for s > 0

M (s) - C1d(s) = mre* — (e*s - 1)

= (A —C1)e¥ +Cr = ae™ + Gy

O]

Hence in (3.8) we obtain

L<k> [oal Ve ¢ (Jul = K)7) = ColVuP (e = )")]ewoadlx

+ aof |u|P_]¢((|u|—k)+)w1dx§I (|f] +Co w2)p((ju| - k)*)dx.
A(k) A(k)

Using (3.9) and k < |u(x)| if x € A(k), we obtain

%J‘A(k) ¢<(|u|P o )Vu

f (| £+ Co w2) ¢((Jul - k)*)dx.
A(k)

P
wrdx + apgkP™! d((Ju| — k)" )wrdx
A(k)

IN

(3.9)

(3.10)

(3.11)

Let us define the function ¢ by g (x) = ¢((|u(x)|-k)*/p). We have that ¢ € Wé’p(Q, w1, wy)

and
1 .
Vi = » ¢ <(|u| » i > XA sign(u) Vu.

We have the following.
(a) Foralls > 0,e'—1 > (e!/P —1)P.

(b) There exists, a constant C, > 0 (Cz = C(A, p)) such that forall s > 1

~1< Gy - 1)”, Aets < Cy A (P - 1)".

This implies the following.
(I1) ¢((lul - K = =R _ 1 > (e)t(lul—kf/p ~1)? = | gx[P a.e. on Q.
(I12) If x € A(k + 1), then
P((ul-k)*) =R _1<C, (e“‘”"kw” - 1) = Colgl”,

B ((1ul=0)°) = (ul - K 9" < Gy 4 (X977~ 1) = € g

(3.12)

(3.13)

(3.14)
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Combining (I1) and (I2) with (3.11) and (3.12) we obtain

ap?
P

f |quk|pw2dx+a0k”‘1f |k |” widx
Q Q
<[ U1+ Cow)p((ul - k")
A(k)
(3.15)

<[ Al Cow) ol
A(k+1)

« (1] +Co w)p((ul k)" dhx.
A(K)-A(k+1)

Define the function h = |f| + Co w;. Since f/w1 € LI(Q, w1) and wy /w1 € L1(Q,w;), we have
that h/wq € L1(Q, w). Hence

[ Hlonrax={ 2 fpl o) o) dx
Q wi

¢ (3.16)
S - |
- w1 L1(Quw1) LP 4 (Q,un)
If x € A(k) - A(k + 1), we have k < |u| < k + 1. Hence
d((Jul—k)") =t 1 < -1, (3.17)
and we obtain
f (|f] + Co w2) ¢((Jul - K)*) dng (" -1) hax
A(k)-A(k+1) A(k)-A(k+1)
(3.18)
< ¢t f hdx.
A(k)
By Theorem 2.5, (3.15), and (3.18) we have
ar pf 1 . PP -
i\f C_FJ(J lgsic|” wzdx) + a kg 1I || endx
o Vo Q
(3.19)

< CZJ h|qfk|pdx+e)‘f h dx.
Q A(K)
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Therefore, there exist positive constants C3 and C4 (depending only on &, a1, p, A, C,, and

Cg) such that
p* P p-1 p
Cs <J || wzdx> +Cy g k) f lgic|” wrdx
Q Q

gf h | |” dx+f h dx.
Q A(k)

(3.20)

Since r,/(r; —1) < g, thenq < mandp <pqg < p* . For0 <6 < 1suchthatl/pq =
(0/p) + (1 - 0)/p*, using an interpolation inequality, Young’s inequality (with 0 < y < o),

and Holder’s inequality with exponents g and 4’ we thus obtain

p o P
J‘thqjk| dx < ) w1 L”I(Q,qu)”q}k”LPq,(Q/wl)
op (1-0)p
: ‘ C471 Lﬂ(Q,wl)”lpk”LP(Qrwﬂ”lpk”U*(Qrwﬂ
1/(1-0) |[ 45, [P el B p
<(1-0)y [l | U @)t Oy w1 Lq(g’w1)|l‘l’k|lm(9,w1)'

Hence in (3.20) we obtain

X p/p
Cs <’[ lgsic|” wzdx> +Cy o kg_lf lgsi|” endx
Q Q

<(1- 9)}/1/(1_9) ||‘Ifk ||Z,* (Quon)

h 1/6

w1

+0y lgllZ o

LI(Q,w1)

- 1/(1-0) p
o BN T

h 1/6

+0 Y—l/@ o

ol g+ | .

LI(Q,w1) A(k)

Now, we can choose y in order to have (1 - 0) yl/ (1-9) = C5/2 and kj such that

-1 h 1/6
C4a0kg =0 Y’l/e _ )
W1l La(Qu0n)
We obtain, from (3.22), that for every k > k it results
C . p/p h ,
Sl wnax) < [ naes |2 [ (40]'77,
2 Va Al wi | 1)

(3.21)

(3.22)

(3.23)

(3.24)
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where py (Ax) = | A, w1 dx. Hence forall k > ko we have

h

w1

p*/p
J; |(I«‘k|p* wydx < (C% [ (A(k))]l/q>

2\P/P
(@)

= Cs [ (A(K))]"/77.

La(Q,uwn)

r'/p (3.25)

h [ (AG)] 7

w1

LI(Quw1)

Let us now takel > k > k. Then we have

m(A(l))[A(%)]p* < mawn|p(=F)

< f gk |7 cwndx.
Q

P

< J || wnddx
A0 (3.26)

Therefore for all ] > k > ko we obtain (by (3.25) and (3.26))
. p* . rod o
(=K m(AD) < B sl (AG)]" ™ = o[ (AN, (3.27)

that is, 1 (A(1)) < (Ce/ (- k)"") [ (A(K))]P/P7.
Let (k) = u1(A(k)).Since p = p*/p q' > 1, by Lemma 2.6 there exists a constant C; > 0
such that

w(Ak)) =0, Vk > Cy. (3.28)

Using Lemma 2.7 we have |[A(k)| = 0 forall k > Cjy. Therefore any solution u of problem (P)
satisfies the estimate ||u[|;=@) < C7.

4, Proof of Theorem 1.2

Step 1. Let us define for m € N the approximation

H(x,1,¢)

Ho(x,1,8) = 1 (1/m)|H (x,7,8)|

(4.1)

We have that |H,(x,7,¢)| < |H(x,1,8)|, [Hm(x,1,¢)| < m, and Hy(x,17,¢) satisfies the
conditions (H9) and (H12). We consider the approximate problem

—div[w, HA(x,u, Vu)] + g(x,u) wi + Hy(x,u, Vu) wp, on Q,

(Pm)
u(x) =0, on 0Q.
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We say that u € WS"’(Q, w1, wy) is (weak) solution of problem (P,,) if

f A(x,u, Vu) - Vpw,dx +f g(x,u) pwidx
Q Q
(4.2)

+f H,, (x,u, Vu) pwdx = f fpdx,
Q Q

for all p € Wé’p (Q, w1, wy). We will prove that there exists at least one solution u,, of the
problem (P,,). For u,v,¢ € Wg’p(Q, w1, wy) we define

B(u,v,¢) = I wy A (x,u, Vo) - Vedx,
Q
B, (u,¢) = J g(x, u) pwidx + f Hy(x,u, Vu) puw,dx, (4.3)
Q Q
T(p) = J foadx.
Q
Thenu € Wg’p(Q, w1, w>) is a (weak) solution of problem (P,,) if

B(u,u,¢) + By (u, ) =T(p), forallgpe Wg’p(Q, w1, ws). (4.4)

Let a(u, v, (P) = B(u/ o, ()0) + Bm(u/ (P)
(i) Using (H4) we obtain

¥ p/p
< , P
|B(w,v,9)] < (”KZ“LP @) T 1Mllpe(q) llul WP (©Qu01,02) + 2|l e 19 W;’F(Q,wl,wz)> 45)
X ”(P”WS'P(Q,wl,wz)'
(ii) Using (H6) and |H,,(x,1,¢)| < m, we obtain
//p 1’/}7
< / » P
180 691 < (1Kl Wl Wl mCalja@)] ) .
X ”‘P"WS'F(Q,wl,wz)'
Hence,
| a(,0,0)| < (1Kl am) + (Il + Ballieecey ) el + Kl
ey S LY (Quw,) L=(Q) L=(Q) W (Qwn 02) LY (Quwr) @)

p/P 1/p!
Mhalei@lolly o+ Ca [1a(@1 Yol
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1, 1, - 1s
For each (u,v) € Wop(Q,wl,wz) X WOP(Q,wl,wz) we have that a(u,v,.) is linear and
continuous. Hence, there exists a linear and continuous operator

A, ) : Wy (Q w1, w2) — [WoP (@, 1, 00)] (48)

such that (A(u,v),¢) = a(u, v, ). We set

Aw) = Awu), Yu € W, (Q wi,w). (4.9)

The operator A W&’p (Q, w1, wy) — [W&’p(Q, w1, w)]* is semimonotone; that is, by similar
arguments as in the proof of Theorem 2 in [11] we have the following.

(1) (A(w,u) — A(u,v),u—v) >0forallu,v e Wé’p(Q, w1, wy).
(ii) For each u € W;’p(Q, w1, ws), the operator v — A(u,v) is hemicontinuous and
bounded from Wé’p (Q, w1y, wy) to [Wg’p(Q, w1, w7)]" and,
foreachv € Wg'p(Q, w1, w>) the operator u — A(u,v) is hemicontinuous and bounded from
W, (Q, w1, w2) to [Wy " (Q,wn,w2)]".
(iii) If u, — uin Wé’p(Q, w1, wy) and (A(uy,, u,)—A(u,, u), u,—u) — 0,then A(u,, u) —
A(u,v) in [Wg’p(Q,wl,wz)]* asn — oo forallv e Wg’p(Q,wl,a&).

iv) If v € Wg’p(Q,wl,wz), u, — uin Wé’p(Q,wl,wz), and A(u,,v) — 0 in
[W;’p(Q,wl,wz)]*, then (A(u,,v),u,) — (0,u)asn — co.

(v) The operator A: Wé’p(Q, w1, wy) — [Wg’p(Q, w1, w7)]" is bounded.
Hence the operator A: Wg’p (Q, w1, wy) — [W;’p(Q, w1, wy)]" is pseudomonotone (see [15]).

(vi) By (H3), (H7), and (H12) we have

A > 4 P > P
<A(u),u> > m Lz |VulPwdx + a Lz [ulPewrdx > a ”u”WS’”(Q,wl,wz)' (4.10)

where a = min{ag, a1 }. Since p > 1, we have

<A(u),u>

N o (4.11)
“u”W(;'P(Q,wl,wz)

—> 00 On ||u||W01,p(Q/wl’w2)

that is, the operator A is coercive. Then, by Theorem 27.B in [15], for each T €
[W&’p (Q, w1, wy)]", the equation

Au=T, u € W,"(Q w,w) (4.12)

has a solution. Therefore, the problem (P,,) , has a solution u,, € WS’P (Q, w1y, wy).
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Step 2. We will show that u,, € L*(Q) and [|um||;=(q) < C, where C is independent of m. If

ue Wé’p(Q, w1, w>) is a solution of problem (P,,), we define

u(x), if [u(x)[< n,
Uy (x) = Ty(u(x)) =< n, if u(x) >mn, (4.13)

-n, ifu(x)<-n.

We have Dju, = Dju if lu(x)] < n. For k > 0, let us define the function ¢,(x) =

sign(u,(x)) max{|u,(x)| - k,0}. We have ¢, € W;’p(Q, w1, wy) N L*(Q).
Now consider the function

t+k, ift < -k,
o) =40, if|t <k, (4.14)
t—k, ift > k.

Since @ is a Lipschitz function and ®(0) = 0, then ®(¢g,) € Wg'p(Q, w1, wy). Moreover,
Diq')((lfn) = (D’(‘Ifn)Di(Ifn and

@' (uy)Vuy, — O (u)Vu, pp —a.e. in Q. (4.15)
We also have, for all measurable subset E C Q,
J‘E | D (1) Vit |” wodx < L |Vu, | wydx. (4.16)
By applying Vitali’'s Convergence Theorem, with ¢ = ®(u), we obtain
Vg, — Vg in LP(Q, wy). (4.17)
Since w; < w,, we obtain
llg5n — ‘/f”LP(Q,wl) < lgpn - ()U”LP(Q,wz) < Col| Vg - V‘l’“LP(Q,wz)' (4.18)

Hence ¢, — ¢ in LP(Q, wy). Since u € W&’p (Q, w1, wy) is a solution of problem (P,,) and
¢n € Wg’p(Q,a)l,wz) N L*(Q), we have

f A(x,u, Vi) - Vuwrdx +J g(x, u)gppwrdx +f Hiy (x, u, Vi) gpwpdx = f fyndx.
Q Q o )
(4.19)
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Using (H4), (H6), |H(x,1,¢)| < m, (4.17), and (4.18), we obtain in (4.19) asn — oo
J‘ HA(x,u, Vu) - Vpwrdx +J g(x, u)pw dx +I Hy,(x, u, Vu)pwodx = I fo dx. (4.20)
Q Q Q Q
Using ¢ = gyax in (4.2) (wWhere A(k) = {x € Q: |u(x)| > k}) we obtain

J. HA(x,u, Vu) - Viswrdx + J g(x, u)pwidx + f Hy(x, u, Vu)gw,dx
A(k) A(k) A(k)

(4.21)
= f ydx.
Ak)
Since
u+k, ifu < -k,
g=0w =140,  iffu <k (4.22)
u-k, ifu > k,
we obtain the following.
(i) By (H7) we have g(x,1) n > Oforally € R,and
f g(x, u)puwrdx = I g(x,u)(u + k)widx
A(k) {u<-k}
(4.23)
+ f g(x,u)(u - k)widx > 0.
(u=k)
(ii) Using (H12) we have H,,(x,7,¢) 1> Oforalln € R, and
Hy,(x, u, Vu)g wordx = f H,,(x,u, Vu)(u + k)w,dx
A(k) {u< -k}
(4.24)

+ f H,,(x,u, Vu)(u — k)w,dx > 0.
{u> k}

We have V¢ = Vu in A(k). Using (H3), (i), and (ii) we obtain in (4.21)

M f |VulP wydx < f fydx. (4.25)
A(k) A(k)
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By Theorem 2.1.14 in [13] there is a positive constant C such that
J |gs|Peondx < f |¢s|Pewadx < Cf |V | wodx. (4.26)
w Q Q

Then we obtain

fA(k) S des <JA(k)
<€ <.f A(k)
= <J A(k)

Using (4.27) and Young's inequality we obtain in (4.25) (for all € > 0)

f p/ 1/}7' 1/]9
w1 ’[ |VulPwordx
A(k)

w1

f P 1/p' 1/p
w Podx
w1 1> <J‘A(k) |</f| ! >
f p/ 1/p' 1/p
w1> <J‘ |V(p|pw2dx> (4.27)
A(k)

wr
f P/ 1/}7’ 1/p
w1 f [VulP wydx .
A(K)

w1

ay ’[ |[VulPwrdx < C f
A(k) A(k)

< C[ef |[VulPwordx + C(e)
A(K)

(4.28)
,

w1

widx|,
A(k)

where C(g) = (sp)""’/ P/p'. We can choose ¢ > 0 so that Ce = a1 /2, and there exists a constant
Cg such that

p/
wrdx. (4.29)

w1

f |[VulPwrdx < Csf
A(k) A(k)

Using Sobolev’s inequality (Theorem 2.5) and Holder’s inequality with exponents g and 4’
we obtain (since g > p' (r/(r —1)) > p')

) p/p* . p/p* . p/p*
(I (lu| - k)P wldx> <I lgs|” wldx> < <f lgs|” wzdx>
A(k) A(k) A(k)

C |V | wodx = CI |VulP wydx
A(k) A(k)

IN

, (4.30)
P

w1

IN

wordx

C Cg J‘
A(k)

o (L[

IN

q v'/q !
1 w1 dx) [1(Q)] =)




16 International Journal of Differential Equations

Let us now take I > k > 0 and observe that A(I) C A(k). Then, from the previous inequality, it
follows that

uuAu»a—mﬂ=fMDa—mfwax

sf <kawwﬁxsj (] - k)P wrdx (431
A(l) A(k)

s (],

q p'r*/qp , )
a% wldx> [1(A(K))] A=/ " /p)

Hence we obtain

Colf |f /01" eondz) P71
(1=K

pi(AD) < [11(A(k))]#/D E/P), (4.32)

Since (1-(p'/q))(p*/p) > 1, by Lemma 2.6 there exists a constant Cyo > 0 such that y; (A(k)) =
Oforall k > Cjp, and using Lemma 2.7 we obtain |A(k)| = 0. Therefore if u,, is a solution of
problem (P,,), we have ||ty |1~ < Cio and Cyg is independent of m.

Step 3. Since u,, € Wg’p(Q,wl,wz) NL*(Q) and ||um|lr=@) < Cio, then the sequence {u,,} is

relative compact in the strong topology of Wg P(Q, w1, w,) (by apply the analogous results of
[10] and Lemma 2.8). Then, by extracting a subsequence {u,,, } which strongly converges in

W;’p(Q, w1, wy) (i.e., there exists u € W&’p(Q, w1, wy) such that u,,, — uin Wé’p(Q, w1, wy)),
we have forall ¢ € Wg’p(Q, w1, wy) N L*(Q)

f A (X, Uy, Vi, ) - Vipw, + J g(x, U, ) pwrdx
Q Q

+ j Hy, (o, Uy, Vi, ) popdx — j H(x,u, Vu) - Vow, (4.33)
Q Q

+ I g(x, u)pwidx + I H (x,u, Vu)pw,dx.
Q Q

Therefore u € Wé’p (Q, w1, wy) N L*(Q) is the solution of problem (P).

Example 4.1. Let Q = {(x,y) € R? : x> + y* < 1}, and consider the weights w;(x,y) = (x> +
)% and wy, = (x2 + y?)* (w; and w; € A,), and the functions of : Q x R x R2 — R?,
g: QxR — R,and H: Q xR x R? — R defined by

A((x,y),m.¢) =h(x,y) ¢,
g((xy),m) =1 (cos?(xy) +1), (4.34)

H((x,y),1,¢) = 122 sin(xy) + arctan(7),
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where hy(x, y) = 2e¥*¥". Let us consider the partial differential operator

Lu(x,y) = —div[w: (x, y)A#((x, ), u, Vu)]
+wi(x,y)g((x,y),u) (4.35)
+ w2 (x,y)H((x, v),1,¢),

and f(x,y) = (62 + y»)** cos(1/(x2 + y?)), with 2r,/(r, — 1) < q < 6. Therefore, by
Theorem 1.2, the problem

Lu(x,y) = f(x,y), on Q, u(x,y) =0, on 0Q (P)

has a solution u € W&’2(Q,w1,w2) N L*(Q).
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