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We study an inhomogeneous partial differential equation which includes a separate edge detection
part to control smoothing in and around possible discontinuities, under the framework of
anisotropic diffusion. By incorporating edges found at multiple scales via an adaptive edge
detector-based indicator function, the proposed scheme removes noise while respecting salient
boundaries. We create a smooth transition region around probable edges found and reduce
the diffusion rate near it by a gradient-based diffusion coefficient. In contrast to the previous
anisotropic diffusion schemes, we prove the well-posedness of our scheme in the space of bounded
variation. The proposed scheme is general in the sense that it can be used with any of the existing
diffusion equations. Numerical simulations on noisy images show the advantages of our scheme
when compared to other related schemes.

1. Introduction

Anisotropic diffusion-based image denoising [1] for gray images was started by Perona and
Malik [2] in 1990. It uses a scale parameter-based adaptive image filtering using nonlinear
diffusion. Let 1y be a noisy version of the true image u with noise field n of known variance

o

Uy =uU+n. (1.1)

Our aim is to recover the noise-free image u with edge preservation. To avoid the
oversmoothing nature of the linear diffusion, Perona and Malik [2] introduced an edge
indicator function g for reducing the diffusion near edges via the following anisotropic
diffusion scheme (ADS):

ou(x,t)

— = div(g(|Vu(x, t)|)Vu(x,t)), for x € Q (1.2)
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with the initial condition u(x, 0) = up(x). The diffusion function g : R* — R* is chosen to be
decreasing, such that g(0) = 1, lim,;_,,g(s) = 0. If g(s) = 1in (1.2), then we recover the linear
diffusion PDE. The diffusion functions g(-) proposed in [2] are

g1(s) = ew(—(%)z), $(s) = 1+(517)2 (1.3)

where K > 0 is the so-called contrast parameter. Better numerical results are obtained in
[2] using this class of anisotropic PDEs (1.2)-(1.3) instead of the linear diffusion. When
|Vu| > K, the PDE (1.2) turns into inverse diffusion, which is known to be ill-posed
[3]. It is easily seen that the role of g as an edge indicator function is important in
reducing the noise and enhancing true edges. A more robust indicator function based
on smoothed gradient, g(|VG, x u[), where the Gaussian kernel of width p is given by

Gp(x) = (271‘102)_1 exp(—|x|2 /2p?), can be used for edge identification. This presmoothing also
alleviates the instability [4] associated with the ADS (1.2). However, edge localization is lost
and noisy oscillations can remain in this method. Moreover, when the noise level is high, ADS
can reduce the contrast of edges and reliance on the instable |Vu| alone can be a drawback.

There are efforts to remedy the ill-posedness and to use better edge indicators in the
diffusion process. Strong [5] used an adaptive parameter in total variation-based PDE using
the relationship between energy minimization and PDEs [3]. Better results are obtained when
compared to the classical total variation (TV) scheme of [6, 7], but the use of gradients alone
and the noisy edge map provided by u can lead to noise amplification along edges. Recently,
Ceccarelli et al. [8] devised well-posed ADS schemes by approximating the TV function. Kus-
nezow et al. [9] used a similar weight function of Strong [5] combined with linear diffusion
for fast computations. Yu et al. [10] considered ADS in terms of kernel-based smoothing and
proposed to use a diffusion function based on modified gradients. Barbu et al. [11] considered
the variational-PDE problem in Sobolev space setting with different growth functions. Douiri
etal. [12] use an edge-based weight in the regularization functional for diffuse optical tomog-
raphy to control smoothing across edges. The exact edge information is used to compute the
weight which in real images is not possible, since we do not know, a priori, the exact edge map
of the true image. Indeed, this edge estimation problem is closely related to image denoising,
and most of the edge detection schemes [13, 14] are based on this observation.

Apart from staircasing artifacts in flat regions and noise amplification along edges,
capturing multiscale edges are difficult in previous schemes. To circumvent the drawbacks
a more stable and robust edge indicator function using the multiscale edge detectors as dis-
cussed in [13-15] can be used. Anisotropic diffusion scheme is usually employed as a prepro-
cessing step, for noise removal and edge detection. Here, we reverse the trend and integrate
the edge detection into the anisotropic scheme such as (1.2). The method can, in general, be
used in any anisotropic PDE, and it provides a better coupling of edge detection and restora-
tion of images under noise. We prove the well-posedness of the proposed scheme in the space
of bounded variation BV(Q) [16]. The analysis is based on monotone operators and approx-
imation schemes. The discrete version is implemented and it satisfies the properties required
for an edge preserving scale space. Preliminary numerical results were reported in [17].

The rest of the paper is organized as follows. In Section 2, we introduce the edge
adaptive PDE scheme and in Section 3 its well-posedness is proved in the space of bounded
variation functions. We show the numerical results on real and noisy images in Section 4.
Finally, Section 5 concludes the paper.
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Figure 1: Image gradients based edge indicators. (a) Original image. (b) Noisy image. (c) g1(|Vu]). (d)
81(IGg * ul).

2. Proposed Scheme
2.1. Motivation

The diffusion function g in ADS (1.2) uses the information provided by magnitude of the
gradient to reduce diffusion near edges. Figure 1 shows the effect of this on Lena test image.
Original image (Figure 1(a)) is corrupted with additive Gaussian noise of variance 20 and is
shown in Figure 1(b). ADS (1.2) uses only the diffusion coefficient g as in (1.3). ADS restores
the image in a piecewise constant manner but reduces overall contrast and creates staircasing
artifacts near edges; see Figure 4(a). The magnitude of the gradient image (Figure 1(c), where
whiter pixels represent maximal value of |Vu|) shows that it is not reliable under noise,
and loss of spatial coherence such as edge connectivity and continuity is high. Smoothed
gradient (|[VG, % u|) method of [4] reduces this loss but still leaves some spurious pixels due
to noise (Figure 1(d)) and true locations of the edges are not preserved. This makes the result
lacking clear boundaries; see Figure 4(b). Also this use of isotropic diffusion is against the
very principle of ADS (1.2), which is anisotropic in nature.

2.2, Edge Adaptive ADS

Instead of using only the edge indicator function g alone to drive the diffusion process, we
introduce a spatially adaptive term « in the anisotropic scheme (a-ADS):

ou(x,t)
ot

=div(a(x, H)g(|Vu(x, t)) Vu(x,t)) — Mu — ug), (2.1)
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where a provides a pixelwise edge characterization. As we will see in Section 3 and in
the numerical experiments (Section 4) this avoids the stability problems of the gradient
magnitude-based schemes and overcomes the localization error of smoothed gradient
method. The requirements for « are as follows:

(1) at edge pixels to reduce the diffusion: a(x,t) ~ 0 on the edges,
(2) in flat regions to allow smoothing: a(x,t) ~ 1 beyond the edges,

(3) near edge pixels a(x,t) should vary smoothly between 0 and 1 so as to avoid
spurious oscillations.

We choose a term of the form
a(x,t) =1-E(x,t) (2.2)

with E as a robust and smooth edge indicator function.

2.3. Choice of Edge Indicator Function

Various edge detectors [13-15] exist in digital image processing literature. These detectors
are based on a principle of gradient maxima. Among the available edge detectors [14] such
as Sobel’s, Prewitt’s, Laplacian of Gaussian (LOG), and Marr-Hildreth’s Zero-crossing that
use maxima points of gradient to decide about the edge pixels, Canny’s edge detector [13, 15]
has been proved to be the best in terms of spatial coherency and edge continuity. The general
method of Canny involves the following steps:

(1) convolution of the given image u by a Gaussian G,

(2) estimating the second derivative V?(u) using finite differences,

(3) again using convolution for V(1) with a small Gaussian kernel,

(4) thresholding the gradient of Step 1,

(5) zero-crossings of Step 3 displayed if threshold of Step 4 is achieved.

Canny edge map C(x, t) is a binary output with edge pixels marked as 1 and nonedge pixels
with 0. Hence we use

E(x,t) = G, xC(x,1), (2.3)

where G, smoothens the transition from detected edges to homogenous regions. Figure 2
shows a closeup of the edge map from the hat region of Lena image given by a rectangle
in Figure 1(b). Clearly the Canny edge detector-based smoothing parameter E(x,t) gives a
good localization of edges (Figure 2(b)) and is devoid of noisy pixels. Compare this with the
|Vu| or the smoothed version |VG; * u|-based edge indicators (Figures 1(c) and 1(d)) where
spatial coherency is missing and edge continuity is lost. Also, in the diffusion process based
on these measures, the noisy pixels found in homogenous regions are propagated resulting
in staircase artifacts.

One can use any of the mentioned edge detectors into the spatially adaptive term
a(x,t) in (2.2). We choose Canny detector because of its superiority and its computational
efficiency. This trade-off between optimal performance and computation time can be decided
according to the problem at hand.
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Figure 2: Canny edge detector-based indicator function. (a) Canny binary output C(x). (b) Smooth edge
indicator function E(x) with p = 2 creates a band around C(x) (c) Diffusion weight ag(|Vul).

3. Existence and Uniqueness

Let Q C R? be a bounded domain. The proposed spatially adaptive version a-ADS (2.1)
can be considered as a gradient descent form of a regularization functional [3]. The proposed
scheme (2.1) is equivalent to a descent method for solving the following energy minimization
problem:

min {é(u) = %L} |u—u0|2dx+fg a¢(|Vu|)dx}, (3.1)

ueBV(Q)

with ¢'(s) = g(s)s. For example, for the diffusion functions in (1.3) we get the regularization
functions as

¢di1(s) =1- exp<—<%>2>, ¢Pa(s) = log(l + <%>2> (3.2)

Since these two functions are nonconvex, the minimization problem (3.1) and ADS (1.2)
do not have a unique solution. In these nonconvex regularization function cases the
corresponding energy minimization problem (3.1) does not have a solution at all, except
when u = uy = constant; see [3] for an analysis between the PDE (1.2) and minimization
problem (3.1). To obtain a well-posed scheme we restrict ourselves to the class of linear
growth functions for ¢ : R — [0, o0) satisfying the following.

(H1) ¢ is a nondecreasing, convex, and even function with ¢(0) = 0.
(H2) There exist a > 0 and b > 0 such that as — b < ¢§(s) < as + b, for all s.

An important example in this class is the minimal surface function ¢(s) = V1 + s2, which
is related to the total variation (TV) regularization [6, 7]; see Figure 3. We assume the
preliminary results about the space of functions of bounded variation BV(Q); see [16].
Throughout this paper, we use the notation ¢(x, Vu) = a(x)$(Vu). We recall the definition of
total variation of a function u € L'(Q).

Definition 3.1. Let u € L' (Q); its total variation is defined as

fQ|Vu| = sup{fgu divwdx:w € Cé(Q)}. (3.3)

[w|<1
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Figure 3: (a) Diffusion functions g1, g&» given in (1.3) and TV function. (b) Corresponding regularization
functions.

The total variation is in fact a Radon measure; see [1, page 50] for more details. Making
use of the properties of the convex functions of measures from [18] we will prove that the a-
ADS (2.1) has a unique weak solution in the following sense.

Definition 3.2. u € L*(BV(Q);[0,T]) is a weak solution of the PDE (2.1) if for every v €
L*(BV(Q);[0,T]),and 7 € [0,T]

JZ J‘Q ¢(x, Vu)dxdt -\ JZ fg (u—up)(v—u)dxdt s

S.[ f %_u (v—u)dxdt+f f ¢(x,Vu)dxdt, ae.inT.
0Jq Ot 0Jea

Moreover, it satisfies 0u/0t € L2(Q x [0,T]) and u(x,0) = up(x).

The function space L*(BV(Q); [0, T]) is the set of all functions w : Q x [0,T] — R such
that, w(-,t) € BV(Q) for each t and w(x,-) € L*([0,T]) for all x. We consider the following
regularized linear growth function (see [7]) in the approximation problem of (2.1):

21_€a¢g: s) e 7 56475;;, s) e+ p(x,€), foce
Pelx,9)i= 9 hlx,9) ife<ss % (3.5)
€0p(x,s) 5 10p(xs)

. 1
2 ds |S=1/€ s° = ¢ Os |S=€ + d)(X, 1/6), if s> E
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Lemma 3.3. Let the reqularization function ¢ satisfy the assumptions H1 — H2. If {u;} converges to
win LY(Q), then

f ¢(x, Vu)dx < lim infj ¢(x, Vu;)dx. (3.6)
Q imw Jg
Proof. Letw € C(l)(Q) be such that |w(x)| < a(x) for all x € Q. Then

f udivwdx =lim | u divwdx <liminf | «a|Vu;|dx, (3.7)
Q

1— 00 Q 1—00 Q

where the inequality follows from Definition 3.1 of total variation of u. Taking supremum
over w gives the result. O

Note that a defined in (2.2) is a smooth function, that is, a(x) € C*(Q; (0, 00)) due to
the Gaussian presmoothing; see (2.3). The above lemma can also be proved using a general
assumption about the adaptive parameter such as a € C°(Q; (0, »0)); see also [19, Theorem
1]. We next need the following result from nonlinear semigroup theory; see Theorem 3.1 in

[20].

Theorem 3.4. Let H be a Hilbert space, and let P(H) be its power set. Let 4 : H — P(H) be a
maximal monotone operator and uy € D(4), where the domain is D(#4) = {x € H : Ax#0}. Then
there exists a unique function u(t) : [0,00) — H such that

0e %—Ltl +A (1), u(0) = up. (3.8)

Lemma 3.5. Consider the approximation PDE

ou
—eAu+ — —div(ge(x, |Vu) Vi) + AM(u—-u8) =0 on Qx[0,T],
5~ div(ze )+ (u-up) 59

u:ug on Q x {0}

with

1 a(i)g(X, g) o) oA
ge(x, $ =7 N u € C*(Q),
6 % ' ( > (3.10)

U —s ugin LA(Q)  with nug” < Clluoll -0y

L=(Q)

There exists a unique solution ué € L*(W'2(Q); [0, T]) for the approximation PDE. The solution ul
is bounded in L* (Q) by the initial value uy, that is,

&

6

€

< i)
Lo @oT) = Clluoll =) (3.11)
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Proof. Since uy € BV(Q) N L*(Q), existence of the sequence ”o is guaranteed. Let 4 (u) =
AMu - uO) — div(ge(x, |Vul|)Vu). As A, is the derivative of a convex lower semicontinuous
functional, it is a maximal monotone operator. The existence of u¢ follows from Theorem 3.4.

To get the L* bound for the solution we proceed as follows. Let B = ||u0|| Lo (@) and

f* = max(f,0). Multiply the approximation PDE by the term e~* (e~*!u — B)*. Integrating the
PDE, we obtain
ou’b +
ef Vul et et Vuldx + f —cet (e*Stu‘S - B) dx
+ f [ge <X, 'Vuf >Vuf]e‘5t e™'Vuldx (3.12)
Q
+
+4 J; <u - u8>e‘5t (e_Stuf - B) dx = 0.
This implies that
aug —st( ,—st 6 B +d <0 (3 13)
o 76 <€ U — > X < .

since the remaining integrals are all nonnegative. Let
O(t) = f | mstyb _ | dx. (3.14)

Then J(t) is decreasing, nonnegative, and 2(0) = 0. Thus J(t) = 0 for all t. Subsequently,

uS(t) < Be® ae.on Qfors, t>0. (3.15)

Letting s — 0, we get uS(t) < [[ud]| L»(q)- Similarly multiplying the term e™(-B — etud)”

with the approximation PDE and integrating, we obtain ul (t) > —||u0 O

||Loo

Lemma 3.6. The weak solution of the approximation PDE u® satisfied the following inequality, for

LG

< gfg |Vug'2dx + IQ¢<x,Vug>dx+ €, a.einT.

> dxdt+ < f |Vu5(t)| dx+f ¢ x,Vu (t)> -

Moreover, the weak solutions u8 and oul /dt are uniformly bounded in € with respect to the L®(Q x
[0,T]) and L?>(Q x [0, T]) norms, respectively.
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Proof. The proof of the inequality follows from the identity

[.(

6;;3 >2dx dt + ; fg |Vuf(t)|2dx + L} e <x, Vuf(t))dx + % fg <u‘3 - uS)zdx

= g fQ |Vug|2dx + J;; (])€<x, Vug>dx

and ¢(x,s) < ¢e(x,5) < P(x,s) + € for any s.
From Lemma 3.5, it follows that % is uniformly bounded and

(3.17)

J‘OT J‘Q <6;§>2dxdt+fg¢(x, Vuf)dx < gfg |vu8'2dx+JQ¢<x,Vug>dx+ e. (3.18)
We have

[ j( g +¢<Vug)>dxdtgc||ug||Lw(9), 619)

O

Let {€,} be a sequence converging to 0. Consider the corresponding weak solutions
of the approximation PDE {u8 }. In the following lemma, we prove the convergence of a
subsequence of weak solutions {u?mk }ase, — 0.

6

Lemma 3.7. There exists a subsequence {uenk

} such that as €, — 0

u® —u® strongly in L"(Qx [0,T]), ae. in Qx[0,T],

€nk
o (3.20)
6tk - = weakly in L*(Q x [0,T]),
where u® is a weak solution of the PDE (2.1) with uw5(0) = ub. Moreover 48|l jmonor) <

C||u0||Lw(Q)-

Proof. By Lemma 3.6, u® and 0ul/dt are uniformly bounded. When ¢,, — 0, for fixed 6 >
0, we have a convergent subsequence u‘gnk — u® in L'(Q x [0,T]) for u® € L*(BV(Q) N
L*(Q);[0,T]), and (aufnk /0t) — (0u®/dt) in L2(Q x [0,T]).

fnk is the weak solution of the approximation PDE, it satisfies the corresponding

weak solution formulation in Definition (3.4). That is, for every v € L?(BV(Q); [0,T]) and
Te[0,T],

JZ fQ ¢enk <x, Vufnk >dx dt- A JZ L: (ufnk - ug> <v - ufnk >dx dt

6

<€_ff |Vv|2dxdt+ﬂ Do, (x vU)ddeH Mo ot )dxdt ae.in
< 2 o Ja oJa €ny 7 0Jo at €ny .C. .
(3.21)

Since u
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When €,, — 0, we obtain, using Lemma 3.3,

JZ fQ¢(x,Vu6>dxdt—AfT fg<u6 —u§> <v—u5)dxdt
f f (x, Vv)dxdt+j f Yt

Thus, u° is a weak solution of the PDE (2.1) with u®(x,0) = ug 0(x). O

(3.22)

Now, we state and prove our main result.

Theorem 3.8. If uy € BV(Q) N L*(Q), then there exists a unique weak solution u € L*(BV(Q) N
L*(Q);[0,T]) of (2.1).

Proof. From Lemma 3.7 we get u® as a weak solution of the PDE (2.1) with #°(x,0) = u 0(x).
Using Lemma 3.7 for the sequence {1} as 6 — 0, we get

u® — u strongly in LY(Q x [0,T]), a.e.in Qx [0,T],

3.23)
ou®  du . (
= ot weakly in L=(2 x [0,T]).
Finally we let & — 0 in the following inequality:
' x,Vu®)d dt-Aij ®—ul)(v-u)dxadt
.[0 L;ﬁ( ) X Q<u u0><v u) x
(3.24)
f J‘ o(x, Vv)dxdt+f f dxdt
to obtain
f J ¢(x, Vu)dx dt - AJ ’[ (u—up)(v—u)dxdt
0Ja 0/
(3.25)

< ’ ¢(x, Vo)dxdt + ' a—u(v—u)alxdt.
fo fg fo .[g ot

We see that u € L*(BV(Q) N L*(Q); [0,T]) is a weak solution of (2.1). Uniqueness of the
solution follows from the weak solution inequality (3.4) above. O

As a consequence of Theorem 3.8, we also obtain a bound for the solution ||u||;. <
Cllug||, that is, the maximum principle holds for the solution of (2.1); this guarantees that
no new structures are created and a-ADS (2.1) satisfies the scale space axiom. Note that
though a € C*(Q) (since G, € C*(Q)) in (2.3), if we use the original ADS functions (1.3) we
cannot obtain the well-posedness of the PDE (2.1), since the corresponding ¢ functions are
not convex.
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(a) PM [2] (b) CL[4] (c) RO [6]

(d) ST [5] (f) KH [9]

(g) YW [10] (h) BB [11] (i) Our scheme

Figure 4: Results of (a) Perona and Malik scheme [2], (b) Catté et al. scheme [4], (c) Rudin et al. scheme
[6], (d) Strong scheme [5], (e) Ceccarelli et al. scheme [8], (f) Kusnezow et al. scheme [9], (g) Yu et al.
scheme [10], (h) Barbu et al. scheme [11], (i) Our a-ADS scheme.

4. Numerical Experiments

We use finite differences to discretize the proposed edge adaptive PDE (2.1) for images
normalized to be in the range [0, 1]. We take h as the grid size, and Uf]. as the intensity value
u(i, j) at iteration f. Instead of the classical explicit scheme, which severely restricts the step
size, we make use of the unconditionally stable semi-implicit scheme. In 1D with matrix-
vector notation it reads as

utl = [1-tAUYH] U, 4.1)
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Figure 5: (a) Noise level o versus PSNR (dB) values. (b) Profile line taken across Lena at pixel position
250.

where 7 is the time step, A(U') = [a;;(U")], and

(Vi +7; .
2h2 ’ ] € ./vi/
a;(U') = 5 VN (4.2)
keN; 2h?
L0, otherwise

with y; = a;g; and V; is the discrete neighborhood of the pixel i. For n-D images the semi-
implicit scheme is written as

n -1
utt = [1 - TZA,(uf)] u'. (4.3)
=1

The matrix A; = (a! j)ij corresponds to the derivatives along the Ith coordinate axis.

We use the Canny edge detector with its default settings for (2.3) in MATLAB7 4, and
the computations are done in a desktop computer with Pentium IV, 2.45 GHz processor. It
took nearly a minute for 100 iterations of our scheme, since the computation of Canny edge
detector is done at each iteration. Further reduction in execution time can be achieved if we
are to use other faster edge detectors. The numerical example, given in Figure 4, shows the
results obtained for the noisy Lena image given in Figure 1(b). We show results of applying
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our scheme (2.1) with regularized TV function g(s) = (2 +s2) /%, e = 107 in Figure 4(i) and
also compare with the following schemes:

(I) classical schemes: ADS (1.2) of Perona and Malik [2] (Figure 4(a)), Catté et al.’s
smoothed gradient scheme [4] (Figure 4(b)), and Rudin et al.’s total variation
scheme [6] (Figure 4(c)),

(II) adaptive schemes: Strong’s adaptive total variation scheme [5] (Figure 4(d)),
Ceccarelli et al.’s approximate TV scheme [8] (Figure 4(e)), Kusnezow et al.’s
adaptive linear diffusion scheme [9] (Figure 4(f)), Yu et al.’s kernel-based ADS [10]
(Figure 4(g)), and Barbu et al.’s variational PDE scheme [11] (Figure 4(h)).

We use the peak signal-to-noise ratio (PSNR) for comparing our scheme with other
schemes. The parameters are tuned to get the best possible PSNR value for each of the scheme
compared. Figure 5(a) shows the effect of the same against different noise levels (5 < o < 25)
for our scheme. For an m x n image u, the PSNR value of an estimated image i is given by

PSNR = 10log;, el (dB). (4.4)

\/ > (u(x) - i(x))?

xeQ

We see that our scheme produces a stable PSNR value as the noise level increases and attains
highest values among other related schemes as well. To show the strong smoothing along
flat regions and edge preservation, Figure 5(b) shows a signal line taken across Lena image
from Figure 4(i), whose position is indicated in Figure 1(a) by a line. As can be seen our
scheme can remove small scale texture details as the edge detector in (2.2) is not sufficient
to capture them. Incorporation of textural measures into a points at further improvements in
this direction.

5. Conclusions

A class of well-posed inhomogeneous diffusion schemes for image denoising is studied in
this paper. By integrating multiscale edge detectors into the divergence term of anisotropic
diffusion PDE we obtain edge preserving restoration of noisy images. Unlike the classical
anisotropic diffusion schemes, which use only gradients to find edge pixels, we have
proposed to include an adaptive parameter computed from Canny edge detector. Using
an approximation scheme and the theory of monotone operators, well-posedness of the
proposed inhomogeneous PDE is proved in the space of functions of bounded variation.
Numerical examples illustrate that the scheme performs well under noise. Comparison with
related schemes is undertaken to show that the expected improvement can really be achieved.
Similar analysis for higher-order diffusion schemes and comparing various edge detectors for
performance evaluation provide future directions.
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