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Iterative splitting methods have a huge amount to compute matrix exponential. Here, the
acceleration and recovering of higher-order schemes can be achieved. From a theoretical point of
view, iterative splitting methods are at least alternating Picards fix-point iteration schemes. For
practical applications, it is important to compute very fast matrix exponentials. In this paper,
we concentrate on developing fast algorithms to solve the iterative splitting scheme. First, we
reformulate the iterative splitting scheme into an integral notation of matrix exponential. In this
notation, we consider fast approximation schemes to the integral formulations, also known as φ-
functions. Second, the error analysis is explained and applied to the integral formulations. The
novelty is to compute cheaply the decoupled exp-matrices and apply only cheap matrix-vector
multiplications for the higher-order terms. In general, we discuss an elegant way of embedding
recently survey on methods for computing matrix exponential with respect to iterative splitting
schemes. We present numerical benchmark examples, that compared standard splitting schemes
with the higher-order iterative schemes. A real-life application in contaminant transport as a two
phase model is discussed and the fast computations of the operator splitting method is explained.

1. Introduction

We are motivated to solving multiple phase problems that arose of transport problem in
porous media. In the last years, the interest in numerical simulations with multiphase
problems, that can be used to model potential damage events has significantly increased in
the area of final repositories for chemical or radioactive waste.

Here, the modeling of the underlying porous media, which is the geosphere, spooled
with water, is important, and we apply mobile and immobile pores as a two-phase problem
in the media. With such a model, we achieve more realistic scenarios of the transported
species, see [1]. The transport is structured in a convection and a diffusion portion. The
convection portion is determined by the velocity vector v and indicates the spatial direction
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of the concentrations with the velocity. The diffusion portion is the spatial diffusion process
of the concentrations, see [1].

The sorption allegorizes the exchange between the solute (mobile) pollutant and at
the surface sorbed (immobile) pollutants and appears in the temporal term as well as in the
reaction term. The reaction is reversible. The equilibrium-sorption therefore can be declared
as a coefficient in the specific terms.

We concentrate on simplified models and taken into account all real conditions for
achieving statements of such realistic simulations of potential damage event. Here we
have the delicate problem of coupled partial and ordinary differential equations and their
underlying multiscale problems. While we deal with splitting methods and decomposing
such scale problems, we can overcome such scaling problems, see [2].

Moreover the computational part is important, while we dealing with large matrices
and standard splitting schemes are expensive with respect to compute the exponential
matrices. We solve the computational problem with a novel iterative splitting scheme,
that concentrate on developing fast algorithms to solve an integral formulation of matrix
exponentials. In such a scheme, we consider fast approximation schemes to the integral
formulations, also known as φ-functions, see [3]. The novelty is to compute cheaply the
decoupled exp matrices and apply only cheap matrix-vector multiplications for the higher-
order terms. In general, we discuss an elegant way of embedding recent survey on methods
for computing matrix exponential with respect to iterative splitting schemes.

In the following, we describe our model problem. The model equation for the multiple
phase equations are given as coupled partial and ordinary differential equations:

φ∂tci +∇ · Fi = g(−ci + ci,im) + kα(−ci + ci,ad)

−λi,iφci +
∑

k=k(i)

λi,kφck + Q̃i, in Ω × [0, t],
(1.1)

Fi = vci −De(i)∇ci + ηEci, (1.2)

φ∂tci,im = g(ci − ci,im) + kα(ci,im,ad − ci,im)

−λi,iφci,im +
∑

k=k(i)

λi,kφck,im + Q̃i,im, in Ω × [0, t],
(1.3)

φ∂tci,ad = kα(ci − ci,ad) − λi,iφci,ad +
∑

k=k(i)

λi,kφck,ad + Q̃i,ad, in Ω × [0, t], (1.4)

φ∂tci,im,ad = kα(ci,im − ci,im,ad) − λi,iφci,im,ad

+
∑

k=k(i)

λi,kφck,im,ad + Q̃i,im,ad, in Ω × [0, t],
(1.5)

ci(x, t) = ci,0(x), ci,ad(x, t) = 0, ci,im(x, t) = 0, ci,im,ad(x, t) = 0, on Ω, (1.6)

ci(x, t) = ci,1(x, t), ci,ad(x, t) = 0, ci,im(x, t) = 0, ci,im,ad(x, t) = 0, on ∂Ω × [0, t], (1.7)
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where the initial value is given as ci,0 and we assume Dirichlet boundary conditions with the
function ci,1(x, t) sufficiently smooth, all other initial and boundary conditions of the other
phases zero.

φ: effective porosity (−),
ci: concentration of the ith gaseous species in the plasma chamber phase (mol/cm3),

ci,im: concentration of the ith gaseous species in the immobile zones of the plasma
chamber phase (mol/cm3),

ci,ad: concentration of the ith gaseous species in the mobile adsorbed zones of the plasma
chamber phase (mol/cm3),

ci,im,ad: concentration of the ith gaseous species in the immobile adsorbed zones of the
plasma chamber phase (mol/cm3),

v: velocity through the chamber and porous substrate [4] (cm/nsec),

De(i): element-specific diffusions-dispersions tensor (cm2/nsec),

λi,i: decay constant of the ith species (1/nsec),

Q̃i: source term of the ith species (mol/(cm3nsec)),

g: exchange rate between the mobile and immobile concentration (1/nsec),

kα: exchange rate between the mobile and adsorbed concentration or immobile and
immobile adsorbed concentration (kinetic controlled sorption) (1/nsec),

E: stationary electric field in the apparatus (V/cm),

η: the mobility rate in the electric field, see [5] (cm2/nsec).

with i = 1, . . . ,M and M denotes the number of components.
The parameters in (1.1) are further described, see also [1].
The effective porosity is denoted by φ and declares the portion of the porosities of the

aquifer, that is filled with plasma, and we assume a nearly fluid phase. The transport term is
indicated by the Darcy velocity v, that presents the flow-direction and the absolute value of
the plasma flux. The velocity field is divergence-free. The decay constant of the ith species is
denoted by λi. Thereby does k(i) denote the indices of the other species.

In this paper we concentrate on solving linear evolution equations, such as the
differential equation,

∂tu = Au, u(0) = u0, (1.8)

where A can be an unbounded operator. We assume to achieve large-scale differential
equation, which are delicate to solve with standard solvers.

Our main focus will be to consider and contrast higher-order algorithms derived from
standard schemes as for example Strang-splitting schemes.

We propose iterative splitting schemes as a solver scheme which is simple to
implement and parallelisible.

A rewriting to integral formulation, allows to reduce the computation to numerical
approximation schemes. While standard schemes has the disadvantage to compute
commutators to achieve higher-order schemes, we could speed up our schemes by recursive
algorithms. Iterative schemes can be seen as Successive approximations, which are based on
recursive integral formulations in which an iterative method is enforce the time dependency.
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The paper is outlined as follows. In Section 2, we present the underlying splitting
methods. The algorithms for the exponentials are given in Section 3. Numerical verifications
are given in Section 4. In Section 5, we briefly summarize our results.

2. Iterative Splitting Method

The following algorithm is based on the iteration with fixed-splitting discretization step-size
τ , namely, on the time interval [tn, tn+1] we solve the following subproblems consecutively
for i = 0, 2, . . . , 2m. (cf. [6, 7]):

∂ci(t)
∂t

= Aci(t) + Bci−1(t), with ci(tn) = cn, c0(tn) = cn, c−1 = 0.0,

∂ci+1(t)
∂t

= Aci(t) + Bci+1(t), with ci+1(tn) = cn,

(2.1)

where cn is the known split approximation at the time level t = tn. The split approximation at
the time level t = tn+1 is defined as cn+1 = c2m+1(tn+1), (clearly, the function ci+1(t) depends
on the interval [tn, tn+1], too, but, for the sake of simplicity, in our notation we omit the
dependence on n).

In the following we will analyze the convergence and the rate of convergence of the
method (2.1) for m tends to infinity for the linear operators A,B : X → X, where we assume
that these operators and their sum are generators of the C0 semigroups. We emphasize that
these operators are not necessarily bounded, so the convergence is examined in a general
Banach space setting.

The novelty of the convergence results are the reformulation in integral-notation.
Based on this, we can assume to have bounded integral operators which can be estimated
and given in a recursive form. Such formulations are known in the work of [8, 9] and
estimations of the kernel part with the exponential operators are sufficient to estimate the
recursive formulations.

2.1. Error Analysis

We present the results of the consistency of our iterative method. We assume for the system
of operator the generator of a C0 semigroup based on their underlying graph norms.

Theorem 2.1. Let one consider the abstract Cauchy problem in a Hilbert space X

∂tc(x, t) = Ac(x, t) + Bc(x, t), 0 < t ≤ T, x ∈ Ω,

c(x, 0) = c0(x), x ∈ Ω,

c(x, t) = c1(x, t), x ∈ ∂Ω × [0, T],

(2.2)
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where A,B : D(X) → X are given linear operators which are generators of the C0-semigroup and
c0 ∈ X is a given element. We assume A, B are unbounded. Further, we assume the estimations of the
unbounded operator B with sufficient smooth initial conditions (see [8]):

∥∥B exp((A + B)τ)u0
∥∥ ≤ κ. (2.3)

Further we assume the estimation of the partial integration of the unbounded operator B (see
[8]):

∥∥∥∥B
∫ τ

0
exp(Bs)sds

∥∥∥∥ ≤ τC. (2.4)

Then, we can bound our iterative operator splitting method as

∥∥(Si − exp((A + B)τ)
)∥∥ ≤ Cτi, (2.5)

where Si is the approximated solution for the ith iterative step and C is a constant that can be chosen
uniformly on bounded time intervals.

Proof. Let us consider the iteration (2.1) on the subinterval [tn, tn+1].
For the first iterations, we have

∂tc1(t) = Ac1(t), t ∈ (tn, tn+1], (2.6)

and for the second iteration we have:

∂tc2(t) = Ac1(t) + Bc2(t), t ∈ (tn, tn+1]. (2.7)

In general, we have:

(i) for the odd iterations, i = 2m + 1 for m = 0, 1, 2, . . .

∂tci(t) = Aci(t) + Bci−1(t), t ∈ (tn, tn+1], (2.8)

where for c0(t) ≡ 0,

(ii) for the even iterations, i = 2m form = 1, 2, . . .

∂tci(t) = Aci−1(t) + Bci(t), t ∈ (tn, tn+1]. (2.9)
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We have the following solutions for the iterative scheme: the solutions for the first two
equations are given by the variation of constants:

c1(t) = exp
(
A
(
tn+1 − t

))
c(tn), t ∈

(
tn, tn+1

]
,

c2(t) = exp(Bt)c(tn) +
∫ tn+1

tn
exp
(
B
(
tn+1 − s

))
Ac1(s)ds, t ∈

(
tn, tn+1

]
.

(2.10)

For the recurrence relations with even and odd iterations, we have the solutions: for
the odd iterations: i = 2m + 1, form = 0, 1, 2, . . .,

ci(t) = exp(A(t − tn))c(tn) +
∫ t

tn
exp
((

tn+1 − s
)
A
)
Bci−1(s)ds, t ∈

(
tn, tn+1

]
. (2.11)

For the even iterations, i = 2m, for m = 1, 2, . . .

ci(t) = exp(B(t − tn))c(tn) +
∫ t

tn
exp
((

tn+1 − s
)
B
)
Aci−1(s)ds, t ∈

(
tn, tn+1

]
. (2.12)

The consistency is given as the following.

For e1, we have

c1(τ) = exp(Aτ)c(tn),

c(τ) = exp((A + B)τ)c(tn) = exp(Aτ)c(tn)

+
∫ tn+1

tn
exp
(
A
(
tn+1 − s

))
B exp(s(A + B))c(tn)ds.

(2.13)

We obtain

‖e1‖ = ‖c − c1‖ ≤ ∥∥exp((A + B)τ)c(tn) − exp(Aτ)c(tn)
∥∥ ≤ C1τc(tn). (2.14)

For e2 we have (alternating)

c2(τ) = exp(Bτ)c(tn) +
∫ tn+1

tn
exp
(
B
(
tn+1 − s

))
A exp(sA)c(tn)ds,

c(τ) = exp(Bτ)c(tn) +
∫ tn+1

tn
exp
(
B
(
tn+1 − s

))
A exp(sA)c(tn)ds

+
∫ tn+1

tn
exp(Bs)A

∫ tn+1−s

tn
exp
(
A
(
tn+1 − s − ρ

))
B exp

(
ρ(A + B)

)
c(tn)dρds.

(2.15)
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We obtain

‖e2‖ ≤
∥∥exp((A + B)τ)c(tn) − c2

∥∥ ≤ C2τ
2c(tn). (2.16)

For odd and even iterations, the recursive proof is given in the following. For the odd
iterations (only iterations over A), i = 2m + 1 form = 0, 1, 2, . . ., for ei, we have:

ci(τ) = exp(Aτ)c(tn)

+
∫ tn+1

tn
exp
(
A
(
tn+1 − s

))
B exp(sA)c(tn)ds

+
∫ tn+1

tn
exp
(
A
(
tn+1 − s1

))
B

∫ tn+1−s1

tn
exp
((

tn+1 − s1 − s2
)
A
)
B exp(s2A)c(tn)ds2ds1

+ · · ·

+
∫ tn+1

tn
exp
(
A
(
tn+1 − s1

))
B

∫ tn+1−s1

tn
exp
((

tn+1 − s1 − s2
)
A
)
B exp(s2A)c(tn)ds2ds1 + · · ·

+
∫ tn+1

tn
exp
(
A
(
tn+1 − s1

))
B · · ·

∫ tn+1−∑i−2
j=1 sj

tn
exp

⎛

⎝

⎛

⎝tn+1 −
i−1∑

j=1

sj

⎞

⎠A

⎞

⎠B

× exp (siA)c(tn)dsi−1 · · ·ds2ds1,

c(τ) = exp(Aτ)c(tn)

+
∫ tn+1

tn
exp
(
A
(
tn+1 − s

))
B exp(sA)c(tn)ds

+
∫ tn+1

tn
exp
(
A
(
tn+1 − s1

))
B

∫ tn+1−s1

tn
exp
((

tn+1 − s1 − s2
)
A
)
B exp(s2A)c(tn)ds2ds1

+ · · ·

+
∫ tn+1

tn
exp
(
A
(
tn+1 − s1

))
B

∫ tn+1−s1

tn
exp
((

tn+1 − s1 − s2
)
A
)
B exp(s2A)c(tn)ds2ds1 + · · ·

+
∫ tn+1

tn
exp
(
A
(
tn+1 − s1

))
B · · ·

∫ tn+1−∑i−2
j=1 sj

tn
exp

⎛

⎝

⎛

⎝tn+1 −
i∑

j=1

sj

⎞

⎠A

⎞

⎠B

× exp (siA)c(tn)dsi · · ·ds2ds1.
(2.17)
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We obtain

‖ei‖ ≤ ∥∥exp((A + B)τ)c(tn) − ci
∥∥ ≤ Cτic(tn), (2.18)

where i is the number of iterative steps.
The same idea can be applied to the even iterative scheme and also for alternating A

and B.

Remark 2.2. The same idea can be applied toA = ∇D∇ B = −v · ∇, so that one operator is less
unbounded, but we reduce the convergence order

‖e1‖ = K‖B‖τα1‖e0‖ +O
(
τ1+α1

)
,

and hence,

‖e2‖ = K‖B‖‖e0‖τ1+α1+α2 +O
(
τ1+α1+α

)
,

(2.19)

where 0 ≤ α1, α2 < 1.

Remark 2.3. If we assume the consistency of O(τm) for the initial value e1(tn) and e2(tn), we
can redo the proof and obtain at least a global error of the splitting methods of O(τm−1).

2.2. Splitting Method to Couple Mobile, Immobile, and Adsorbed Parts

The motivation of the splitting method are based on the following observations.

(i) The mobile phase is semidiscretized with fast finite volume methods and can be
stored into a stiffness-matrix. We achieve large time steps, if we consider implicit
Runge-Kutta methods of lower order (e.g., implicit Euler) as a time discretization
method.

(ii) The immobile, adsorbed and immobile-adsorbed phases are purely ordinary
differential equations and each of them is cheap to solve with explicit Runge-Kutta
schemes.

(iii) The ODEs can be seen as perturbations and can be solved all explicit in a fast
iterative scheme.

For the full equation we consider the following matrix notation:

∂tc = A1c +A2c + B1(c − cim) + B2(c − cad) +Q,

∂tcim = A2cim + B1(cim − c) + B2(cim − cim,ad) +Qim,

∂tcad = A2cad + B2(cad − c) +Qad,

∂tcim,ad = A2cim,ad + B2(cim,ad − cim) +Qim,ad,

(2.20)
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where c = (c1, . . . , cm)T is the spatial discretized concentration in the mobile phase, see (1.1),
cim = (c1,im, . . . , cm,im)

T is the concentration in the immobile phase, the some also for the other
phase concentrations. A1 is the stiffness matrix of (1.1), A2 is the reaction matrix of the right-
hand side of (1.1), B1 and B2 are diagonal matrices with the exchange of the immobile and
kinetic parameters, see (1.4) and (1.5).

Further,Q, . . . ,Qim,ad are the spatial discretized sources vectors.
Now, we have the following ordinary differential equation:

∂tC =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 +A2 + B1 + B2 −B1 −B2 0

−B1 A2 + B1 + B2 0 −B2

−B2 0 A2 + B2 0

0 −B2 0 A2 + B2

⎞
⎟⎟⎟⎟⎟⎟⎠

C + Q̃, (2.21)

where C = (c, cim, cad, cim,ad)
T and the right-hand side is given as Q̃ = (Q,Qim,Qad,Qim,ad)

T .
For such an equation, we apply the decomposition of the matrices:

∂tC = ÃC + Q̃,

∂tC = Ã1C + Ã2C + Q̃,

(2.22)

where

Ã1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 +A2 0 0 0

0 A2 0 0

0 0 A2 0

0 0 0 A2

⎞
⎟⎟⎟⎟⎟⎟⎠

, Ã2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

B1 + B2 −B1 −B2 0

−B1 B1 + B2 0 −B2

−B2 0 B2 0

0 −B2 0 B2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.23)

The equation system is numerically solved by an iterative scheme.

Algorithm 2.4. We divide our time interval [0, T] into subintervals [tn, tn+1], where n =
0, 1, . . .N, t0 = 0, and tN = T .

We start with n = 0.

(1) The initial conditions are given with C0(tn+1) = C(tn). We start with k = 0.

(2) Compute the fix-point iteration scheme given as

∂tCk = Ã1Ck + Ã2Ck−1 + Q̃, (2.24)

where k is the iteration index, see [10]. For the time integration, we apply Runge-
Kutta methods as ODE solvers, see [11, 12].
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(3) The stop criterion for the time interval [tn, tn+1] is given as

∥∥∥Ck
(
tn+1
)
−Ck−1

(
tn+1
)∥∥∥ ≤ err, (2.25)

where ‖ · ‖ is the maximum norm over all components of the solution vector. err is
a given error bound, for example, err = 10−4.

If (2.25) is fulfilled, we have the result

C
(
tn+1
)
= Ck

(
tn+1
)
. (2.26)

If n = N then we stop and are done.

If (2.25) is not fulfilled, we do k = k + 1 and go to (2).

The error analysis of the schemes are given in the following Theorem.

Theorem 2.5. Let A,B ∈ L(X) be given linear bounded operators in a Banach space L(X). We
consider the abstract Cauchy problem:

∂tC(t) = ÃC(t) + B̃C(t), tn ≤ t ≤ tn+1,

C(tn) = Cn, for n = 1, . . . ,N,

(2.27)

where t1 = 0 and the final time is tN = T ∈ �
+ . Then problem (2.27) has a unique solution. For a

finite steps with time size τn = tn+1 − tn, the iteration (2.24) for k = 1, 2, . . . , q is consistent with an
order of consistency O(τq

n).

Proof. The outline of the proof is given in [2].

In the next section we describe the computation of the integral formulation with exp-
functions.

3. Exponentials to Compute Iterative Schemes

The theoretical ideas can be discussed in the following formulation:

DA(B, t)[0] = exp(tB),

DA(B, t)[k] = k

∫ t

0
exp((t − s)B)ADA(B, s)[k−1]ds,

(3.1)
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and the matrix formulation of our two-step scheme is given as

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A 0 · · · · · ·
A B 0 · · ·
0 B A · · ·
...

. . . . . . . . .

0 · · · B A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.2)

the computation of the exp-Matrix can be expressed as:

exp
(
Ãt
)
:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp(At) 0 · · · · · ·

DA(B) exp(Bt) 0 · · ·

DB(A)[2]

2!
DB(A)[1]

1!
exp(At) · · ·

...
. . .

. . .
. . .

DB(A)[n]

n!
· · · DB(A)[1]

1!
exp(At)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.3)

Here, we have to compute the right-hand side as time dependent term, means we
evaluate exp(At) and exp(Bt) as a Taylor expansion. Then the integral formulation can be
done with polynomials and we derive the expansion of such integral operators with the φ-
function.

The φ-functions are defined as the integration of the exp-functions. We can analytically
derive φ-functions with respect to the integral-formulation of a matrix exp-function.

In the following we reduce to a approximation of the fixed right-hand side (means we
assume DA(B, s)[k−1] ≈ DA(B, 0)[k−01]).

Later we also follow with more extended schemes.

Computing φ-Functions:

φ0(x) = ex,

φk+1(x) =
φk(x) − 1/k!

x
, k ≥ 0.

(3.4)

So the matrix formulation of our scheme is given as

Y(t) = exp
(
Ãt
)
Y(0), (3.5)
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where Ã is given as,

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A 0 · · · · · ·
A B 0 · · ·
0 A B · · ·
...

. . . . . . . . .

0 · · · B A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.6)

the computation of the exp-Matrix can be expressed in a first-order scheme and with the
assumption of commutations is given as:

exp
(
Ãt
)
:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp(At) 0 · · · · · · · · ·

φ1(Bt)A t exp(Bt) 0 · · · · · ·

φ2(At)B(B +A)t2 φ1(At)Bt exp(At) · · · · · ·
...

. . . . . . . . .
...

φi(At)B(A + B)i−1 ti · · · φ1(At)Bt exp(At)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.7)

where we assume ui(s) = u(tn), mean we approximate the right-hand side term.
For higher-orders we should also include the full derivations of c1, c2, . . ..

3.1. Derivation of the Formula

Consider the equation

ẋ = Ax + a, x(0) = 0, (3.8)

the solution of this equation in terms of the φk, k = 0, 1, is given as

x = tφ1(tA)a. (3.9)

Similarly, the equation

ẋ = Ax + bt, x(0) = 0, (3.10)

has a solution of the form

x = t2φ2(tA)b. (3.11)
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In general, the solution of the equation

ẋ = Ax + a + bt + c
t2

2!
+ · · · , x(0) = 0, (3.12)

admits the form

x = tφ1(tA)a + t2φ2(tA)b + t3φ3(tA)c + · · · . (3.13)

In this section, we use the formula (3.21) for iterative schemes given as

u̇1 = Au1,

u̇2 = Au1 + Bu2,

u̇3 = Au3 + Bu2,

u̇4 = · · · .

(3.14)

The solution of the first iteration given by

u1 = eAtu0. (3.15)

Inserting this into (3.26) and expanding eAt up to the order 1, we have 2nd order
approximation of the exact solution which has a form

u2 = eBtu0 + φ1(tA)Atu0. (3.16)

Similarly, inserting (3.16) into (3.27) and expanding φ1(tA), we have a third order approxi-
mation of the exact solution

u3 = eBtu0 + φ1(tB)Btu0 + φ2(tB)B(B +A)t2u0. (3.17)

In general for i = 0, 2, 4, . . ., we have the p = i+ 1-th order approximation of the exact solution
in terms of the φi function as follows:

ui = eAtu0 + φ1(tA)Atu0 + φ2(tA)A(B +A)t2u0 + · · · + φi(tA)A(A + B)i−1u0. (3.18)

For i = 1, 3, 5, . . ., we have

ui = eBtu0 + φ1(tB)B tu0 + φ2(tB)B(B +A)t2u0 + · · · + φi(tB)B(B +A)i−1tiu0. (3.19)
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3.2. Algorithms

In the following, we discuss the one- and two-side algorithms.

3.3. Two-Side Scheme

For the implementation of the integral formulation, we have to deal with parallel ideas, which
means we select independent parts of the formulation.

Step 1. Determine the order of the method by fixed iteration number.

Step 2. Consider the time interval [t0, T], divide it into N subintervals so that time step is
h = (T − t0)/N.

Step 3. On each subinterval, [tn, tn+h], n = 0, 1, . . . ,N, use the algorithm by considering initial
conditions for each step as u(t0) = u0, ui(tn) = ui−1(tn) = u(tn),

u2(tn + h) =
(
φ0(Bt) + φ1(Bt)At

)
u(tn)

u3(tn + h) =
(
φ0(At) + φ1(At)Bt + φ2(At)B(B +A) t2

)
u(tn)

...

u2i(tn + h) =
(
φ0(Bt) + φ1(Bt)At + · · · + φ2i−1(Bt)A(A + B)2i−1 t2i

)
u2i−1(tn)

u2i+1(tn + h) =
(
φ0(At) + φ1(At)Bt + · · · + φ2i(At)B(B +A)2it2i+1

)
u2i(tn).

(3.20)

Step 4. ui(tn + h) → u(tn + h).

Step 5. Repeat this procedure for next interval until the desired time T is reached.

3.4. One-Side Scheme (Alternative Notation with Commutators)

For the one-side scheme, we taken into account of the following commutator relation.

Definition 3.1. The following relation is given:

exp(−tA)B exp(tA) =
[
B, exp(tA)

]
, (3.21)

where [·, ·] is the matrix commutator.
The integration is given as

∫ t

0
exp(−sA)B exp(sA)ds =

[
B, φ1(tA)

]
, (3.22)

the representation is given in [13].
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Further, we have the recursive integration

[
B, φi(tA)ti

]
=
∫ t

0

[
B, φi−1(sA)

]
ds, (3.23)

where φi given defined as

φ0(At) = exp(At),

φi(At) =
∫ t

0
φi−1(As)ds,

φi(At) =
φi−1(At) − I

(
ti−1/(i − 1)!

)

A
.

(3.24)

The iterative scheme with the equations

u̇1 = Au1, (3.25)

u̇2 = Au2 + Bu1, (3.26)

u̇3 = Au3 + Bu2, (3.27)

u̇4 = · · · , (3.28)

is solved as

c1(t) = exp(At)c(tn),

c2(t) = c1(t) + c1(t)
∫ t

0

[
B, exp(sA)

]
ds,

c2(t) = c1(t) + c1(t)
[
B, φ1(tA)

]
,

c3(t) = c2(t) + c1(t)
∫ t

0

[
B, exp(sA), B, φ1(sA)

]
ds,

c3(t) = c2(t) + c1(t)
([
B, exp(tA), B, φ2(tA)

]
+
[
B,A exp(tA), B, φ3(tA)

])
+O
(
t3
)
,

· · ·

(3.29)

The recursion is given as

ci(t) = ci−1(t) + c1(t)
∫ t

0

[
B, exp(sA)

] ∫ s1

0

[
B, exp(s1A)

] ∫ s2

0
· · ·
∫ si−2

0

[
B, exp(si−1A)

]
dsi−1 · · ·ds1dt.

(3.30)

Remark 3.2. For the novel notation, we have embedded the commutator to the computational
scheme. For such a scheme we could save to compute additional the commutators.
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Figure 1: Numerical errors of the standard splitting scheme (a) and the iterative schemes (b) with 1, . . . , 6
iterative steps.

4. Numerical Examples

In the following, we deal with numerical example to verify the theoretical results.

4.1. First Example: Matrix Problem

For another example, consider the matrix equation

u′(t) =

[
1 2

3 0

]
u, u(0) = u0 =

(
0

1

)
, (4.1)

the exact solution is

u(t) =
2
(
e3t − e−2t

)

5
. (4.2)

We split the matrix as

[
1 2

3 0

]
=

[
1 1

1 0

]
+

[
0 1

2 0

]
. (4.3)

The Figure 1 presents the numerical errors between the exact and the numerical
solution.

The Figure 2 presents the CPU time of the standard and the iterative splitting schemes.
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Figure 2: CPU time of the standard splitting scheme (a) and the iterative schemes (b)with 1, . . . , 6 iterative
steps.

4.2. Second Experiment: 10 × 10 Matrix

We deal in the first with an ODE and separate the complex operator in two simpler operators.
We deal with the 10 × 10 ODE system:

∂tu1 = −λ1,1u1 + λ2,1u2 + · · · + λ10,1u10, (4.4)

∂tu2 = λ1,2u1 − λ2,2(t)u2 + · · · + λ10,2u10, (4.5)

... (4.6)

∂tu10 = λ1,10u1 + λ2,10(t)u2 + · · · − λ10,10u10, (4.7)

u1(0) = u1,0, . . . , u10(0) = u10,0 (initial conditions), (4.8)

where λ1(t) ∈ �
+ and λ2(t) ∈ �

+ are the decay factors and u1,0, . . . , u10,0 ∈ �
+ . We have the

time interval t ∈ [0, T].
We rewrite (4.4) in operator notation, we concentrate us to the following equations:

∂tu = A(t)u + B(t)u, (4.9)

where u1(0) = u10 = 1.0, u2(0) = u20 = 1.0 are the initial conditions, where we have λ1(t) = t

and λ2(t) = t2.
The operators are splitted in the following way, while operator A, see (4.10), covers

the upper diagonal entries and operator B, see (4.11), covers the lower diagonal entries of
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the ODE system (4.4)–(4.7). Such a decomposition allows to reduce the computation of the
matrix exponential to a upper or lower matrix and speedup the solver process

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.01 0.01 0 · · ·
0.01 −0.01 0 · · ·
0.01 0.01 −0.02 0 · · ·
0.01 0.01 0.01 −0.03 0 · · ·
...

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 −0.08 0

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 −0.08

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.10)

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.08 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0 −0.08 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

...

0 0 0 0 0 0 0 −0.02 0.01 0.01

0 0 0 0 0 0 0 0 −0.01 0.01

0 0 0 0 0 0 0 0 0.01 −0.01

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.11)

The Figure 3 present the numerical errors between the exact and the numerical
solution. Here we have the best approximation to the exact solution with a sixth-order
iterative scheme (6 iterative steps), but no additionally more computational time for finer
time step.

The Figure 4 present the CPU time of the standard and the iterative splitting schemes.
Compared to standard splitting schemes, the iterative schemes are cheaper to compute and
higher in accuracy. We can also choose smaller time steps to obtain more accurate results and
use nearly the same computational resource.

Remark 4.1. The computational results show the benefit of the iterative schemes. We save
computational time and achieve higher-order accuracy. The one-side and two-side schemes
have the same results.

4.3. Third Example: Commutator Problem

We assume to have a large norm of the commutator [A,B] and deal with the matrix equation

u′(t) =

[
10 1

1 10

]
u, u(0) = u0 =

(
1

1

)
. (4.12)
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Figure 3: Numerical errors of the standard splitting scheme (a) and the iterative schemes (b) with 1, . . . , 6
iterative steps.
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Figure 4: CPU time of the standard splitting scheme (a) and the iterative schemes (b)with 1, . . . , 6 iterative
steps.

In the following, we discuss different splitting ideas.

Version 1

We split the matrix as

[
10 1

1 10

]
=

[
9 0

1 1

]
+

[
1 1

0 9

]
, (4.13)

while ‖[A,B]‖ ≥ max{‖A‖, ‖B‖}.



20 Journal of Applied Mathematics

10−2
10−2

10−1

10−1

100

100

101

102

103

104

105

106

∆t

er
r L

1

Strang

c1

c2

c3

c4

c5

c6

AB, Strang, oneside

AB

(a)

10−2
10−2

10−1

10−1

100

100

101

102

103

104

105

106

∆t

er
r L

1

Strang

c1

c2

c3

c4

c5

c6

AB, Strang, twoside

AB

(b)

Figure 5: Numerical errors of the standard splitting scheme (a) and the iterative schemes (b) with 1, . . . , 6
iterative steps.
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Figure 6: CPU time of the standard splitting scheme (a) and the iterative schemes (b)with 1, . . . , 6 iterative
steps.

Here we have to deal with highly noncommutative operators and the computational
speedup is given in the iterative schemes, while the commutator is not needed to obtain
more accurate results, while the standard splitting schemes deal with such commutators for
the error reduction.

The Figure 5 present the numerical errors between the exact and the numerical
solution.

The Figure 6 present the CPU time of the standard and the iterative splitting schemes.
Further for the one-side,we obtain more improved results for the following split-

ting.
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Figure 7:Numerical errors of the standard splitting scheme (a) and the iterative schemes based on one-side
to operatorA or B (b) and two-side scheme (c).

Version 2

In this version, we have

⎡

⎣
10 1

1 10

⎤

⎦ =

⎡

⎣
9 0

1 9

⎤

⎦ +

⎡

⎣
1 1

0 1

⎤

⎦. (4.14)

The Figure 7 presents the numerical errors between the exact and the numerical solution.
A more delicate problem is given for the stiff matrices.



22 Journal of Applied Mathematics

100
10−20

100

1020

1040

1060

1080

∆t

er
r L

1

strang c2

c1

c3

c4

c5

c6

AB, Strang, oneside with A

AB

(a)

100
100

1020

1040

1060

1080

10100

10120

10140

∆t

er
r L

1

strang

c1

c2

c3

c4

c5

c6

AB, Strang, oneside with B

AB

(b)

100100

∆t

er
r L

1

strang c2

c1

c3

c4

c5

c6

1020

1040

1060

1080

10100

10120
AB, Strang, twoside

AB

(c)

Figure 8: Numerical errors of the one-side splitting scheme withA (a), the one-side splitting scheme with
B (b) and the iterative schemes with 1, . . . , 6 iterative steps (c).

Version 3

In this version, we have

[
104 1

1 104

]
=

[
104 − 1 0

1 104 − 1

]
+

[
1 1

0 1

]
. (4.15)

The Figure 8 present the numerical errors between the exact and the numerical solution.
The Figure 9 present the CPU time of the standard and the iterative splitting schemes.

Remark 4.2. The iterative schemes with fast computations of the exponential matrices have a
speedup. The constant CPU time of the iterative schemes shows that it benefit instead of the
expensive standard schemes. Also for stiff problems with multi iterative steps, we reach the
same results of the standard A-B or Strang-Splitting schemes, while we are independent of
the commutator estimation.
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Figure 9: CPU time of the one-side splitting scheme with A (a) and the iterative schemes with 1, . . . , 6
iterative steps (b).

4.4. Two-Phase Example

The next example is a simplified real-life problem for a multiphase transport-reaction
equation. We deal with mobile and immobile pores in the porous media, such simulations
are given for waste scenarios.

We concentrate on the computational benefits of a fast computation of the iterative
scheme, given with matrix exponentials.

The equation is given as:

∂tc1 +∇ · Fc1 = g(−c1 + c1,im) − λ1c1, in Ω × [0, t],

∂tc2 +∇ · Fc2 = g(−c2 + c2,im) + λ1c1 − λ2c2, in Ω × [0, t],

F = v −D∇,

∂tc1,im = g(c1 − c1,im) − λ1c1,im, in Ω × [0, t],

∂tc2,im = g(c2 − c2,im) + λ1c1,im − λ2c2,im, in Ω × [0, t],

c1(x, t) = c1,0(x), c2(x, t) = c2,0(x), on Ω,

c1(x, t) = c1,1(x, t), c2(x, t) = c2,1(x, t), on ∂Ω × [0, t],

c1,im(x, t) = 0, c2,im(x, t) = 0, on Ω,

c1,im(x, t) = 0, c2,im(x, t) = 0, on ∂Ω × [0, t].

(4.16)



24 Journal of Applied Mathematics

In the following, we deal with the semidiscretized equation given with the matrices:

∂tC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A −Λ1 −G 0 G 0

Λ1 A −Λ2 −G 0 G

G 0 −Λ1 −G 0

0 G Λ1 −Λ2 −G

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

C, (4.17)

where C = (c1, c2, c1im, c2im)
T , while c1 = (c1,1, . . . , c1,I) is the solution of the first species in the

mobile phase in each spatial discretization point (i = 1, . . . , I), the same is also for the other
solution vectors.

We have the following two operators for the splitting method

A =
D

Δx2 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
v

Δx
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−1 1

. . . . . .

−1 1

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ � I×I ,

(4.18)

where I is the number of spatial points.

Λ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0

0 λ1 0

. . . . . . . . .

0 λ1 0

0 λ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ � I×I ,
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Λ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ2 0

0 λ2 0

. . . . . . . . .

0 λ2 0

0 λ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ � I×I ,

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g 0

0 g 0

. . . . . . . . .

0 g 0

0 g

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ � I×I .

(4.19)

We decouple into the following matrices:

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

A 0 0 0

0 A 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ � 4I×4I ,

Ã2 =

⎛
⎜⎜⎜⎜⎜⎝

−Λ1 0 0 0

Λ1 −Λ2 0 0

0 0 −Λ1 0

0 0 Λ1 −Λ2

⎞
⎟⎟⎟⎟⎟⎠

∈ � 4I×4I ,

Ã3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−G 0 G 0

0 −G 0 G

G 0 −G 0

0 G 0 −G

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ � 4I×4I .

(4.20)

For the operator A1 and A2 = Ã2 + Ã3, we apply the iterative splitting method.
Based on the decomposition, operator A1 is only tridiagonal and operator A2 is block

diagonal. Such matrix structure reduce the computation of the exponential operators.
The Figure 10 present the numerical errors between the exact and the numerical

solution. Here we obtain optimal results for one-side iterative schemes on operator B, means
we iterate with respect to B and use A as right-hand side.
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Figure 10:Numerical errors of the one-side splitting scheme withA (a), the one-side splitting scheme with
B (b) and the iterative schemes with 1, . . . , 6 iterative steps (c).

Remark 4.3. For all iterative schemes, we can reach faster results as for the The iterative
schemes with fast computations of the exponential matrices standard schemes. With 4-5
iterative steps we obtain more accurate results as we did for the expensive standard schemes.
With one-side iterative schemes we reach the best convergence results.

5. Conclusions and Discussions

In this work, we have presented a very economical and practical method by successive
approximations. Here the idea to decouple the expensive computation of matrix exponential
via iterative splitting schemes has the benefit of less computational time. While the error
analysis present stable methods and higher-order schemes, the applications show the
speedup with the iterative schemes. In, future, we concentrate on matrix dependent scheme,
based on iterative splitting algorithms.
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