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We study a three-firm contagion model with counterparty risk and apply this model to price
defaultable bonds and credit default swap (CDS). This model assumes that default intensities
are driven by external common factors as well as other defaults in the system. Using the “total
hazard” approach, default times can be generated and the joint density function is obtained. We
represent the pricing method of defaultable bonds and obtain the closed-form pricing formulas.
By the approach of “change of measure,” analytical solutions of CDS swap rate (swap premuim)
are derived in the continuous time framework and the discrete time framework, respectively.

1. Introduction

The corporate bonds and their credit derivatives are typical financial tools in the markets
which undertake and avoid the credit risk of the companies. There are two basic approaches
to modeling the pricing of defaultable securities: the value-of-the-firm (or structural)
approach and the intensity-based approach. The structural model is based on the work of
Merton [1], Black and Cox [2], and Geske [3]: the default occurs when the firm assets are
insufficient to meet payments on debt or the value of the firm asset falls below a prespecified
level.

Nevertheless, the value of the firm assets is not observable, which brings difficulties to
the pricing of credit derivatives. Reduced-form approach for credit risks avoids the disad-
vantage of structural approach which models the firm’s value directly. They use risk-neutral
pricing principle of contingent claims and take the time of default or other credit events as an
exogenous random variable.
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Reduced-form models are developed by Artzner and Delbaen [4], Duffie et al. [5],
Jarrow and Turnbull [6], andMadan and Unal [7]. Duffie and Lando [8] show that a reduced-
formmodel can be obtained from a structural model with incomplete accounting information.
The simplest type of reduced-form model is that the default time or the credit migration is
the first jump of an exogenously given jump process with an intensity. In Jarrow et al. [9],
the intensity for credit migration is constant; see also Litterman and Iben [10] for a Markov
chain model of credit migration. In the papers by Duffie et al. [5], Duffie and Singleton [11],
and Lando [12], the intensity of default is a random process. The common feature of the
reduced-formmodels is that default cannot be predicted and can occur at any time. Therefore,
reduced-form models have been used to price a wide variety of instruments. In recent years,
some papers on estimating the parameters of these models are Collin-Dufresne and Solnik
[13] and Duffee [14]. Jarrow and Yu [15] set up a reduced-form model in which estimation
can be based on bond prices as well as credit default swap prices. A systematic development
of mathematical tools for reduced-form models has been given by Elliott et al. [16], and
Jamshidian [17] develops change of numeraire methodology for reduced-form models.

In this paper, we mainly discuss the pricing of the defaultable zero-coupon bonds
and CDS based on the intensity model with correlated default. The structure of this paper
is organized as follows: in Section 2, we give the basic setup and the three-firm contagion
model with an interaction term, comparing it with the model in Leung and Kwok [18]. In
Section 3, we give the general pricing formulas in various cases. In this general framework, a
pricing formula of defaultable bonds is provided for three-firmmodel. In Section 4, using the
approach of “total hazard” and “change of measure,” we present the construction of default
time, derive the joint density function, and obtain the closed forms of CDS swap rate (swap
premium) in the continuous time and the discrete time framework, respectively. We conclude
this paper with Section 5.

2. Basic Setup and Three-Firm Contagion Model

2.1. Basic Setup and Construction of Default Time

We consider an uncertain economy with a time horizon of T ∗ described by a filtered
probability space (Ω,F, {Ft}T

∗
t=0, P) (in this paper we follow the symbols and notations of

Jarrow and Yu [15]) satisfying the usual conditions of right continuity and completeness
with respect to P -null sets, where F = FT∗ and P is an equivalent martingale measure under
which discounted bond prices are martingale. We assume the existence and uniqueness of P ,
so that bond markets are complete and no arbitrage, as shown in discrete time by Harrison
and Kreps [19] and in continuous time byHarrison and Pliska [20]. Subsequent specifications
of the model are all under the equivalent martingale measure P .

On this probability space, there is an R
d-valued process Xt, which presents

d-dimensional economy-wide state variables. There are also I point processes, Ni(i =
1, 2, . . . , I), initialized at 0. These represent the default processes of the firms in the economy
such that the default of the ith firm occurs whenNi jumps from 0 to 1.

According to the information contained in the state variables and the default processes,
the filtration is

F = FX
t ∨ F1

t ∨ F2
t ∨ · · · ∨ FI

t , (2.1)
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where

FX
t = σ(Xs, 0 ≤ s ≤ t), (2.2a)

Fi
t = σ

(
Ni

s, 0 ≤ s ≤ t
)

(2.2b)

are the filtrations generated by Xt andNi
t , respectively.

Let

F−i
t = F1

t ∨ · · · Fi−1
t ∨ Fi+1

t · · · ∨ FI
t , (2.2c)

Gi
t = Fi

t ∨ FX
T∗ ∨ F−i

T∗ = Fi
t ∨ Gi

0, (2.2d)

where Gi
0 = FX

T∗ ∨ F−i
T∗ . We know that Gi

0 contains complete information on the state variables
and the default processes of all firms other than that of the ith, all the way up to time T ∗.

According to the filtration Gi
t, it is possible to select a nonnegative, Gi

0-measurable
process λit, satisfying

∫ t
0 λ

i
sds < ∞, P − a.s. for all t ∈ [0, T ∗], so that we can define an

inhomogeneous Poisson processNi, using the process λit as its intensity function.
Let τi denote the default time of firm i, namely, τi be the first jump time of Ni, in a

typical reduced-form model, which can be defined as

τi = inf

{
t :
∫ t
0
λisds ≥ Ei

}
, (2.3)

where {Ei}Ii=1 is independent of Xt (t ∈ [0, T ∗]).
According to the Doob-Meyer decomposition, we have that

Mi
t =Nt −

∫ t∧τi

0
λisds, (2.4)

is a (P,Ft)-martingale.
Under the above characterization, the conditional survival probability of firm i is given

by

P
(
τi > t | Gi

0

)
= exp

(
−
∫ t
0
λisds

)
, t ∈ [0, T ∗]. (2.5)

The unconditional survival probability of firm i is given by

P
(
τi > t

)
= E

[
exp

(
−
∫ t
0
λisds

)]
, t ∈ [0, T ∗]. (2.6)

Now, we give the recursive construction of default time as Yu in his paper [21].
Specifically, we start with the case of no state variable. Let the notation λi(t | n) denote the
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intensity for firm i given the observed default times of n other firms, tk0 , tk1 , . . . , tkn , where
0 = tk0 < tk1 < · · · < tkn < t < τi.

The total hazard accumulated by firm i by time t given n observed defaults is defined
as

ψi(t | n) =
n∑

m=1

Λi(tkm − tkm−1 | m − 1) + Λi(t − tkn | n), (2.7)

where Λi(s | m) =
∫ tkm+s
tkm

λi(u | m)du is the total hazard accumulated by firm i for a period
of length s following the mth default. At the same time, we assume that there is no default
between tkm and t.

Define the inverse functions

Λ−1
i (x | n) = inf{s ≥ 0 : Λi(s | m) ≥ x} (2.8)

for x > 0. We can use the following recursive procedure to construct a collection of random
variables.

Step 1. Let E1, . . . , EI be the i.i.d. unit exponentials and

k1 = argmin
{
Λ−1
i (Ei | 0) : i = 1, . . . , n

}
, (2.9)

and define

τ̂1 = Λ−1
k1
(Ek1 | 0). (2.10)

Step m + 1(m = 1, 2, . . . , I − 1)

Given that Step 1 up to step m have resulted in (τ̂1, . . . , τ̂m), define the set Im = {k1, . . . , km}
and Im as the set of firms excluding Im. Let

km+1 = nargmin
{
Λ−1
i

(
Ei − ψi(τ̂m | m) | m)

}
(2.11)

and let

τ̂m+1 = τ̂m + Λ−1
km+1

(
Ekm+1 − ψkm+1(τ̂

m | m) | m). (2.12)

Norros [22], Shaked and Shanthikumar [23], and Yu [24] prove that τ̂ = (τ̂1, . . . , τ̂ I)
equals τ = (τ1, . . . , τI) in distribution. So we can generate default time τ by generating τ̂ and
we will not distinguish them from now on.

2.2. Three-Firms Contagion Model

In this subsection, we explore the three-firms contagion model with an interaction term.
Consider the case where the default intensity of one firm is affected by the default of other
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two firms, so that when one firm defaults the default probabilities of other two firms will
jump. In the three-firms contagion model, the interdependent structure between firm A, firm
B, and firm C is characterized by the correlated default intensities.

Recall Leung and Kwok’s three-firms model:

λAt = a0 + a1l{τB≤t} + a2l{τC≤t}, (2.13a)

λBt = b0 + b1l{τA≤t} + b2l{τC≤t}, (2.13b)

λCt = c0 + c1l{τA≤t} + c2l{τB≤t}, (2.13c)

where a0 > 0, b0 > 0, c0 > 0 and satisfying a0 + a1 + a2 > 0, b0 + b1 + b2 > 0, c0 + c1 + c2 > 0.
Similarly, a0 > 0, b0 > 0, and c0 > 0 reflect the effect of macroeconomic factor and itself on
firms A, B, C, respectively.

Nevertheless, Leung and Kwok have not allow the effect of two parties’ simultaneous
default on the third party, namely, there is not an interaction term in their model. Thus, if
three firms are copartners, then the default risk of each firm may be overestimated and the
asset value may be underestimated because there exists the case in which the default events
might overlap. If they are competitors, then the case is contrary.

For the above reason, we allow the following three-firms contagion model:

λAt = a0 + a1l{τB≤t,τC>t} + a2l{τC≤t,τB>t} + a3l{τB≤t,τC≤t}, (2.14a)

λBt = b0 + b1l{τA≤t,τC>t} + b2l{τC≤t,τA>t} + b3l{τA≤t,τC≤t}, (2.14b)

λCt = c0 + c1l{τA≤t,τB>t} + c2l{τB≤t,τA>t} + c3l{τA≤t,τB≤t}, (2.14c)

where a0 > 0, b0 > 0, c0 > 0 and satisfying a0 + a1 + a2 + a3 > 0, b0 + b1 + b2 + b3 > 0,
c0 + c1 + c2 + c3 > 0. a0 > 0, b0 > 0, and c0 > 0 reflect the effect of macroeconomic factor and
itself on firms A, B, C, respectively.

Nextly, we employ the three-firms model specified by (2.14a)–(2.14c) to price
defaultable bonds and CDS swap rate.

3. Bond Pricing under Three-Firm Model

3.1. The General Pricing Formulas

Definition 3.1. A defaultable claim maturing at T is the quadruple (X,A,Z, τ), where X is an
FT -measurable random variable, A = (At)t∈[0,T] is an F-adapted, continuous process of finite
variation with A0 = 0, Z = (Zt)t∈[0,T] is an F-predictable process, and τ is a random time.

Definition 3.2. The dividend process D = (Dt)t∈R+ of the above defaultable claim maturing at
T equals, for every t ∈ R

+,

Dt = Xl{T<τ}l[T,∞)(t) +
∫

(0,t∧T]
(1 −Nu)dAu +

∫

(0,t∧T]
ZudNu, (3.1)

where X is the promised payoff, A represents the process of promised dividends, and the
process Z is the recovery process.
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Definition 3.3. The exdividend price process S of a defaultable claim (X,A,Z, τ) equals, for
every t ∈ [0, T],

St = Et

[∫

(t,T]

Bt
Bu
dDu

]
, (3.2)

where Bt := B(t) = exp(
∫ t
0 rsds) is the money market account, rt is a constant risk-free spot

rate, and Et represents the conditional expectation on Ft under the equivalent martingale
measure P .

By Definitions 3.2 and 3.3, the exdividend price of a defaultable claim (X,A,Z, τ) is
given by the following.

Lemma 3.4. The exdividend price of the defaultable claim (X,A,Z, τ) equals, for t ∈ [0, T),

St = l{t<τ}
Bt
Gt
Et

[
B−1
T GTX +

∫T
t

B−1
u Gu(Zuλudu + dAu)

]
, (3.3)

where Gt = P{τ > t | Ft}.

From Lemma 3.4, We can explore the following special cases.

(1) For the default-free zero-coupon bond which pays one dollar, the dividend process
is Dt = l{t≥T}. Let p(t, T) be the time-t price, then p(t, T) is given by

p(t, T) = Et
[
Bt
BT

]
. (3.4)

(2) If the dividend process isDt =
∫T
t rudu+l{t≥T}, then the value of the bond is always 1.

(3) For the defaultable zero-coupon bondwhich pays one dollar if not default and pays
δ times the price of a default-free bond at maturity, where δ is introduced by Jarrow
and Turnbull [6] and Jarrow et al. [9] as “recovery of Treasury,” let vi(t, T) denote
the time-t price, issued by firm i, δi ∈ [0, 1] is the recovery rate of the firm i, then
vi(t, T) is given by

vi(t, T) = Et

[
exp

(
−
∫T
t

rudu

)(
δil{τi≤T} + l{τi>T}

)]

= Et
[
Bt
BT

(
δil{τi≤T} + l{τi>T}

)]
.

(3.5)

(4) If the dividend process Dt = Xl{τi>T,t≥T} +
∫
(0,t∧T]ZudNu, using the Doob-Meyer

decomposition ofNt, then the value of the defaultable bond is

St = Et

[∫T
t

exp
(
−
∫u
t

rv dv

)
Zuλul{u<τ}du + exp

(
−
∫T
t

rv dv

)
Xl{τ>T}

]

= BtEt

[∫T
t

B−1
u Zuλul{u<τ}du + B−1

T Xl{τ>T}

]
.

(3.6)
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3.2. Bond Pricing under Three-Firms Model

We assume that there are three firms A, B, and C. Now, we consider the case that each firm
holds the other two firms’ defaultable bonds, so that when one party defaults, the other two
parties’ default probability will jump. The default intensities are described as (2.14a)–(2.14c).

We adopt the change of measure introduced by Collin-Dufresne et al. [25] to define a
firm-specific probability measure Pi which puts zero probability on the paths where default
occurs prior to the maturity T . Specifically, the change of measure is defined by

ZT :=
dPi

dP

∣∣∣∣∣
FT

= l{τi>T} exp

(∫T
0
λisds

)
, (3.7)

where Pi is a firm-specific (firm i) probability measure which is absolutely continuous with
respect to P on the stochastic interval [0, τ i). To proceed the calculations under the measure
Pi, we enlarge the filtration to Fi = (Fi

t)t≥0 as the completion of F = (Ft)t≥0 by the null sets of
the probability measure Pi.

Applying the result of Jarrow and Yu [15], we know that the defaultable bond price of
firm i is given by

vi(t, T) = δip(t, T) + l{τi>t}
(
1 − δi

)
Et

[
exp

(
−
∫T
t

(
rs + λis

)
ds

)]
, t ≤ T (3.8)

or

vi(t, T)
p(t, T)

= δi +
(
1 − δi

)
l{τi>t}Et

[
exp

(
−
∫T
t

λis ds

)]
. (3.9)

Because of the symmetry of default intensities, we need only to compute one firm’s
value of the three firms. In the remainder of this subsection, we will derive the closed-form
pricing formula of firm C.

For firm C, the time-t value vC(t, T) of the defaultable bond C maturity at T satisfies

vC(t, T) = p(t, T)

(
δC +

(
1 − δC

)
l{τC>t}Et

[
exp

(
−
∫T
t

λCs ds

)])
, (3.10)

where

Et

[
exp

(
−
∫T
t

λCs ds

)]
= e−c0(T−t)Et

×
[
exp

(
−
∫T
t

(
c1l{τA≤s,τB>s} + c2l{τB≤s,τA>s} + c3l{τA≤s,τB≤s}

)
ds

)]
.

(3.11)
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(I) Conditional on τA > t, τB > t, namely, neither firm A nor firm B has defaulted by time t,
the default intensities λAt and λBt under the measure PC and τC > t are given by

λAt = a0 + a1l{τB≤t},

λBt = b0 + b1l{τA≤t}.
(3.12)

According to the result of Leung and Kwok [18], the conditional joint density function
ft(t1, t2) of (τA, τB) is

ft(t1, t2) =

⎧
⎨
⎩
f1,t(t1, t2, t3) = b0(a0 + a1)e−(a0+a1)(t1−t)−(b0−a1)(t2−t), t2 ≤ t1,
f2,t(t1, t2, t3) = a0(b0 + b1)e−(b0+b1)(t2−t)−(a0−b1)(t1−t), t2 > t1.

(3.13)

The integration region of (3.11) is then appropriately divided into five pieces: D1: t ≤ τA ≤ T ,
τA ≤ τB ≤ T ; D2: t ≤ τB ≤ T , τB ≤ τA ≤ T ; D3: t ≤ τA ≤ T , τB ≥ T ; D4: t ≤ τB ≤ T , τA ≥ T ;
D5: τA ≥ T , τB ≥ T :

Et

[
exp

(
−
∫T
t

λCs ds

)]
= e−c0(T−t)Et

×
[
exp

(
−
∫T
t

(
c1l{τA≤s,τB>s} + c2l{τB≤s,τA>s} + c3l{τA≤s,τB≤s}

)
ds

)]

=: e−c0(T−t)(I1 + I2 + I3 + I4 + I5)

=: J1,
(3.14)

where

I1 =
∫∫

D1

e−c1(t2−t1)−c3(T−t2)f2,t(t1, t2)dt1dt2

= a0(b0 + b1)
∫T
t

∫T
t1

e−c1(t2−t1)−c3(T−t2)e−(a0−b1)(t1−t)−(b0+b1)(t2−t)dt2dt1

=
a0(b0 + b1)

b0 + b1 + c1 − c3

[
e−c3(T−t) − e−(a0+b0)(T−t)

a0 + b0 − c3 − e−(b0+b1+c1)(T−t)−e
−(a0+b0)(T−t)

a0 − b1 − c1

]
,

I2 =
∫∫

D2

e−c2(t1−t2)−c3(T−t1)f1,t(t1, t2)dt1dt2

=
b0(a0 + a1)

a0 + a1 + c2 − c3

[
e−c3(T−t) − e−(a0+b0)(T−t)

a0 + b0 − c3 − e−(a0+a1+c2)(T−t)−e
−(a0+b0)(T−t)

b0 − a1 − c2

]
,
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I3 =
∫∫

D3

e−(c1(t2−t1))f2,t(t1, t2)dt1dt2

=
a0(b0 + b1)

(a0 − b1 − c1)(b0 + b1 + c1)
[
e−(b0+b1+c1)(T−t) − e−(a0+b0)(T−t)

]
,

I4 =
∫∫

D4

e−(c2(t1−t2))f1,t(t1, t2)dt1dt2

=
b0(a0 + a1)

(b0 − a1 − c2)(a0 + a1 + c2)
[
e−(a0+a1+c2)(T−t) − e−(a0+b0)(T−t)

]
,

I5 =
∫∫

D5

ft(t1, t2)dt1dt2 = e−(a0+b0)(T−t).

(3.15)

(II) Conditional on τB > t, τA ≤ t, namely, firm A has defaulted and firm B has not defaulted
by time t, the default intensities λBt are given by

λBt = b0 + b1l{τA≤t,τC>t} = b0 + b1 (3.16)

and the density function ft(t2) of τB is

ft(t2) = (b0 + b1)e−(b0+b1)(t2−t), (3.17)

so

Et

[
exp

(
−
∫T
t

λCs ds

)]
= e−c0(T−t)Et

[
exp

(
−
∫T
t

(
c1l{τA≤s,τB>s} + c3l{τA≤s,τB≤s}

)
ds

)]

= (b0 + b1)e−c0(T−t)

×
[∫T

t

e−c1(t2−t)−c3(T−t2)e−(b0+b1)(t2−t)dt2 +
∫∞

T

e−c1(T−t)e−(b0+b1)(t2−t)dt2

]

= (b0 + b1)e−c0(T−t)
[
e−c3(T−t) − e−(b0+b1+c1)(T−t)

b0 + b1 + c1 − c3 +
e−(b0+b1−c1)(T−t)

b0 + b1

]

=: J2.
(3.18)

(III) Conditional on τB ≤ t, τA > t, namely, firm B has defaulted and firmA has not defaulted
by time t, similar to the computation in (II), we have

Et

[
exp

(
−
∫T
t

λCs ds

)]
= (a0 + a1)e−c0(T−t)

[
e−c3(T−t) − e−(a0+a1+c2)(T−t)

a0 + a1 + c2 − c3 +
e−(a0+a1−c2)(T−t)

a0 + a1

]

=: J3,
(3.19)
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(IV) Conditional on τA ≤ t, τB ≤ t, namely, firm A and firm B have defaulted by time t, we
have

Et

[
exp

(
−
∫T
t

λCs ds

)]
= e−(c0+c3)(T−t) =: J4. (3.20)

From (3.10), (3.11), and the discussions in (I)–(IV), we have the following theorem.

Theorem 3.5. Let intensity processes λit (i = A,B,C) be given by (2.14a)–(2.14c), the time-t
defaultable bond price issued by firm C is given by

vC(t, T) = p(t, T)
(
δC +

(
1 − δC

)
l{τC>t}

(
l{τA>t,τB>t}J1

+l{τA≤t,τB>t}J2 + l{τA>t,τB≤t}J3 + l{τA≤t,τB≤t}J4
))
,

(3.21)

where J1, J2, J3, J4 are given by (3.14)–(3.20).

4. CDS Valuation under Three-Firms Model

4.1. The Basics

As one of the important credit derivatives, CDS is a contract agreement which allows the
transfer of credit risk of a risky asset (basket of risky assets) from one party to the other. A
financial institution may use a CDS to transfer credit risk of a risky asset while continues to
retain the legal ownership of the asset. To determine a fair swap rate of a CDS in the presence
of counterparty risks, the interdependent default risk structures between these parties must
be considered simultaneously.

On CDS valuation, there have been numerous works in recent years. Based on the
reduced-form approach with correlated market and credit risks, the closed-form valuation
formula for the swap rate of a CDS is obtained by Jarrow and Yildirim [26]. They assume
that the default intensity is “almost” linear in the short interest rate. Recently, considering
the impact of counterparty risk on the pricing of a CDS, Jarrow and Yu in [15] assume
an interdependent default structure that avoids “looping default” by involving primary-
secondary framework and simplifies the payoff structure where the protection seller’s
compensation is made only at the maturity of the swap contract. They discover that the
default risk of the protection seller and reference entity is ignored. Hull andWhite [27] apply
the credit index model for valuing CDS with counterparty risk. M. A. Kim and T. S. Kim
[28] conclude that if the default correlation between the counterparty and reference bond is
ignored, then the pricing error in a CDS can be quite substantial. Chen and Filpovic in their
paper [29] develop a generalized affine model to price credit default swaps under default
correlations and counterparty risk. Yu [21] uses the “total hazard” approach to construct the
default process from independent and identically distributed exponential random variables
and obtains an analytic expression of the joint distribution of default times in his two-
firms and three-firms contagion models. Leung and Kwok [18] use the “change of measure”
approach introduced by Collin-Dufresne et al. [25] to price the CDS in two-firms model and
three-firms contagion model, respectively, and obtain the closed-form formulas.
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Figure 1: The structure of CDS.

We assume that party A (CDS protection buyer) holds a corporate bond of party
C (reference asset) and party C is subject to default. Party A faces the credit risk arising
from default of party C. To seek protection against such default risk, party A enters a CDS
contract in which he agrees to make premium payments, known as the swap premium to
party B (CDS protection seller). In exchange, party B promises to compensate A for its loss
in the event of default of the bond (reference asset).

Similar to the description in [30], a diagrammatic overview of CDS under the three-
firms contagion model (2.14a)–(2.14c) is provided by Figure 1.

We employ the three-firms model specified by (2.14a)–(2.14c) to price the CDS and
study the effect of the default of each party on the swap rate. Suppose that party A (a
corporate bond investing firm) holds a corporate bond (reference asset) issued by party C
(a corporate bond issuer) (refer to 1A in Figure 1) and firm C is subject to default. At bond
maturity, if firm C does not default, then it will pay the bond principle and interest to firm
A (see 1B). Otherwise, it has no payments (refer to 1C). On the other hand, to hedge the
default risk of firm C, firm A, and firm B (the protection seller, such as a monoline insurer),
enter into a CDS contract. Firm A and B are also subject to default. If firm C and A have no
default, then firm A makes fixed premium payments, known as the swap premium to firm
B (see 1D). Either firm A or firm C defaults, there is no premium payments to firm B (refer
to 1E). In exchange, firm B promises to compensate A (if A does not default) for its loss in
the event of default of the bond C (reference asset) as long as B does not default (refer to
1F). If the protection seller B defaults prior to the default of either the reference asset C or the
protection buyer A, then the protection seller B can simply walk away from the contract and
has no obligation to pay the compensation to the protection buyer (see 1G).

In this section, we will analyze the effect of correlated risks between three parties in a
CDS using a similar contagion model as in Leung and Kwok’s model [18]. Differently from
their model on CDS valuation with counterparty risk, we allow an interaction term in the
default intensity model for three firms, namely, we discuss how the simultaneous default of
two parties impacts on the third one.

4.2. The Joint Density Function for Three-Firms Model

To price CDS swap rate s, we firstly need to provide the joint density function f(t1, t2, t3) of
three firms A, B, and C. We adopt the “total hazard” approach by Yu [21] and Zheng and
Jiang [31] as description in Section 2.1; the result is the following Lemma.
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Lemma 4.1. Assume that λit (i = A,B,C) are given by model (2.14a)–(2.14c). Then the joint density
function of τ = (τA, τB, τC) is given by

f(t1, t2, t3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(t1, t2, t3), t1 ≤ t2 ≤ t3 ≤ T,
f2(t1, t2, t3), t1 ≤ t3 ≤ t2 ≤ T,
f3(t1, t2, t3), t2 ≤ t1 ≤ t3 ≤ T,
f4(t1, t2, t3), t2 ≤ t3 ≤ t1 ≤ T,
f5(t1, t2, t3), t3 ≤ t1 ≤ t2 ≤ T,
f6(t1, t2, t3), t3 ≤ t2 ≤ t1 ≤ T,

(4.1)

where

f1(t1, t2, t3) = a0(b0 + b1)(c0 + c3)e−(a0−b1−c1)t1−(b0+b1+c1−c3)t2−(c0+c3)t3 ,

f2(t1, t2, t3) = a0(c0 + c1)(b0 + b3)e−(a0−b1−c1)t1−(b0+b3)t2−(c0+c1+b1−b3)t3 ,

f3(t1, t2, t3) = b0(a0 + a1)(c0 + c3)e−(a0+a1−c1)t1−(b0−a1+c1−c3)t2−(c0+c3)t3 ,

f4(t1, t2, t3) = b0(c0 + c2)(a0 + a3)e−(a0+a3)t1−(b0−c2−a1)t2−(c0+c2+a1−a3)t3 ,

f5(t1, t2, t3) = c0(a0 + a2)(b0 + b3)e−(a0+a2+b2−b3)t1−(b0+b3)t2−(c0−a2−b2)t3 ,

f6(t1, t2, t3) = c0(a0 + a3)(b0 + b2)e−(a0+a3)t1−(b0+b2+a2−a3)t2−(c0−a2−b2)t3 .

(4.2)

Proof. With the total hazard method (2.10) and (2.12) introduced in Section 2, we can express
default time τ in terms of standard exponential variables E, and vice versa. If τA < τB < τC,
then we have

E1 =
∫ τA

0
a0 du = a0τA,

E2 =
∫ τB

0
b0 du +

∫ τB

τA
b1l{τC>u} du = b0τB + b1

(
τB − τA

)
,

E3 =
∫ τC

0
c0 du +

∫ τC

τA
c1l{τB>u} du +

∫ τC

τB

(
c2l{τA>u} + c3l{τA≤u}

)
du

= c0τC + c1
(
τB − τA

)
+ c3
(
τC − τB

)
.

(4.3)

The Jacobi determinant of E with respect to τ is given by

C
(
τA, τB, τC

)
=
∣∣∣∣
∂E1

∂τA
∂E2

∂τB
∂E3

∂τC

∣∣∣∣ = a0(b0 + b1)(c0 + c3). (4.4)
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The density of τ is therefore

f
(
τA, τB, τC

)
= C
(
τA, τB, τC

)
e−(E1+E2+E3). (4.5)

Substituting Ei into f , we get

f(t1, t2, t3) = a0(b0 + b1)(c0 + c3)e−(a0−b1−c1)t1−(b0+b1+c1−c3)t2−(c0+c3)t3 , for 0 < t1 < t2 < t3. (4.6)

The density function f in other regions can be expressed similarly with permutation.
Thus, we complete the proof of the lemma.

4.3. CDS Valuation

In this subsection, we employ the three-firms model specified by (2.14a)–(2.14c) to price
the CDS swap rate s (or swap premium) in continuous time framework and discrete time
framework, respectively. We assume that the recovery rate is zero and the risk-free spot rate
r is a constant.

4.3.1. In Continuous Time Framework

In this framework, the value of the contingent leg at time 0 is equal to

C = exp

(
−
∫ τC+θ
0

rdt

)
l{τA>τC,τB>τC+θ,τC≤T} (4.7)

and the value of the fee leg at time 0 is equal to

F = s
∫T
0
exp

(
−
∫ t
0
rdu

)
l{τA∧τB∧τC>t}dt, (4.8)

where T is the expiration, θ is the length of the settlement period, and τC + θ represents the
settlement date at the end of the settlement period.

We can derive s by computing the expectation of C and F; the result is the following
theorem.

Theorem 4.2. Let the intensity processes λit (i = A,B,C) be given by (2.14a)–(2.14c), the density
function given by (4.1). Then, the swap rate s is given by

s =
c0(a0 + a2)e−(b0+b3+r)θ

a0 + a2 + b2 − b3 +
(
b0 + b2 − (a0 + a2)(b0 + b3)

a0 + a2 + b2 − b3

)
c0e

−(a0+a2+b0+b2+r)θ

a0 + a2 + b0 + b2
. (4.9)

Proof. According to the arbitrage-free principle, we set the present value of protection buyer’s
payment equal to the present value of the compensation payment made at τC +θ, conditional
on default of C prior to T , no default of A prior to τC, and no default of B prior to τC + θ.
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Since it takes no cost to enter a CDS, the value of s under this three-firms model is
determined by

sE

[∫T
0
exp

(
−
∫ t
0
rdu

)
l{τA∧τB∧τC>t}dt

]
= E

[
exp

(
−
∫ τC+θ
0

rdt

)
l{τA>τC,τB>τC+θ,τC≤T}

]
, (4.10)

where τC + θ represents the settlement date at the end of the settlement period.
Recall that the change of measure is defined by

ZT :=
dPi

dP

∣∣∣∣∣
FT

= l{τi>T} exp

(∫T
0
λis ds

)
. (4.11)

Thus, by (4.1), (4.11) and the Fubini Theorem, we can derive the left side of (4.10):

sE

[∫T
0
exp

(
−
∫ t
0
rdu

)
l{τA∧τB∧τC>t}dt

]

= s
∫ t
0
e−rtE

[
l{τA∧τB∧τC>t}

]
dt

= s
∫T
0
e−rtEA

[
l{τB>t,τC>t} exp

(
−
∫ t
0
λAs ds

)]
dt

= s
∫T
0
e−(a0+r)tEA

[
l{τB>t,τC>t}

]
dt

= s
∫T
0
e−(a0+b0+c0+r)tdt = s

1 − e−(a0+b0+c0+r)T
a0 + b0 + c0 + r

,

(4.12)

where the fourth equation is according to the two-firms model of Leung and Kwok in [18],

EA
[
l{τB>t,τC>t}

]
= e−(b0+c0)t. (4.13)

The right side of (4.10) equals

E

[
exp

(
−
∫ τC+θ
0

rdt

)
l{τA>τC,τB>τC+θ,τC≤T}

]

=
∫T
0

∫∞

t3+θ

∫∞

t3

e−(t3+θ)rf(t1, t2, t3)dt1dt2dt3

=
∫T
0

∫∞

t3+θ

∫ t2
t3

e−(t3+θ)rf5(t1, t2, t3)dt1dt2dt3 +
∫T
0

∫∞

t3+θ

∫∞

t2

e−(t3+θ)rf6(t1, t2, t3)dt1dt2dt3

=: I1 + I2,
(4.14)
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where

I6 =
∫T
0

∫∞

t3+θ

∫ t2
t3

e−(t3+θ)rf5(t1, t2, t3)dt1dt2dt3

= e−rθ
∫T
0

∫∞

t3+θ

∫ t2
t3

e−rt3c0(a0 + a2)(b0 + b3) · e−(a0+a2+b2−b3)t1−(b0+b3)t2−(c0−a2−b2)t3dt1dt2dt3

=
c0(a0 + a2)(b0 + b3)
a0 + a2 + b2 − b3 e−rθ

×
∫T
0

∫∞

t3+θ

(
e−(a0+c0−b3+r)t3 · e−(b0+b3)t2 − e−(c0−a2−b2+r)t3 · e−(a0+a2+b0+b2)t2

)
dt2dt3

=

(
c0(a0 + a2)e−(b0+b3+r)θ

a0 + a2 + b2 − b3 − c0(a0 + a2)(b0 + b3)e−(a0+a2+b0+b2+r)θ

(a0 + a2 + b2 − b3)(a0 + a2 + b0 + b2)

)∫T
0
e−(a0+b0+c0+r)dt3

=
c0(a0 + a2)(b0 + b3)e−rθ

a0 + a2 + b2 − b3

(
e−(b0+b3)θ

b0 + b3
− e−(a0+a2+b0+b2)θ

(a0 + a2 + b0 + b2)

)
· 1 − e

−(a0+b0+c0+r)T

a0 + b0 + c0 + r
,

(4.15)

I7 =
∫T
0

∫∞

t3+θ

∫∞

t2

e−(t3+θ)rf6(t1, t2, t3)dt1dt2dt3

= e−rθ
∫T
0

∫∞

t3+θ
c0(b0 + b2)e−(c0−a2−b2+r)t3e−(a0+a2+b0+b2)t2dt2dt3

=
c0(b0 + b2)e−(a0+a2+b0+b2+r)θ

a0 + a2 + b0 + b2

∫T
0
e−(a0+b0+c0+r)t3dt3

=
c0(b0 + b2)e−(a0+a2+b0+b2+r)θ

a0 + a2 + b0 + b2

1 − e−(a0+b0+c0+r)T
a0 + b0 + c0 + r

.

(4.16)

By (4.10) and (4.12)–(4.16), we obtain expression (4.9) of s.

Remark 4.3. From (4.9), we can see that the swap rate s is not dependent on the expiration
date T. The default of the buyer impacts on the swap rate s, so it is not strict if assuming
that the buyer has no default throughout the process though the default risk of the protection
buyer has little impact on the swap rate. The reference asset’s default risk proxied by c0 gives
the most significant impact on the swap rate, and an increasing higher value of c0 gives rise
to a higher swap rate. The contagion effect of the protection buyer and the protection seller
on the reference asset has no effect on the swap rate s (there are no c1, c2, and c3 terms). This
shows that when valuating CDS in “loop-default” models, without loss of generality, we can
assume that the reference asset is the primary firm and the protection buyer and the seller are
secondary firms.

Remark 4.4. From (4.9), if the settlement period θ is zero, the swap rate s is c0, which is the
default intensity of reference asset determined by macroeconomic factor and itself, and has
nothing to do with the credit risk of the protection buyer and seller.
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4.4. Valuation of CDS in the Discrete Time Framework

In the discrete time framework, let T0, T1, T2,. . ., Tn be the swap payment dates, where 0 =
T0 < T1 < · · · < Tn = T . We assume that the payment dates are uniformly distributed; that is,
Ti+1 − Ti = ΔT for 1 ≤ i ≤ n − 1 and nΔT = T .

The value of the contingent leg at time 0 is given by

C1 = e−r(τ
C+θ)l{τC≤T}l{τA>τC}l{τB>τC+θ}. (4.17)

The value of the fee leg at time 0 is given by

F1 =
n∑
i=1

S(ΔT)

[
e−rTi l{τA∧τB∧τC>Ti} + e

−rτC
(
τC − Ti−1

ΔT

)
l{Ti−1<τC<Ti}l{τA∧τB>τC}

]
. (4.18)

According to the arbitrage-free pricing principle, we have the following theorem.

Theorem 4.5. Let the intensity processes λit(i = A,B,C) be given by (2.14a)–(2.14c), the density
function given by (4.1). Then,

E[C1] =

[
c0e

−(a0+a2+b0+b2+r)θ

a0 + a2 + b0 + b2

(
b0 + b2 − (a0 + a2)(b0 + b3)

a0 + a2 + b2 − b3

)
+
c0(a0 + a2)e−(b0+b3+r)θ

a0 + a2 + b2 − b3

]
1 − e−αT

α
,

E[F1] = S(ΔT)

[
c0
(
1 − e−αΔT − αΔTe−αΔT) + α2ΔT

α2ΔT

]
1 − e−αT
1 − e−αΔT ,

(4.19)

where α := a0 + b0 + c0 + r. The swap rate S(ΔT) is given by equating E[C1] and E[F1].

Proof. Similar to the discussion in the continuous time, since it takes no cost to enter a CDS,
the value of the swap rate S(ΔT) under this three-firms model is determined by

S(ΔT)
n∑
i=1

E
[
e−rTi l{τA∧τB∧τC>Ti}

]
+ S(ΔT)A(ΔT)

= E
[
e−r(τ

C+θ)l{τC≤T}l{τA>τC}l{τB>τC+θ}
]
,

(4.20)

where

A(ΔT) =
n∑
i=1

E

[
e−rτ

C

(
τC − Ti−1

ΔT

)
l{Ti−1<τC<Ti}l{τA∧τB>τC}

]
, (4.21)

where θ is still the length of the settlement period. The first term in (4.20) gives the present
value of the sum of periodic swap payments (terminated when either A, B, or C defaults
or at maturity), and S(ΔT)A(ΔT) is the present value of the accrued swap premium for the
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fraction of period between τC and the last payment date. The right term represents the present
value which the protection seller (B) pays if the reference asset defaults prior to the maturity:

n∑
i=1

E
[
e−rTi l{τA∧τB∧τC>Ti}

]
=
e−αΔT

(
1 − e−αnΔT)

1 − e−αΔT =
e−αΔT

(
1 − e−αT)

1 − e−αΔT . (4.22)

E

[
e−rτ

C

(
τC − Ti−1

ΔT

)
l{Ti−1<τC<Ti}l{τA∧τB>τC}

]

=
1
ΔT

∫Ti
Ti−1

∫∞

t3

∫∞

t3

e−rt3(t3 − Ti−1)f(t1, t2, t3)dt1dt2dt3

=
1
ΔT

[∫Ti
Ti−1

∫∞

t3

∫ t2
t3

e−rt3(t3 − Ti−1)f5(t1, t2, t3)dt1dt2dt3

+
∫Ti
Ti−1

∫∞

t3

∫∞

t2

e−rt3(t3 − Ti−1)f6(t1, t2, t3)dt1dt2dt3
]

:=
1
ΔT

(I8 + I9),

(4.23)

where

I8 =
∫Ti
Ti−1

∫∞

t3

∫ t2
t3

e−rt3(t3 − Ti−1)c0(a0 + a2)(b0 + b3)

· e−(a0+a2+b2−b3)t1−(b0+b3)t2−(c0−a2−b2)t3dt1dt2dt3

=
c0(a0 + a2)

a0 + a2 + b0 + b2

[
1
α

(
e−αTi(Ti−1 − Ti) + 1

α

(
e−αTi−1 − e−αTi

))]
,

I9 =
∫Ti
Ti−1

∫∞

t3

∫∞

t2

e−rt3(t3 − Ti−1)c0(a0 + a3)(b0 + b2)

· e−(a0+a3)t1−(b0+b2+a2−a3)t2−(c0−a2−b2)t3dt1dt2dt3

=
c0(b0 + b2)

a0 + a2 + b0 + b2

[
1
α

(
e−αTi(Ti−1 − Ti) + 1

α

(
e−αTi−1 − e−αTi

))]
.

(4.24)

We can obtain

A(ΔT) =
n∑
i=1

E

[
e−rτ

C

(
τC − Ti−1

ΔT

)
l{Ti−1<τC<Ti}l{τA∧τB>τC}

]

=
1
ΔT

n∑
i=1

(I8 + I9)

=
c0
(
1 − e−αΔT − αΔTe−αΔT)

α2ΔT
1 − e−αT
1 − e−αΔT .

(4.25)
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The right-hand side of (4.20) is

E
[
e−r(τ

C+θ)l{τC≤T}l{τA>τC}l{τB>τC+θ}
]

=

[
c0e

−(a0+a2+b0+b2+r)θ

a0 + a2 + b0 + b2

(
b0 + b2 − (a0 + a2)(b0 + b3)

a0 + a2 + b2 − b3

)
+
c0(a0 + a2)e−(b0+b3+r)θ

a0 + a2 + b2 − b3

]
1 − e−αT

α
.

(4.26)

From (4.22)–(4.26), we can obtain the expression of S(ΔT) from the following equation:

S(ΔT)

[
e−αΔT +

c0
(
1 − e−αΔT − αΔTe−αΔT)

α2ΔT

]
e−αΔT

(
1 − e−αT)

1 − e−αΔT

=

[
c0e

−(a0+a2+b0+b2+r)θ

a0 + a2 + b0 + b2

(
b0 + b2 − (a0 + a2)(b0 + b3)

a0 + a2 + b2 − b3

)
+
c0(a0 + a2)e−(b0+b3+r)θ

a0 + a2 + b2 − b3

]
· 1 − e

−αT

α
.

(4.27)

Remark 4.6. As analyzed in the continuous time, the expression for the swap premium S(ΔT)
in (4.27) shows no dependence on a1, a3, b1, c1, c2, c3. In the financial sense, prior to the default
of the underlying asset, the default event of the protection buyer or the protection seller will
terminate the contract. This is why a1, a3, b1, c1, c2, c3 have no influence on the swap premium.
Moreover, we discover that the swap premium is also insensitive to maturity.

5. Conclusion

In this paper, we present a three-firms contagion model with an interaction term which is
an improvement in the model of Leung and Kwok [18]. Under this model, we analyze the
pricing of defaultable bonds and obtain the closed forms. We also discuss the CDS valuation
in continuous time and discrete time framework, respectively. The analytical solutions of CDS
swap rate (swap premium) are obtained by the approaches of “total hazard construction” and
“change of measure.” Besides, we analyze the effect of the default of the protection buyer, the
protection seller, and the reference asset on the swap rate.

Our model has its actual background. For example, before and during the global
financial crisis, as default risk of the reference asset issuer increased, the protection seller
collected higher CDS swap premiums. Thus, default risk of the protection buyer increased
since more CDS swap premiums were payed. On the other hand, the protection seller
compensated more and more for the loss of reference asset (if it defaulted). When the
protection seller (such as a monoline insurer) had no ability to compensate for the loss of
reference asset, it went bankrupt. All of these could be important reasons for the financial
crisis. So our model is of some significance.
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