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Assume that Q is a positive continuous function in R
N and satisfies some suitable conditions. We

prove that the quasilinear elliptic equation −Δpu + |u|p−2u = Q(z)|u|q−2u in R
N admits at least two

solutions in R
N (one is a positive ground-state solution and the other is a sign-changing solution).

1. Introduction

For N ≥ 3, 2 ≤ p < N, and p < q < p∗ = Np/(N − p), we consider the quasilinear elliptic
equations

−Δpu + |u|p−2u = Q(z)|u|q−2u in R
N,

u ∈W1,p
(
R
N
)
,

(1.1)

−Δpu + |u|p−2u = Q∞|u|q−2u in R
N,

u ∈W1,p
(
R
N
)
,

(1.2)

where Δp is the p-Laplacian operator, that is,

Δpu =
N∑
i=1

∂

∂zi

(
|∇u|p−2 ∂u

∂zi

)
. (1.3)
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Let Q be a positive continuous function in R
N and satisfy

Q(z) ≥ Q∞ = lim
|z|→∞

Q(z) > 0, Q(z) > Q∞ on a set of positive measure. (Q1)

Associated with (1.1) and (1.2), we define the functionals a, b, b∞, J , and J∞, for u ∈
W1,p(RN),

a(u) =
∫

RN

(|∇u|p + |u|p)dz = ‖u‖p1,p,

b(u) =
∫

RN

Q(z)|u|qdz, b∞(u) =
∫

RN

Q∞|u|qdz,

J(u) =
1
p
a(u) − 1

q
b(u), J∞(u) =

1
p
a(u) − 1

q
b∞(u).

(1.4)

It is easy to verify that the functionals a, b, b∞, J , and J∞ are C1.
For the case p = 2, Lions [1, 2] proved that if lim|z|→∞Q(z) = Q∞, and Q(z) ≥ Q∞ > 0,

then (1.1) has a positive ground-state solution in R
N. Benci and Cerami [3] proved that (1.2)

does not have any ground-state solution in an exterior domain. Bahri and Li [4] proved
that there is at least one positive solution of (1.1) in R

N (or an exterior domain) when
lim|z|→∞Q(z) = Q∞ > 0 and Q(z) ≥ Q∞ − C exp(−δ|z|) for δ > 2. Cao [5] has studied the
multiplicity of solutions (one is a positive ground-state solution and the other is a nodal
solution) of (1.1) with Neumann condition in an exterior domain as follows. Assume that
lim|z|→∞Q(z) = Q∞ > 0, and Q(z) ≥ Q∞ + C|z|−m exp(−δ|z|) for C > 0, m < (N − 1)/2,
δ = q/(q + 1), then (1.1) has at least two nontrivial solutions (one is a positive ground-state
solution and the other is a nodal solution) in an exterior domain.

This article is motivated by the above papers. If Q is a positive continuous function
in R

N and satisfies (Q1), then we prove that (1.1) admits a positive ground-state solution in
R
N. Combine it with some ideas of Cerami et al. [6] to show that if Q also satisfies Q(z) ≥

Q∞ + C exp(−δ|z|) for 0 < δ < θ = (p − 1)−1/p, then a nodal solution of (1.1) exists.

2. Preliminaries

We define the Palais-Smale (denoted by (PS)) sequences and (PS)-conditions inW1,p(RN) for
J as follows.

Definition 2.1. (i) For β ∈ R, a sequence {un} is a (PS)β-sequence inW
1,p(RN) for J if J(un) =

β + on(1) and J ′(un) = on(1) strongly inW−1,p′(RN) as n → ∞, whereW−1,p′(RN) is the dual
space ofW1,p(RN) and 1/p + 1/p′ = 1

(ii) J satisfies the (PS)β-condition inW1,p(RN) if every (PS)β-sequence inW
1,p(RN) for

J contains a convergent subsequence.

Lemma 2.2. Let β ∈ R and let {un} be a (PS)β-sequence inW1,p(RN) for J, then {un} is a bounded
sequence in W1,p(RN). Moreover, a(un) = b(un) + on(1) = (qp/(q − p))β + on(1) as n → ∞ and
β ≥ 0.
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Proof. Since p ≥ 2, we have that p
√
a(un) ≤ 1 if a(un) ≤ 1 and p

√
a(un) ≤

√
a(un) if a(un) > 1.

For sufficiently large n,we get

∣∣β∣∣ + 2 +
√
a(un) ≥

∣∣β∣∣ + 1 + p

√
a(un)

≥ J(un) − 1
q

〈
J ′(un), un

〉
=
(
1
p
− 1
q

)
a(un).

(2.1)

It follows that {un} is bounded inW1,p(RN). Then 〈J ′(un), un〉 = on(1) as n → ∞. Thus,

β + on(1) = J(un) =
(
1
p
− 1
q

)
a(un) + on(1) =

(
1
p
− 1
q

)
b(un) + on(1), (2.2)

that is, a(un) = b(un) + on(1) = (qp/(q − p))β + on(1) as n → ∞ and β ≥ 0.

Define

α
(
R
N
)
= inf

u∈M(RN)
J(u), (2.3)

where M(RN) = {u ∈W1,p(RN) \ {0} | a(u) = b(u)}, and

α∞
(
R
N
)
= inf

u∈M∞(RN)
J∞(u), (2.4)

where M∞(RN) = {u ∈W1,p(RN) \ {0} | a(u) = b∞(u)}.

Lemma 2.3. Let u be a sign-changing solution of (1.1). Then J(u) ≥ 2α(RN).

Proof. Define u+ = max{u, 0} and u− = max{−u, 0}. Since u is a sign-changing solution of
(1.1), then u− is nonnegative and nonzero. Multiply (1.1) by u− and integrate it to obtain

∫

RN

(
|∇u|p−2∇u∇u− + |u|p−2uu−

)
dz =

∫

RN

Q(z)|u|q−2uu−dz, (2.5)

that is, u− ∈ M(RN) and J(u−) ≥ α(Ω). Similarly, J(u+) ≥ α(RN).Hence,

J(u) = J(u+) + J
(
u−

) ≥ 2α
(
R
N
)
. (2.6)

Lemma 2.4. (i) For each u ∈ W1,p(RN) \ {0}, there exists a positive number su such that suu ∈
M(RN) and sups≥0J(su) = J(suu).

(ii) Let β > 0 and let {un} be a sequence inW1,p(RN)\{0} for J such that a(un) = b(un)+o(1)
and J(un) = β+o(1). Then there is a sequence {sn} in R

+ such that sn = 1+o(1), {snun} ⊂ M(RN),
and J(snun) = β + o(1) as n → ∞.
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Proof. (i) For each u ∈W1,p
0 (RN) \ {0} and s ≥ 0, let

hu(s) = J(su) =
sp

p
a(u) − sq

q
b(u). (2.7)

Thus, h′u(s) = sp−1a(u) − sq−1b(u). Define su = (a(u)/b(u))1/(q−p) > 0, then h′u(su) = 0, that is,
suu ∈ M(RN).

(ii) By (i), there exists a sequence {sn} in R
+ such that {snun} ⊂ M(RN), that is,

s
p
na(un) = s

q
nb(un) for each n. Since a(un) = b(un) + o(1) and J(un) = β + o(1), we have

that sn = 1 + o(1).Hence, J(snun) = β + o(1) as n → ∞.

Lemma 2.5. There exists c > 0 such that ‖u‖1,p ≥ c > 0 for each u ∈ M(RN), where c is independent
of u.

Proof. For each u ∈ M(RN), by the Sobolev inequality, we obtain that

‖u‖p1,p =
∫

RN

Q(z)|u|qdz ≤ c1‖u‖q1,p. (2.8)

This implies that ‖u‖1,p ≥ c−1/(q−p)1 = c > 0 for each u ∈ M(RN).

By Lemma 2.5, α(RN) > 0.

Lemma 2.6. Let u ∈ M(RN) such that

J(u) = min
v∈M(RN)

J(v) = α
(
R
N
)
, (2.9)

then u is a nonzero solution of (1.1) in R
N.

Proof. Suppose that ψ(v) =
∫

RN (|∇v|p + |v|p)dz − ∫
RNQ(z)|v|qdz, then

〈
ψ ′(v), v

〉
=
(
p − q)

∫

RN

(|∇v|p + |v|p)dz < 0 for each v ∈ M
(
R
N
)
. (2.10)

Since J(u) = minv∈M(RN)J(v), by the Lagrange multiplier theorem, there is a λ ∈ R such that
J ′(u) = λψ ′(u) inW−1,p′(RN). Then we have

0 =
〈
J ′(u), u

〉
= λ

〈
ψ ′(u), u

〉
. (2.11)

Thus, λ = 0 and J ′(u) = 0 inW−1,p′(RN). Therefore, u is a nonzero solution of (1.1) in R
N with

J(u) = α(RN).
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Lemma 2.7. There is a (PS)α(RN)-sequence inW
1,p(RN) for J.

Proof. Let {un} ⊂ M(RN) be a minimizing sequence of α(RN). Applying the Ekeland
principle, there exists a sequence {vn} ⊂ M(RN) such that ‖vn − un‖1,p < 1/n, J(vn) =
α(RN)+o(1), and J ′|M(RN)(vn) = o(1) strongly inW−1,p′(RN) as n → ∞. Let ψ(u) = a(u)−b(u)
for each u ∈W1,p(RN) \ {0}, then

M
(
R
N
)
=
{
u ∈W1,p

(
R
N
)
\ {0} | ψ(u) = 0

}
. (2.12)

Thus, there exists a sequence {θn} ⊂ R such that J ′(vn) = θnψ
′(vn) + on(1), where on(1) → 0

as n → ∞. Since vn ∈ M(RN),we have that

0 =
〈
J ′(vn), vn

〉
= θn

〈
ψ ′(vn), vn

〉
+ 〈on(1), vn〉,

〈
ψ ′(vn), vn

〉
=
(
p − q)a(vn)/= 0 ∀n.

(2.13)

Hence, θn → 0 as n → ∞. This implies that J ′(vn) = o(1) strongly inW−1,p′(RN) as n → ∞,
that is, {vn} ⊂ M(RN) is a (PS)α(Ω)-sequence inW

1,p(RN) for J.

Remark 2.8. The above definitions and lemmas also hold for J∞,M∞(RN), and α∞(RN).

3. Existence of a Ground-State Solution

Using the arguments by Lions [1, 2], Benci and Cerami [3], Struwe [7], and Alves [8], we
have the following decomposition lemma.

Lemma 3.1 (Palais-Smale Decomposition Lemma for J). Assume thatQ is a positive continuous
function in R

N and lim|z|→∞Q(z) = Q∞ > 0. Let {un} be a (PS)β-sequence inW1,p(RN) for J. Then
there are a subsequence {un}, a positive integer l, sequences {zin}∞n=1 in R

N, functions u inW1,p(RN),
and wi /= 0 inW1,p(RN) for 1 ≤ i ≤ l such that

∣∣∣zin
∣∣∣ −→ ∞ for 1 ≤ i ≤ l,

−Δpu + |u|p−2u = Q(z)|u|q−2u in R
N,

−Δpw
i +

∣∣∣wi
∣∣∣
p−2
wi = Q∞

∣∣∣wi
∣∣∣
q−2
wi in R

N,

un = u +
l∑
i=1

wi
(
· − zin

)
+ on(1) strongly in W1,p

(
R
N
)
,

J(un) = J(u) +
l∑
i=1

J∞
(
wi

)
+ on(1).

(3.1)

In addition, if un ≥ 0, then u ≥ 0 and wi ≥ 0 for 1 ≤ i ≤ l.
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Lemma 3.2. Let {un} ⊂ M(RN) be a (PS)β-sequence in W
1,p(RN) for J with 0 < β < α∞(RN).

Then there exist a subsequence {un} and a nonzero u ∈ W1,p(RN) such that un → u strongly in
W1,p(RN) and J(u) = β, that is, J satisfies the (PS)β-condition inW1,p(RN).

Proof. Since {un} ⊂ M(RN) is a (PS)β-sequence in W1,p(RN) for J with 0 < β < α∞(RN),
by Lemma 2.2, {un} is bounded in W1,p(RN). Thus, there exist a subsequence {un} and u ∈
W1,p(RN) such that un ⇀ uweakly inW1,p(RN). It is easy to check that u is a solution of (1.1)
in R

N. Applying Palais-Smale Decomposition Lemma 3.1, we get

α∞ > β = J(un) ≥ lα∞. (3.2)

Then l = 0 and u/= 0. Hence, un → u strongly inW1,p(RN) and J(u) = β.

Letw ∈W1,p(RN) be the positive ground-state solution of (1.2) in R
N. Using the same

arguments by Li and Yan [9] and Marcos do Ó [10, Lemma3.8], or see Serrin and Tang [11,
page 899] and Li and Zhao [12, Theorem1.1], we obtain the following results:

(i) w ∈ L∞(RN) ∩ C1,γ0
loc (R

N) for some 0 < γ0 < 1 and lim|z|→∞w(z) = 0;

(ii) for any ε > 0, there exist positive numbers C1 and C2 such that

C2 exp(−(θ + ε)|z|) ≤ w(z) ≤ C1 exp(−(θ − ε)|z|) ∀z ∈ R
N, (3.3)

where θ = (p − 1)−1/p.

Remark 3.3. Similarly, we also show that all positive solutions of (1.1) in R
N have exponential

decay.

By Lemma 3.2, we can prove the following theorem.

Theorem 3.4. Assume thatQ is a positive continuous function in R
N and satisfies (Q1). Then there

exists a positive ground-state solution u0 of (1.1) in R
N.

Proof. Let w ∈ W1,p(RN) be the positive ground-state solution of (1.2) in R
N, then w is a

minimizer of α∞(RN) and

∫

RN

(|∇w|p +wp)dz =
∫

RN

Q∞wqdz. (3.4)
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By Lemma 2.4(i), there exists a positive number sw such that sww ∈ M(RN), that is,∫
RN (|∇(sww)|p + (sww)p)dz =

∫
RNQ(z)(sww)qdz. Since Q(z) > Q∞ on a set of positive

measure, we can deduce that sw < 1. Therefore,

α
(
R
N
)
≤ J(sww) =

(
1
p
− 1
q

)
(sw)p

∫

RN

(|∇w|p +wp)dz

<

(
1
p
− 1
q

)∫

RN

(|∇w|p +wp)dz

=
(
1
p
− 1
q

)∫

RN

Q∞wqdz = α∞
(
R
N
)
.

(3.5)

Applying Lemma 3.2, there exists u0 ∈ W1,p(RN) such that J(u0) = α(RN). From the results
of Lemmas 2.6 and 2.3, by Maximum Principle, u0 is a positive ground-state solution of (1.1)
in R

N.

4. Existence of a Nodal Solution

In this section, assume that Q is a positive continuous function in R
N and satisfies (Q1). In

order to prove Lemma 4.8, Q also satisfies the following condition (Q2): there exist some
constants C > 0 and 0 < δ < θ = (p − 1)−1/p such that

Q(z) ≥ Q∞ + C exp(−δ|z|) ∀z ∈ R
N. (Q2)

Let h be a functional inW1,p(RN) defined by

h(u) =

⎧
⎪⎨
⎪⎩

b(u)
a(u)

for u/= 0,

0 for u = 0.
(4.1)

We define

M0 =
{
u ∈W1,p

(
R
N
)
| h(u+) = 1, h

(
u−

)
= 1

}
⊂ M

(
R
N
)
,

N =
{
u ∈W1,p

(
R
N
)
| ∣∣h(u±) − 1

∣∣ < 1
2

}
⊃ M0,

(4.2)

where u+ = max{u, 0} and u− = max{−u, 0}.

Lemma 4.1. (i) If u ∈ W1,p(RN) changes sign, then there exist positive numbers s±(u) = s± such
that s+u+ ∈ M(RN) and s−u− ∈ M(RN).

(ii) There exists c′ > 0 such that ‖u±‖1,p ≥ c′ > 0 for each u ∈ N.
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Proof. (i) Since u+ and u− are nonzero and nonnegative, by Lemma 2.4(i), it is easy to obtain
the result.

(ii) For each u ∈ N, by Lemma 2.4(i), there exists s±(u) = s± > 0 such that s±u± ∈
M(RN). Then

1
2
<
(
s±
)p−q = b(u±)

a(u±)
<

3
2

for each u ∈ N. (4.3)

By Lemma 2.5, we have

∥∥s±u±∥∥1,p ≥ c for some c > 0 and each u ∈ N. (4.4)

Hence, ‖u±‖1,p ≥ c/s± ≥ c′ > 0 for each u ∈ N.

Consider these minimization problem

γ
(
R
N
)
= inf

u∈M0
J(u). (4.5)

By Lemma 4.1, γ(RN) > 0.

Lemma 4.2. There exists a sequence {un} ⊂ N such that J(un) = γ(RN)+on(1) and J ′(un) = on(1)
strongly inW−1,p(RN) as n → ∞.

Proof. It is similar to the proof of Zhu [13].

Lemma 4.3. Let f and g be real-valued functions inR
N. If g(z) > 0 inR

N, then one has the following
inequalities:

(i) (f + g)+ ≥ f+,

(ii) (f + g)− ≤ f−,

(iii) (f − g)+ ≤ f+,

(iv) (f − g)− ≥ f−.

Lemma 4.4. Let {un} ⊂ N be a (PS)γ(RN)-sequence inW
1p(RN) for J satisfying

α
(
R
N
)
< γ

(
R
N
)
< α

(
R
N
)
+ α∞

(
R
N
)(
< 2α∞

(
R
N
))
. (4.6)

Then there exists u∗ ∈ M0 such that un converges to u∗ strongly in W1,p(RN) and u∗ is a higher-
energy solution of (1.1) such that J(u∗) = γ(RN).

Proof. By the definition of the (PS)γ(RN)-sequence inW
1,p(RN) for J, it is easy to see that {un}

is a bounded sequence inW1,p(RN) and satisfies

∫

RN

(∣∣∇u±n
∣∣p + ∣∣u±n

∣∣p)dz =
∫

RN

Q(z)
∣∣u±n

∣∣qdz + on(1). (4.7)
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By Lemma 4.1(ii), there exists c′ > 0 such that

c′ ≤
∫

RN

(∣∣∇u±n
∣∣p + ∣∣u±n

∣∣p)dz =
∫

RN

Q(z)
∣∣u±n

∣∣qdz + on(1). (4.8)

Using the Palais-Smale Decomposition Lemma 3.1, then we have γ(RN) = J(u∗) +∑l
i=1 J

∞(wi), where u∗ is a solution of (1.1) in R
N and wi is a solution of (1.2) in R

N. Since
J∞(wi) ≥ α∞(RN) for each i ∈ N and α(RN) < α∞(RN), we have l ≤ 1. Now we want to show
that l = 0. On the contrary, suppose that l = 1.

(i) w1 is a sign-changing solution of (1.2): by Lemma 2.3 and Remark 2.8, we have
γ(RN) ≥ 2α∞(RN),which is a contradiction.

(ii) w1 is a constant-sign solution of (1.2): we may assume that w1 > 0. Applying the
Decomposition Lemma 3.1, there exists a sequence {z1n} in R

N such that |z1n| → ∞,
and

∥∥∥un − u∗ −w1

(
· − z1n

)∥∥∥
1,p

= on(1). (4.9)

By the Sobolev continuous embedding inequality, we obtain

∥∥∥un − u∗ −w1

(
· − z1n

)∥∥∥
Lq

= on(1). (4.10)

Since w1 > 0, by Lemma 4.3, then

∥∥(un − u∗)−
∥∥
Lq = on(1) as n −→ ∞. (4.11)

(a) Suppose that u∗ ≡ 0; we obtain ‖u−n‖Lq = on(1) as n → ∞. Then

0 < c′ ≤
∫

RN

Q(z)
∣∣u−n

∣∣qdz = on(1), (4.12)

which is a contradiction.

(b) Suppose that u∗ /≡ 0.We have γ(RN) = J(u∗) + J∞(w1) ≥ α(RN) + α∞(RN), which is
a contradiction.

By (i) and (ii), then l = 0. Thus, ‖un − u∗‖1,p = on(1) as n → ∞ and J(u∗) = γ(RN).
Finally, we claim that u∗ is a sign-changing solution of (1.1) in R

N. If u∗ > 0 (or < 0), by
Lemma 4.3, then ‖u−n‖Lq = on(1) (or ‖u−n‖Lq = on(1)). Similarly, we have the inequality (4.12),
which is a contradiction. Moreover, by Lemma 2.3, 2α(RN) ≤ γ(RN).

Recall that w is the positive ground-state solution of (1.2) in R
N. For any ε > 0, there

exist positive numbers C1 and C2 such that

C2 exp(−(θ + ε)|z|) ≤ w(z) ≤ C1 exp(−(θ − ε)|z|) ∀z ∈ R
N, (4.13)
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where θ = (p − 1)−1/p. Define

wn(z) = w(z − zn) where zn = (0, . . . , 0, n) ∈ R
N. (4.14)

Clearly, wn(z) ∈W1,p(RN).

Lemma 4.5. There are n0 ∈ N and real numbers t∗1 and t
∗
2 such that for n ≥ n0

t∗1u0 − t∗2wn ∈ M0, γ
(
R
N
)
≤ J(t∗1u0 − t∗2wn

)
, (4.15)

where 1/p ≤ t∗1, t∗2 ≤ p, and u0 is the positive ground-state solution of (1.1) in R
N.

Proof. Applying the mean value theorem by Miranda [14], the proof is similar to that of Zhu
[13] (or see Hsu [15, page 728]).

We need the following lemmas to prove that sup1/p≤t∗1,t∗2≤pJ(t
∗
1u0 − t∗2wn) < α(RN) +

α∞(RN) for sufficiently large n.

Lemma 4.6. Let E be a domain in R
N. If f : E → R satisfies

∫

E

∣∣∣f(z)eσ|z|
∣∣∣dz <∞ for some σ > 0, (4.16)

then
(∫

E

f(z)e−σ|z−z|dz
)
eσ|z| =

∫

E

f(z)eσ〈z,z〉/|z|dz + o(1) as |z| −→ ∞. (4.17)

Proof. Since σ|z| ≤ σ|z| + σ|z − z|,we have
∣∣∣f(z)e−σ|z−z|eσ|z|

∣∣∣ ≤
∣∣∣f(z)eσ|z|

∣∣∣. (4.18)

Since −σ|z − z| + σ|z| = σ(〈z, z〉/|z|) + o(1) as |z| → ∞, then the lemma follows from the
Lebesgue-dominated convergence theorem.

Lemma 4.7. For all x, y ∈ R
N, one has the following inequality:

∣∣x − y∣∣ρ ≤
(
|x|ρ−2x − ∣∣y∣∣ρ−2y

)(
x − y), where ρ ≥ 2. (4.19)

Proof. See Yang [16, Lemma4.2.].

Lemma 4.8. There exists an n∗0 ∈ N such that for n ≥ n∗0 ≥ n0

γ
(
R
N
)
≤ sup

1/p≤t∗1,t∗2≤p
J
(
t∗1u0 − t∗2wn

)
< α

(
R
N
)
+ α∞

(
R
N
)
, (4.20)

where u0 is a positive ground-state solution of (1.1) in R
N.
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Proof. By Lemma 4.7, then

J
(
t∗1u0 − t∗2wn

)

=
1
p

∥∥t∗1u0 − t∗2wn

∥∥p
1,p −

1
q
b
(
t∗1u0 − t∗2wn

)

≤ 1
p

{∫

RN

(∣∣∇(
t∗1u0

)∣∣p−2∇(
t∗1u0

) − ∣∣∇(
t∗2wn

)∣∣p−2∇(
t∗2wn

))(∇(
t∗1u0

) − ∇(
t∗2wn

))}

+
1
p

{∫

RN

(∣∣t∗1u0
∣∣p−2(t∗1u0

) − ∣∣t∗2wn

∣∣p−2(t∗2wn

))(
t∗1u0 − t∗2wn

)} − 1
q
b
(
t∗1u0 − t∗2wn

)

≤ J(t∗1u0
)
+ J∞

(
t∗2w

) −
(
t∗2
)q
q

∫

RN

(Q(z) −Q∞)w(z − zn)qdz

− 1
q
b
(
t∗1u0 − t∗2wn

)
+
1
q
b
(
t∗1u0

)
+
1
q
b
(
t∗2wn

)
.

(4.21)

Since supt≥0J(tu0) = α(R
N) and supt≥0J

∞(tw) = α∞(RN), using the inequality

|c1 − c2|q > cq1 + c
q

2 −K
(
c
q−1
1 c2 + c1c

q−1
2

)
, (4.22)

for any c1, c2 > 0, and some positive constant K, then

sup
1/p≤t∗1,t∗2≤p

J
(
t∗1u0 − t∗2wn

) ≤ α
(
R
N
)
+ α∞

(
R
N
)
− 1
pqq

∫

RN

(Q(z) −Q∞)w(z − zn)qdz

+K′
[∫

RN

(
u
q−1
0 wn +w

q−1
n u0

)
dz

]
.

(4.23)

(i) Since Q(z) ≥ Q∞ + C exp(−δ|z|) for some constants C > 0 and 0 < δ < θ, by
Lemma 4.6, we have that there exists an n1 ≥ n0 such that for n ≥ n1

∫

RN

(Q(z) −Q∞)w(z − zn)qdz ≥ C′ exp
(−min

{
δ, q(θ + ε)

}|z|) ≥ C′ exp(−δn). (4.24)

(ii) Applying Lemma 4.6, there exists an n2 ≥ n1 such that for n ≥ n2
∫

RN

u
q−1
0 wndz ≤ C′

1

∫

RN

exp
(−(q − 1

)
(θ − ε)|z|) exp(−(θ − ε)|z − zn|)dz ≤ C′′

1 exp(−(θ − ε)n).
(4.25)
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Similarly, we also obtain that there exists an n3 ≥ n2 such that for n ≥ n3
∫

RN

w
q−1
n u0dz ≤ C′′′

1 exp(−(θ − ε)n). (4.26)

By (i) and (ii), choosing 0 < ε < θ − δ,we can find an n∗0 ≥ n3 ≥ n0 such that for n ≥ n∗0

sup
1/p≤t1,t2≤p

J
(
t∗1u0 − t∗2wn

)
< α

(
R
N
)
+ α∞

(
R
N
)
. (4.27)

Theorem 4.9. Assume that Q is a positive continuous function in R
N and satisfies (Q1) and (Q2),

then (1.1) has a positive solution and a nodal solution in R
N.

Proof. By Lemmas 4.2, 4.4, 4.5, and 4.8 and Theorem 3.4, we obtain the proof.
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