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The Euler-Maclaurin formula is a very useful tool in calculus and numerical analysis. This paper
is devoted to asymptotic expansion of the intermediate points in the remainder of the generalized
Euler-Maclaurin formula when the length of the integral interval tends to be zero. In the special
case we also obtain asymptotic behavior of the intermediate point in the remainder of the
composite trapezoidal rule.

1. Introduction

It is well known that the Euler-Maclaurin formula is a formula used in the numerical
evaluation of integral, which states that the value of an integral is equal to the sum of
the value given by the trapezoidal rule and a series of terms involving the odd-numbered
derivatives of the function at the end points of the integral interval. Specifically, for the
function f ∈ C2m+2[a, b] the Euler-Maclaurin formula can be expressed as follows

∫b
a

f(x)dx =
1
2
(
f(a) + f(b)

) − m∑
i=1

B̂2i(b − a)2i
(2i)!

(
f (2i−1)(b) − f (2i−1)(a)

)
+ R2m+2, (1.1)

where

R2m+2 = − B̂2m+2f (2m+2)(ξ)
(2m + 2)!

(b − a)2m+3, (1.2)
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and ξ is some point between a and b. The constants B̂i are known as Bernoulli numbers, which
are defined by the equation

x

ex − 1
=

∞∑
k=0

B̂k
k!
xk. (1.3)

The first few of the Bernoulli numbers are B̂0 = 1, B̂1 = −1/2, B̂2 = 1/6, and B̂2i−1 = 0 for all
i ≥ 2.

The Euler-Maclaurin formula was discovered independently by Leonhard Euler and
Colin Maclaurin, and it has wide applications in calculus and numerical analysis. For
example, the Euler-Maclaurin formula is often used to evaluate finite sums and infinite series
when a and b are integers. Conversely, it is also used to approximate integrals by finite
sums. Therefore, the Euler-Maclaurin formula provides the correspondence between sums
and integrals. Besides, the Euler-Maclaurin formula may be used to derive a wide range
of quadrature formulas including the Newton-Cotes formulas, and used for detailed error
analysis in numerical quadrature.

The Euler-Maclaurin formula has many generalizations and extensions [1–6]. A direct
generalization of the Euler-Maclaurin formula in the interval [a, a + h] can be described as

∫a+h
a

f(x)dx =
h

2n
(
f(a) + f(a + h)

)
+
h

n

n−1∑
k=1

f

(
a +

k

n
h

)

−
m∑
i=1

B̂2i

(2i)!

(
h

n

)2i(
f (2i−1)(a + h) − f (2i−1)(a)

)
− nB̂2m+2f (2m+2)(ξ)

(2m + 2)!

(
h

n

)2m+3

,

(1.4)

where ξ ∈ (a, a + h), n is a positive integer and m is a nonnegative integer. Obviously, when
n = 1, (1.4) reduces to (1.1). We also conclude that this equation has algebraic accuracy of
2m + 1 which is the same as (1.1).

Recently, some interests have been focused on the study of the mean value theorem for
integrals and differentiations [7–14]. The aim of the present paper is to deal with asymptotic
expansions of the intermediate points in the generalized Euler-Maclaurin formula when the
length of the integral interval tends to be zero. The rest of this paper is organized as follows. In
the second section, the Bell polynomials as a standard mathematical are introduced in detail.
In the third section, we give asymptotic behavior of the intermediate points in the remainder
of the generalized Euler-Maclaurin formula (1.4). As a special case, asymptotic behavior of
the intermediate points in remainder of the composite trapezoidal formula is also presented.

2. Bell Polynomials

The Bell polynomials [15] extensively studied by Bell arise in combinatorial analysis,
and they have been applied in many different frameworks. The exponential partial Bell
polynomials are the polynomials

Bn,k = Bn,k(x1, x2, . . . , xn−k+1) (2.1)
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in an infinite number of variables x1, x2, . . ., defined by the series expansion

1
k!

(∑
m≥1

xm
tm

m!

)k

=
∑
n≥k

Bn,k
tn

n!
, k = 0, 1, 2, . . . . (2.2)

Their explicit expressions are given by the formula

Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

a1!(1!)a1a2!(2!)a2 · · ·
x1

a1x2
a2 . . . , (2.3)

where the summation takes place over all nonnegative integers a1, a2, . . ., such that a1 + 2a2 +
· · · = n and a1 + a2 + · · · = k. For example, we have

B0,0 = 1, B1,1 = x1, B2,1 = x2, B2,2 = x12, B3,1 = x3,

B3,2 = 3x1x2, B3,3 = x13, . . . , Bn,1 = xn, Bn,n = x1n.
(2.4)

For more important properties the reader is referred to [15].

3. Asymptotic Expansions of Intermediate Points

In this section, we will consider asymptotic behavior of the point ξ in (1.4). Before the main
result is given we first present an essential lemma.

Lemma 3.1 (see [15]). The following identity:

n∑
k=1

kr =
1

r + 1

r∑
k=0

B̂k

(
r + 1

k

)
(n + 1)r+1−k, (3.1)

holds, where r is a positive integer.

This lemma gives relations between the sum of powers of the first n integers and the
Bernoulli numbers. Now, we turn to the asymptotic behavior of the point ξ in (1.4). Namely,
the following theorem is our main result.

Theorem 3.2. Let p, q be integers and p ≥ 1, q ≥ 0. Assume that f is a function admitting in a
neighborhood of the point a of � a derivative of order 2m+2+p+q such that f (2m+2+p+q) is continuous
at a. If f (2m+3)(a) = · · · = f (2m+1+p)(a) = 0, and f (2m+2+p)(a)/= 0, then

ξ = a +
q+1∑
i=1

cih
i + o

(
hq+1
)

(h −→ 0). (3.2)
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The coefficients ci are given by the recurrence formula

c1 =

⎛
⎝ (2m + 2)!p!

(2m + 3 + p)!B2m+2

p∑
j=0

(
2m + 3 + p

2m + 2 + j

)
B̂2m+2+j

nj

⎞
⎠

1/p

,

ci+1 = Ri(c1, . . . , ci)
(
i = 1, . . . , q

)
(3.3)

with

Ri(c1, . . . , ci)

=
1

t0
1/p

⎡
⎣s01/p

i!

i∑
k=0

(
1/p

k

)
k!Bi,k

(
φ1, φ2, . . . , φi+1−k

)

− t0
1/p

(i + 1)!

i+1∑
k=2

kBi+1,k(1!c1, 2!c2, . . . , (i + 2 − k)!ci+2−k)
k−1∑
j=0

⎛
⎝ 1
p
j

⎞
⎠j!Bk−1,j

(
ψ1, ψ2, . . . , ψk−j

)
⎤
⎦,

(3.4)

where

sk =
f (2m+2+p+k)(a)(
2m + 3 + p + k

)
!

p+k∑
j=0

(
2m + 3 + p + k

2m + 2 + j

)
B̂2m+2+j

nj
, tk =

B̂2m+2

(2m + 2)!
f (2m+2+p+k)(a)(

p + k
)
!

,

φk =
sk
s0
, ψk =

tk
t0
, k = 0, 1, . . . , q.

(3.5)

Proof. For convenience, we let

A =
∫a+h
a

f(x)dx, C =
nB̂2m+2f (2m+2)(ξ)

(2m + 2)!

(
h

n

)2m+3

,

B =
h

2n
(
f(a) + f(a + h)

)
+
h

n

n−1∑
k=1

f

(
a +

k

n
h

)
−

m∑
i=1

B̂2i

(2i)!

(
h

n

)2i(
f (2i−1)(a + h) − f (2i−1)(a)

)
.

(3.6)

According to (1.4), we have A = B − C. We first consider A. Using the Taylor expansion, we
have

A =
2m+2+p+q∑

k=0

f (k)(a)
(k + 1)!

hk+1 + o
(
h2m+3+p+q

)
, h −→ 0. (3.7)
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When h → 0, using the Taylor expansion again we have

B = hf(a) +
1
2n

2m+2+p+q∑
k=1

f (k)(a)
k!

hk+1 +
h

n

n−1∑
k=1

2m+2+p+q∑
j=1

f (j)(a)
j!

(
k

n
h

)j

−
m∑
k=1

B̂2k

(2k)!

(
h

n

)2k 2m+2+p+q∑
j=2k

f (j)(a)(
j + 1 − 2k

)
!
hj+1 + o

(
h2m+3+p+q

)

= hf(a) +
f ′(a)
2!

h2 +
1
2n

2m+2+p+q∑
k=2

f (k)(a)
k!

hk+1 +
2m+2+p+q∑

k=2

f (k)(a)
k!

(
h

n

)k+1 n−1∑
j=1

jk

−
2m+1∑
k=2

f (k)(a)
(k + 1)!

hk+1
�k/2�∑
j=1

(
k + 1

2j

)
B̂2j

n2j
−

2m+2+p+q∑
k=2m+2

f (k)(a)
(k + 1)!

hk+1
m∑
j=1

(
k + 1

2j

)
B̂2j

n2j
+ o
(
h2m+3+p+q

)
,

(3.8)

where �k/2� denotes the largest integer that is not greater than k/2. Since B̂0 = 1, B̂1 = −1/2,
and B̂2i−1 = 0 for i ≥ 2, by Lemma 3.1 there holds

B = hf(a) +
f ′(a)
2!

h2 +
1
2n

2m+2+p+q∑
k=2

f (k)(a)
k!

hk+1 +
2m+2+p+q∑

k=2

f (k)(a)
(k + 1)!

hk+1
k∑
j=0

(
k + 1

j

)
B̂j

nj

−
2m+1∑
k=2

f (k)(a)
(k + 1)!

hk+1
�k/2�∑
j=1

(
k + 1

2j

)
B̂2j

n2j
−

2m+2+p+q∑
k=2m+2

f (k)(a)
(k + 1)!

hk+1
m∑
j=1

(
k + 1

2j

)
B̂2j

n2j
+ o
(
h2m+3+p+q

)

=
2m+1∑
k=0

f (k)(a)
(k + 1)!

hk+1 +
2m+2+p+q∑
k=2m+2

f (k)(a)
(k + 1)!

hk+1

⎛
⎝1 +

k∑
j=2m+2

(
k + 1

j

)
B̂j

nj

⎞
⎠ + o

(
h2m+3+p+q

)
,

(3.9)

as h → 0. Because f (2m+3)(a) = · · · = f (2m+1+p)(a) = 0, we obtain

B −A =
B̂2m+2f (2m+2)(a)
(2m + 2)!n2m+2

h2m+3 +
2m+2+p+q∑
k=2m+2+p

f (k)(a)
(k + 1)!

hk+1
k∑

j=2m+2

(
k + 1

j

)
B̂j

nj
+ o
(
h2m+3+p+q

)
,

(3.10)

as h → 0. By the Taylor expansion, it follows that

C =
B̂2m+2h2m+3

(2m + 2)!n2m+2

⎡
⎣f (2m+2)(a) +

p+q∑
k=p

f (2m+2+k)(a)
k!

(ξ − a)k + o(hp+q)
⎤
⎦, h −→ 0. (3.11)
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Since B −A = C and 0 < ξ − a < h, we have

(
ξ − a
h

)p B̂2m+2

(2m + 2)!

q∑
k=0

f (2m+2+p+k)(a)(
p + k

)
!

(ξ − a)k

=
q∑
k=0

f (2m+2+p+k)(a)(
2m + 3 + p + k

)
!
hk

p+k∑
j=0

(
2m + 3 + p + k

2m + 2 + j

)
B̂2m+2+j

nj
+ o(hq), h −→ 0.

(3.12)

Let

sk =
f (2m+2+p+k)(a)(
2m + 3 + p + k

)
!

p+k∑
j=0

(
2m + 3 + p + k

2m + 2 + j

)
B̂2m+2+j

nj
, tk =

B̂2m+2

(2m + 2)!
f (2m+2+p+k)(a)(

p + k
)
!

,

φk =
sk
s0
, ψk =

tk
t0
, k = 0, 1, . . . , q.

(3.13)

Then (3.12) can be rewritten as

(
ξ − a
h

)p
t0

q∑
k=0

ψk(ξ − a)k = s0
q∑
k=0

φkh
k + o(hq), h −→ 0. (3.14)

The rest proof is similar to that in [7, 8], and we omit it.

Puttingm = 0 in (1.4)we derive the composite trapezoidal rule as follows

∫a+h
a

f(x)dx =
h

2n
(
f(a) + f(a + h)

)
+
h

n

n−1∑
k=1

f

(
a +

k

n
h

)
− f ′′(ξ)

12n2
h3, (3.15)

where ξ ∈ (a, a + h). When h → 0, in view of Theorem 3.2 we obtain asymptotic behavior of
the intermediate point ξ in above composite trapezoidal rule.

Corollary 3.3. Let p, q be integers and p ≥ 1, q ≥ 0. Assume that f is a function admitting in a
neighborhood of the point a of � a derivative of order p + q + 2 and that f (p+q+2) is continuous at a. If
f ′′′(a) = · · · = f (p+1)(a) = 0, and f (p+2)(a)/= 0, then

ξ = a +
q+1∑
i=1

cih
i + o

(
hq+1
)

(h −→ 0). (3.16)
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The coefficients ci are given by the recurrence formula

c1 =

⎛
⎝1

3
p!

(p + 3)!

p∑
j=0

(
p + 3

j + 2

)
B̂j+2

nj

⎞
⎠

1/p

,

ci+1 = Ri(c1, . . . , ci)
(
i = 1, . . . , q

)
(3.17)

with

Ri(c1, . . . , ci)

=
1

t0
1/p

⎡
⎣s01/p

i!

i∑
k=0

(
1/p

k

)
k!Bi,k

(
φ1, φ2, . . . , φi+1−k

) − t0
1/p

(i + 1)!

×
i+1∑
k=2

kBi+1,k(1!c1, 2!c2, . . . , (i + 2 − k)!ci+2−k)
k−1∑
j=0

(
1/p

j

)
j!Bk−1,j

(
ψ1, ψ2, . . . , ψk−j

)
⎤
⎦,
(3.18)

where

sk =
f (p+k+2)(a)(
p + k + 3

)
!

p+k∑
j=0

(
p + k + 3

j + 2

)
B̂j+2

nj
, tk =

1
12
f (p+k+2)(a)(
p + k

)
!
,

φk =
sk
s0
, ψk =

tk
t0
, k = 0, 1, . . . , q.

(3.19)
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