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This paper presents a 1-opt heuristic approach to solve resource allocation/reallocation problem
which is known as 0/1 multichoice multidimensional knapsack problem (MMKP). The intercept
matrix of the constraints is employed to find optimal or near-optimal solution of the MMKP.
This heuristic approach is tested for 33 benchmark problems taken from OR library of sizes upto
7000, and the results have been compared with optimum solutions. Computational complexity is
proved to be O(klmn2) of solving heuristically MMKP using this approach. The performance of
our heuristic is compared with the best state-of-art heuristic algorithms with respect to the quality
of the solutions found. The encouraging results especially for relatively large-size test problems
indicate that this heuristic approach can successfully be used for finding good solutions for highly
constrained NP-hard problems.

1. Introduction

A cellular network is a mobile network in which resources are managed in cells. Each cell,
an abounded area, is served by an antenna or base station. Cell size and shape depend
on signal strength, the presence of obstacles to signal propagation, customer capacity, and
cost constraints. Allocation/reallocation problem is formulated as 0/1 multichoice multidi-
mensional knapsack problem (MMKP), which is NP-hard combinatorial optimization pro-
blem and detailed study of this problem is presented in [1]. Literally MMKP is defined as fol-
lows: Given a set of groups of variables, one tries to select the best variable in each group.
Each variable in a group has a value in an objective function and consumes a certain amount
of resources as well. The problem is to select the variables, subject to resource constraints, so
that the objective function is maximized.

The 0/1multichoice multidimensional knapsack problemmay thus bemathematically
formulated as follows: given n groups l1, . . . , ln of items to pack in some knapsack of capacity
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bk. Each item has a profit pij and a weight rkij , and the problem is to choose one item from
each group such that the profit sum is maximized without having the weight sum to exceed
bk:

Maximize z =
∑n

i=1

∑
j∈lipijxij , (1.1)

Subject to
∑n

i=1

∑
j∈li rkijxij ≤ bk, k = 1, . . . , m, (1.2)

∑
j∈lixij = 1, i = 1, . . . , n, (1.3)

xij ∈ {0, 1}. (1.4)

All coefficients pij , rkij , and bk are positive integers, and the classes l1, . . . , ln are mutually dis-
joint. Totally there are

∑n
i=1li variables, and they are divided into n groups.

In the resource allocation/reallocation problem a group represents a terminal that
needs to be reallocated. For terminals subjected to reallocation the m constraints contain the
power estimation constraints, and the constraints express that a channel cannot allocate more
than one terminal from a particular cell at a time. Equation (1.3) expresses that the terminals
must be reallocated to a channel. For terminals to be allocated the m constraints contain the
power estimation constraints, the constraints that express that a terminal cannot be allocated
to more than one channel from a particular cell at time.

The other applications ofMMKP are quality of service degradationmodel, utilitymod-
el, multisession adaptive multimedia system, problem of allocation of resources on a packet
network, and nursing personnel scheduling problem. MMKP has been solved by several al-
gorithms, and they have been cited and compared as benchmarks many times in the liter-
ature.

This paper is organized as follows. A brief survey of various researchers’ works per-
taining to this problem is elucidated in Section 2. The dominant principles of intercept matrix,
dominance principle-basedHeuristic (DPH) approach for solvingMMKP, and computational
complexity of DPH are explained in Section 3.We have furnished the results obtained byDPH
for all the benchmark problems in Section 4. This section also includes the extensive com-
parative study of results of our heuristic with known optimum or best solutions of MMKP.
Salient features of this algorithm are also enumerated in Section 4, and finally concluding re-
marks and future direction are also given in Section 5.

2. Previous Work

Depending on the nature of the solution, the existing algorithm for MMKP can be divided
into two groups, namely, exact algorithm striving for exact solutions and heuristic algorithms
producing near-optimal solution. The Exact algorithm includes branch and bound and
Lagrange multipliers technique [2, 3].

Khan et al. [2, 4] presented an exact algorithm for the MMKP based on branch and
bound with linear programming technique. A solution is explored in each iteration of this
algorithm by picking the items of a particular group. All the possible alternative picks of a
group are estimated by applying linear programming. The solution with highest estimated
total value is selected for further exploration. A solution is termed as the optimal solution if it
gives the highest total value among all the explored solutions and an item from each group is
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already picked. Khan et al. [4] had applied the concept of aggregate resource consumption [5]
to pick a new candidate item in a group to solve the MMKP which is resulted in a heuristic
named HEU. In HEU, a new item of group is selected for possible upgrade if it gives the
highest change in earned value per unit change of aggregate resource consumption. Akbar
et al. [6] presented a modified version of HUE, namely, M-HEU. In M-HEU, a preprocessing
step to find a feasible solution and a postprocessing step to improve the total value of the
solution with one upgrade followed by one or more downgrades were added.

Moser et al. [3] used the concept of graceful degradation from the most valuable items
based on Lagrange multipliers to solve theMMKP. The selected highest valued itemmight be
infeasible because of high resource consumption. That is why graceful degradation is done
in multiple iterations towards selection of a feasible suboptional solution. Hifi et al. [7, 8]
proposed two different approximate approaches. The first approach is a guided local search-
based heuristic in which the trajectories of the solutions were oriented by increasing the cost
function with a penalty term; it penalizes bad features of preciously visited solutions.

The second approach is a reactive local searchwhere an explicit check for the repetition
of configuration is added to the local search. The algorithm starts by an initial solution
and improves by using a fast literature procedure. Later both deblocking and degrading
procedure are introduced in order to (i) escape to local optimal and to (ii) introduce diver-
sification in the search space. Finally, a memory list is applied in order to forbid the repeti-
tion of configuration. Recently Cherfi and Hifi [9, 10] have developed two hybrid algorithms,
namely, HLB and AHLB, and compared the solutions with another procedure called col-
umn generation method (ALGO) [10]. HLB is the combination of local branching and col-
umn generation solution procedure, and AHLB is known as augmented HLB. These two al-
gorithms are extended version of Hifi et al.’s [7, 8] previous work. The computational time
of these algorithms was fixed from 300 to 1200 sec. The overall best solutions of these two
algorithms are presented and compared with our heuristic in Section 4.

Drexl [11] presented a simulated annealing approach to solve a slightly different vari-
ant of MMKP (without choice constraints (1.3)), namely, the multidimensional knapsack pro-
blem (MDKP). Genetic algorithm approaches are not suitable to solve for real-time admission
control, as they require long time to find a suboptional solution.

Parra-Hernández and Dimopoulos [12] proposed another heuristic HMMKP, called
linear programming relaxations of the MDKP reduced from the MMKP problem. A PRAM
model approximation algorithm was devised by Newton et al. [13] for solving the MMKP
in O(logn(logn + logm + log l)) time using O(n logn(n + lm)) operations. Shahriar et al.
[14] proposed amultiprocessors-based heuristic algorithm (MP-HEU) forMMKPwhich runs
O(t/p+s(p)) time, where t is the time requested by the algorithm using single processors, p is
the number of processors, and s(p) is a function of p, the synchronization overhead. Sbihi [15]
has presented a best first search exact algorithm for theMMKP. Themain principle of the algo-
rithm is twofold: (i) to generate an initial feasible solution as a starting lower bound and (ii)
at different levels of the search tree to determine an intermediate upper bound obtained by
solving an auxiliary problem and perform the strategy of fixing items during the exploration.

In this paper, we propose a 1-opt heuristic algorithm based on dominance principle of
intercept matrix to solveMMKP. The dominance principle-based heuristic algorithm has been
implemented successfully to solve 0-1 multiconstrained knapsack problem [16]. The main
principle of the algorithm is twofold: (i) to generate an initial feasible solution as a starting
lower bound and (ii) to improve the initial feasible solution to optimal or near optimal by
using this heuristic iteratively.
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3. Dominance Principle-Based Heuristic (DPH)

Many researchers have included all the possible constraints and variables in linear program-
ming (LP)model of the real-life optimization problems, but some of the constraints and vari-
ables may not involve in the optimality and it may consume additional computational com-
plexity. Such variables and constraints are known as redundant constraints and variables.

The preprocessing techniques are necessary to remove such redundant constraints and
variables. Researchers [4, 17–25] have proposed many algorithms for LP models; in particu-
lar, Paulraj et al. [26] used the intercept matrix of the constraints to identify redundant con-
straints prior to the start of the solution process in his heuristic approach. Here we used the
intercept matrix to identify redundant variables (0 valued variable) as well as selected vari-
ables (1 valued variable) for solving MMKP, since MMKP is a well-known 0-1 integer pro-
gramming problem and many variables have zero values.

The intercept matrix of the constraints (1.2) is used to identify the variables of value 1
and 0. The algorithm starts by selecting the lowest cost-valued item of each group as (initial)
feasible solution (Step 1) and improves the objective value by using dominance principle of
intercept matrix (Step 3 to Step 5). This sequence of operations is performed ten times.

The construction of the intercept matrix (by dividing bk values by coefficients of (1.2))
is explored in Step 3. The elements of intercept matrix are used to find totalj and cj ∗ totalj
which are arranged in decreasing order, and the leading element is the dominant variable
(Step 5). We use this dominant variable to improve the current feasible solution, and this
procedure provides optimum or near-optimum solution of MMKP. The dominant principle
focuses at the resource matrix with lower requirement come forward to maximize the profit.
The intercept matrix of the constraints (1.2) plays a vital role in achieving the goal, in a
heuristic manner. Step 4 is used to identify the 0-value variables, that is, redundant variables.
The various stages of DPH are presented in Algorithm 1.

3.1. Example

Consider an MMKP with 3 groups, 8 items, and 2 resources, that is, n = 3,
∑n

i=1li = 8, and
m = 2:

Maximize 10x11 + 14x12 + 9x13 + 11x21 + 13x22 + 12x31 + 7x32 + 17x33,

subject to 5x11 + 4x12 + 5x13 + 8x21 + 6x22 + 7x31 + 5x32 + 10x33 ≤ 17,

7x11 + 7x12 + 5x13 + 2x21 + 4x22 + 7x31 + 3x32 + 8x33 ≤ 15

(3.1)

(we convert two-dimensional problem into one-dimensional notation for our convenience),

Maximize 10x1 + 14x2 + 9x3 + 11x4 + 13x5 + 12x6 + 7x7 + 17x8,

subject to 5x1 + 4x2 + 5x3 + 8x4 + 6x5 + 7x6 + 5x7 + 10x8 ≤ 17,

7x1 + 7x2 + 5x3 + 2x4 + 4x5 + 7x6 + 3x7 + 8x8 ≤ 15.

(3.2)

Initial feasible solution: by using Step 1 of the algorithm, we have found the initial feasible
solution of MMKP (001, 01,010) and objective value is 29. Next we update this solution by
using DPH algorithm iteratively (from Step 3 to Step 5). Table 1 illustrates the first iteration



Journal of Applied Mathematics 5

Notation:
z∗: current objective function value
z: new objective function value
x∗: current solution vector
x: new solution vector

initial value:
x, x∗: zero valued vectors
z, z∗: zero
k: 1 (iteration)

Step 1: For g = 1 to n do begin
t = arg min

1≤j≤lg
{∑rgij}, i = 1 to m,

xgt = 1,
z = z + pgt
end for

do begin
k = k + 1, z∗ = z, x∗ = x

Step 2: For our convenience convert
pij in to cj , j =

∑
li,

rkij in to aij , i = 1 to m,
j =

∑
li

For g = 1 to n do begin

Step 3: Intercept matrix dij =
{

bi/aij , aij>0,
M(a large value) otherwise

Step 4: Redundant variables rv
rv = arg

1≤j≤n
{dij < 1), i = 1, . . . , m,

airv = 0, ∀i,
xrv = 0

Step 5: Dominant variable s
totalj =

∑
dij , i = 1, . . . , m, j = 1, . . . , lg ,

s = argmax{totalj ∗ cj}, ∀j
if xs = 0 and ps > pj∗ (j∗—the variable which is already in the solution)
then
xs = 1,
z = z − pj∗ + ps,
bi = bi − ais + aij∗ , ∀i
else
z = z + pj∗ ,
bi = bi − aij∗ , ∀i
end if

end for
while (z∗ < z and k ≤ 10)
Display x and z.

Algorithm 1: DPH algorithm for MMKP.

reports of DPH algorithm. This heuristic updates the solution vector and objective function
value.

Iteration 1. Consider g = 1.

2nd item in group 1 dominates other items, and it improves the objective function value from
29 to 34. Thus, the new solution vector is (010, 01,010) and objective function value is 34.
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Table 1: First Iteration reports of DPH.

g = 1 Group 1 Group 2 Group 3
Const 1 3.4 4.25 3.4 2.125 2.833333 2.428571 3.4 1.7
Const 2 2.142857 2.142857 3 7.5 3.75 2.142857 5 1.875
Total =

∑m
i=1bi/aij 5.542857 6.392857 6.4 9.625 6.583333 4.571429 8.4 3.575

Total ∗ cj 55.42857 89.5 57.6 105.875 85.58333 54.85714 58.8 60.775
g = 2 Group 1 Group 2 Group 3
Const 1 — — — 1.625 2.166667 2.428571 2.6 ∗
Const 2 — — — 2 2 2 2.666667 ∗
Total =

∑m
i=1bi/aij — — — 3.625 4.166667 4.428571 5.266667 ∗

Total ∗ cj — — — 39.875 54.16667 53.14286 36.86667 ∗
g = 3 Group 1 Group 2 Group 3
Const 1 — — — — — 2.428571 2.6 ∗
Const 2 — — — — — 2 2.666667 ∗
Total =

∑m
i=1bi/aij — — — — — 4.428571 5.266667 ∗

Total ∗ cj — — — — — 53.14286 36.86667 ∗
∗: less than 1 in any one of the entry in that column, —: group is omitted.
There is no improvement in the 2nd iteration.

Consider g = 2.

There is no dominated variable other than the 2nd item in group 2. In this iteration no feasible
upgrade is possible.

Consider g = 3.

2nd item in group 3 dominates other items, but it is available already.
In this iteration no feasible upgrade is possible. Thus, the final solution vector is (010,

01,010) and corresponding objective function value is 34.

Iteration 2. For g = 1, 2, and 3, there is no change in the objective function value. We terminate
the iteration process and display the final solution, 45 which is optimum.

Theorem 3.1. DPH can be realized inO(klmn2) time, polynomial in the number of groups (n), item
types (l), constraints (m), and number of iterations (k).

Proof. The computational complexity of finding the heuristic solution of MMKP using DPH
can be obtained as follows. For simplicity, let us assume that the number of variables per
group is a constant l (in case of different numbers of items per group, assume that l is the
maximum number of elements in a group) and there arem resources and n groups. It is easy
to verify that the procedure for construction of intercept matrix takes O(lmn) operations.
Step 3 and Step 4 take O(ln) and O(ln) operations, respectively. One iteration performs n
times to complete the groupwise selection. So the overall running time of the procedure DPH
for one iteration can be deduced as follows:

O
(
lmn2

)
+O

(
ln2

)
+O

(
ln2

)
= O

(
lmn2 + ln2 + ln2

)
= O

(
lmn2

)
. (3.3)

For k iteration algorithm, the overall time complexity is O(klmn2).
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4. Experimental Design

The heuristic was tested on 33 instances corresponding to two groups; the first group contains
existing instances, namely, I01 to I13 (13 instances)which was tested by Khan [2], and the sec-
ond group consists of 20 instances, namely, Ins01 to Ins20 which were randomly generated by
Hifi et al. [8]. Our algorithm was coded in C++ and performed on Pentium IV 2.40GHz com-
puter with 512MBmemory, running underWindows XP Professional. For all the 33 instances
DPH has reached the optimum/best/improved solutions. Table 2 illustrates the computa-
tional results of DPH, Cplex, ALGO, and HLB, AHLIB solutions with known optimum/best
solutions [8] for the test instances (◦indicates optimum solution and ∗indicates best solution).
DPH reaches the best solution for the problem I07 in the first iteration itself, and the first
iteration objective function values of this problem for n = 1 to 100 are presented in Figure 1.

The comparative study of DPH with other existing heuristic algorithms (HMS: Hifi
et al. algorithm [7]; RLS, MRLSa, MRLSb: Reactive Local Search, Modified Reactive Local
Search algorithm [8]; Cplex: Cplex Solver; KLMA: Khan et al.’s algorithm [4]; MOSER: Moser
et al.’s algorithm [3]; Opt/best: optimum or best solutions [8]; ALGO: column generation
method [10]; HLBCGSP: local branching and column generation [9]; AHLBCGSP: augmented
hybrid procedure [9]) has been furnished in Tables 3(a) and 3(b) in terms of the number
of optimal or best solutions, the average deviation from optimal/best solution obtained for
group 1 problem, and the number of optimum/overall best solutions.

The MOSER et al. [3] approach is heuristic and is based on Lagrange’s multiplier
method. Khan et al. [4] use an iterative improvement procedure, namely, KLMA based on the
concept of aggregate resources, which is presented in [5]. Both of these methods have failed
to find the optimum/best solution for group-1 instances, but KLMA identifies the optimum
solution for the problem I06. The average deviations of KLMA and MOSER [3] approaches
from optimum/best solutions are 1.46% and 5.99%, respectively.

Hifi et al. [7] has developed two greedy approaches for MMKP, namely, constructive
procedure (CP) and complementary constructive procedure (CCP). The detailed description
of CP and CCP can be found in [9]. To compare the performance of DPH, we consider the
best solution of Hifi et al.’s [7] algorithm referred to herein as HMS. The HMS determines
the optimum solutions for I01 and I06 only, and the average deviation of HMS from the
optimum/best is known to be 1.92%. Hifi et al. [8] presented twomore algorithms forMMKP,
namely, reactive local search (RLS) andmodified reactive local search (MRLS). RLS approach
improves the solution obtained by CCP. The core of the algorithm is mainly based on two
strategies, namely, degrading and deblocking. The detailed procedures are available in [8].
RLS presents the optimum solutions for 4 instances, namely, I01, I02, I05, and I06. The average
deviation is 1.07%. The modified versions of RLS are known as MRLSa and MRLSb. MRLSa
has obtained 4 optimum solutions (I01, I02, I03, and I06), and average deviation is 0.91%.
For MRLSb, the average deviation is zero and finds optimum/best solutions for all the test
instances except I12; the deviation from the best solution is 0.002%. The best results of Cplex
Solver are also compared with DPH; Cplex obtained 8 optimum/best solutions out of 13
instances (I01 to I06, I10, and I12), and the average deviation is 0.01%.

Cherfi and Hifi [9, 10] have developed three approaches for solving MMKP, namely,
ALGO, HLB, and AHLB. The column generation method (ALGO) identified the optimum/
best solution for all the instances of group-1 problems. It has reached overall best solution
for 7 instances (I01 to I07). Cherfi and Hifi [9, 10] have used three time limits for HLB.
We consider the best solution among the three time bounds. HLB has found optimum/best
solution for all test instances in group 1 and obtained 7 overall best solutions (I01 to I07).
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Table 2: Computational results of Cplex, ALGO, HLB, AHLB, and DPH with known optimum/best [8].

Ins Optimum/best
DPH multiple run solutions
(maximum 10 iterations) Cplex ALGO HLB AHLB

Initial/min Max Iter
I01 173◦ 127 173 2 173 173 173 173
I02 364◦ 304 364 1 364 364 364 364
I03 1602◦ 1202 1602 3 1602 1602 1602 1602
I04 3597◦ 2497 3597 2 3597 3597 3597 3597
I05 3905.70◦ 2907.70 3905.70 2 3905.70 3905.70 3905.70 3905.70
I06 4799.30◦ 3796.30 4799.30 4 4799.30 4799.30 4799.30 4799.30
I07 24587∗ 21356 24587∗ 1 24584 24587∗ 24587∗ 24587∗

I08 36877 29467 36894∗ 5 36869 36892 36878 36894∗

I09 49167 40457 49179∗ 6 49155 49176 49171 49179∗

I10 61437 53466 61464∗ 3 61446 61461 61450 61464∗

I11 73773 62731 73783∗ 6 73759 73775 73777 73783∗

I12 86071 66045 86080∗ 6 86071 86078 86078 86080∗

I13 98429 72457 98438∗ 7 98418 98431 98431 98438∗

Ins01 10714 4554 10738∗ 8 10709 10732 10732 10738∗

Ins02 13598∗ 9459 13598∗ 4 13597 13598∗ 13598∗ 13598∗

Ins03 10943 7305 10944∗ 2 10934 10943 10944∗ 10944∗

Ins04 14429 10249 14442∗ 1 19422 14440 14432 14442∗

Ins05 17053∗ 12034 17053∗ 2 17041 17053∗ 17053∗ 17053∗

Ins06 16823 11237 16828∗ 2 16815 16825 16826 16827
Ins07 16423 12235 16440∗ 4 16407 16435 16432 16440∗

Ins08 17506 11068 17510∗ 2 17484 17510∗ 17508 17510∗

Ins09 17754 14545 17761∗ 3 17747 17760 17758 17761∗

Ins10 19314 13422 19316∗ 2 19285 19314 19315 19316∗

Ins11 19431 13109 19441∗ 5 19424 19434 19434 19441∗

Ins12 21730 16253 21732∗ 4 21725 21731 21731 21732∗

Ins13 21569 19345 21577∗ 2 21569 21575 21571 21577∗

Ins14 32869 27109 32874∗ 2 32866 32870 32871 32874∗

Ins15 39154 32568 39160∗ 2 39154 39157 39151 39160∗

Ins16 43357 39733 43363∗ 3 43357 43361 43357 43362
Ins17 54349 34453 54360∗ 5 54349 54349 53454 54360∗

Ins18 60456 40340 60464∗ 3 60455 60460 60457 60464∗

Ins19 64921 59931 64924 2 64919 64923 64924 64925∗

Ins20 75603 67890 75611 3 75603 75611 75609 75612∗

AHLB has also been executed with two time limits, and the best results are considered for
this comparative study. AHLB provides optimum/best solution for the entire test instances
in group 1 and has got overall best for all the 13 instances. DPHwas set to performmaximum
10 iterations and got the optimum/best solution for all the test instances. Since the working
environment is different, we have not compared the running time of all the algorithms.
DPH reaches high-quality solutions within 10 seconds, whereas HLB and AHLB needs more
computational time to achieve this kind of high-quality solutions. ALGO, HLB, and AHLB
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Figure 1: First iteration objective function value for I07.

were coded in C++ and run on an Ultra-Sparc 10. The maximum time requirement for this
high-quality solution, ALGO, HLB, and AHLB is found to be 1200 sec.

For group-2 instances, the optimum solutions are not available in the literature because
of hardness of the problem. The computational results of MRLSb, Cplex, ALGO, HLB, AHLB,
and DPH are reported in Table 3(b). From the best solutions of Hifi et al. [8], we observe that
ALGO, AHLB, and DPH reached the best for all the 20 instances, and the other algorithms,
HLB, MRLSb, and Cplex, have reached 19, 18, and 6 instances of group 2, respectively. In the
same time ALGO, HLB, AHLB, and DPH have given the improved solutions for some of the
test instances which are superior to Hifi et al. [8]. In Table 3(b), we have also presented the
number of overall best solutions for these test instances.

From Tables 3(a) and 3(b), we conclude that DPH is an efficient technique than the
other algorithms. The reason is that DPH reached these solutions in 10 seconds (maximum)
for all the test instances, where ALGO, HLB, and AHLB reached with more computational
time [9, 10]. The time complexity of our algorithm is O(klmn2), where k is the number of
iterations (we fixed k as 10).

4.1. Salient Features of DPH

This heuristic is used to reduce the search space to find the near-optimal solutions of the
MMKP. The computational complexity is O(klmn2), and the space complexity is O(lmn). It
reaches the optimum or near-optimum point in n iterations, where n is the number of groups.
Due to dominance principles, this heuristic identifies the zero-value variables instantaneous-
ly. DPH takes maximumCPU time of 10 seconds for large-size problem. From the comparison
table we observe that our algorithm is the effective one.

5. Conclusion

In this paper, we presented the dominant principle-based heuristic approach for tackling
the NP-hard 0/1 multichoice multidimensional knapsack problem. This approach has been
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Table 3: (a) Summarized results for the solution quality of group 1 problem. (b) Summarized results forthe
solution quality of group 2 problem.

(a)

HMS RLS MRLSa MRLSb Cplex MOSER KLMA ALGO HLB AHLB DPH

Number of problems 13 13 13 13 13 13 13 13 13 13 13
Number of
optimum/best

2 5 4 12 8 0 1 13 13 13 13

Average deviation 1.92 1.07 0.91 0.00 0.01 5.99 1.46 0.00 0.00 0.00 0.00
Number of overall
best/optimum

0 0 0 0 0 0 0 7 7 13 13

(b)

MRLSb Cplex ALGO HLB AHLB DPH
Number of problems 20 20 20 20 20 20
Number of best 18 6 20 19 20 20
Average deviation 0.002 0.04 0.00 0.0003 0.00 0.00
Number of overall best 0 0 3 3 18 18

tested on 33 state-of-art benchmark instances and has led to give optimal/best solutions for
all the test instances given in the literature. The maximum computational time is 10 seconds,
where the other recent algorithm requires 1200 seconds. This heuristic is withO(klmn2) com-
plexity, and it requires k iterations to solve the MMKP. The experimental data show that the
optimality/best achieved by this heuristic is always close to 100 percentages. The basic idea
behind the proposed scheme may be explored to tackle other NP-hard problems.
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