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Using the theory of uniform global attractors of multivalued semiprocesses, we prove the existence
of a uniform global attractor for a nonautonomous semilinear degenerate parabolic equation in
which the conditions imposed on the nonlinearity provide the global existence of a weak solution,
but not uniqueness. The Kneser property of solutions is also studied, and as a result we obtain the
connectedness of the uniform global attractor.

1. Introduction

The understanding of the asymptotic behavior of dynamical systems is one of the most
important problems of modern mathematical physics. One way to attack the problem for
a dissipative dynamical system is to consider its global attractor. The existence of the global
attractor has been derived for a large class of PDEs (see [1, 2] and references therein), for
both autonomous and nonautonomous equations. However, these researches may not be
applied to a wide class of problems, in which solutions may not be unique. Good examples of
such systems are differential inclusions, variational inequalities, control infinite-dimensional
systems, and also some partial differential equations for which solutions may not be known
to be unique as, for example, some certain semilinear wave equations with high-power
nonlinearities, the incompressible Navier-Stokes equation in three-space dimension, the
Ginzburg-Landau equation, and so forth. For the qualitative analysis of the abovementioned
systems from the point of view of the theory of dynamical systems, it is necessary to develop
a corresponding theory for multivalued semigroups.
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In the last years, there have been some theories for which one can treat multivalued
semiflows and their asymptotic behavior, including generalized semiflows theory of Ball
[3], theory of trajectory attractors of Chepyzhov and Vishik [4], and theories of multivalued
semiflows and semiprocesses of Melnik and Valero [5, 6]. Thanks to these theories, several
results concerning attractors in the case of equations without uniqueness have been obtained
recently for differential inclusion [5, 6], parabolic equations [7–9], the phase-field equation
[10], the wave equation [11], the three-dimensional Navier-Stokes equation [3, 12], and so
forth. On the other hand, when a problem does not possess the property of uniqueness, we
have a set of solutions corresponding to each initial datum. We can speak then about a set
of values attained by the solutions for every fixed moment of time. It is interesting to study
the topological properties of such set and, in particular, its connectedness. This property is
known as the Kneser property in the literature. The Kneser property has been studied for
some parabolic equations [9, 13–15], semilinear wave equations [11], and so forth. By results
in [5, 6], the Kneser property implies the connectedness of the global attractor. Although the
existence of global attractor and the Kneser property have been derived for some classes of
partial differential equations without uniqueness, to the best of our knowledge, little seems
to be known for nonautonomous degenerate equations.

In this paper we study the following nonautonomous semilinear degenerate parabolic
equation with variable, nonnegative coefficients, defined on a bounded domainΩ ⊂ R

N,N ≥
2:

∂u

∂t
− div

(
ρ(x)∇u) + f(x, u) = g(x, t), x ∈ Ω, t > τ,

u|t=τ = uτ(x), x ∈ Ω,

u|∂Ω = 0,

(1.1)

where uτ ∈ L2(Ω) is given, and the coefficient ρ, the nonlinearity f , and the external force g
satisfy the following conditions.

(H1) The function ρ : Ω → R satisfies ρ ∈ L1(Ω) and, for some α ∈ (0, 2), limx→ z inf |x −
z|−αρ(x) > 0 for every z ∈ Ω.

(H2) f : Ω×R → R is a Caratheodory function, that is, the function f(·, u) is measurable
and the function f(x, ·) is continuous, and satisfies

∣∣f(x, u)
∣∣ ≤ C1|u|p−1 + h1(x), for some p ≥ 2, (1.2)

uf(x, u) ≥ C2|u|p − h2(x), (1.3)

where C1, C2 are positive constants; h1, h2 are nonnegative functions such that
h1 ∈ L∞(Ω) and h2 ∈ L1(Ω) (see Remark 4.2 on a comment about conditions of
h1).

(H3) g ∈ L2
b(R

+, L2(Ω)), where L2
b(R

+, L2(Ω)) is the set of all translation-bounded
functions (see Section 2.2 for its definition).
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The degeneracy of problem (1.1) is considered in the sense that the measurable,
nonnegative diffusion coefficient ρ(x) is allowed to have at most a finite number of (essential)
zeroes at some points. The physical motivation of the assumption (H1) is related to the
modelling of reaction diffusion processes in composite materials, occupying a bounded
domain Ω, in which at some points they behave as perfect insulator. Following [16, page
79], when at some points the medium is perfectly insulating, it is natural to assume that
ρ(x) vanishes at these points. Note that, in various diffusion processes, the equation involves
diffusion of the type ρ(x) ∼ |x|α, α ∈ (0, 2).

In the autonomous case, which is the case g independent of time t, the existence
and long-time behavior of solutions to problem (1.1) have been studied in [17–20]. In
this paper we continue studying the long-time behavior of solutions to problem (1.1) by
allowing the external force g to be dependent on time t. Moreover, the conditions imposed
on the nonlinearity f provide global existence of a weak solution to problem (1.1), but not
uniqueness. Let Dτ,σ(uτ) be the set of all global weak solutions of problem (1.1) with the
external force gσ instead of g and initial datum u(τ) = uτ . For each σ ∈ Σ = Hw(g), the
closure of the set {g(· + h) | h ∈ R

+} in L2
loc(R

+, L2(Ω)) with the weak topology, we define the
multivalued semiprocessUσ : R

+
d
× L2(Ω) 
→ 2L

2(Ω) as follows:

Uσ(t, τ, uτ) = {u(t) : u(·) ∈ Dτ,σ(uτ)}. (1.4)

We prove thatUσ is a strict multivalued semiprocess and then use the theory of multivalued
semiprocesses of Melnik and Valero [6] to prove the existence of a uniform global compact
attractor for the family of multivalued semiprocesses {Uσ}σ∈Σ. Finally, following the general
lines of the approach in [9, 11, 14, 15], we prove that the Kneser property holds for the set
of all weak solutions, that is, the set of values attained by the solutions at every moment of
time is connected. Thanks to the Kneser property, the uniform global attractor derived above
is connected in L2(Ω). We summarize our main results in the following theorem.

Theorem 1.1. Under conditions (H1)–(H3), problem (1.1) defines a family of strict multivalued
semiprocesses {Uσ}σ∈Σ, which possesses a uniform global compact connected attractorA in L2(Ω).

It is worth noticing that under some additional conditions on f , for example, f ′
u(x, u) ≥

−C3 for all x ∈ Ω, u ∈ R, or a weaker assumption

(
f(x, u) − f(x, v))(u − v) � −C|u − v|2 ∀x ∈ Ω, u, v ∈ R, (1.5)

one can prove that the weak solution of problem (1.1) is unique. Then the multivalued
semiprocess Uσ turns to be a single-valued one and the uniform compact global attractor A
derived in Theorem 1.1 is exactly the usual uniform attractor for the family of single-valued
semiprocesses [1].

The rest of the paper is organized as follows. In Section 2, for convenience of readers,
we recall some results on function spaces and uniform global attractors for multivalued
semiprocesses. Section 3 is devoted to prove the global existence of a weak solution and the
existence of a uniform global attractor of the family of multivalued semiprocesses associated
to problem (1.1). In the last section, we prove the Kneser property for the solutions. As a
result, we obtain the connectedness of the uniform global attractor.
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2. Preliminaries

2.1. Function Space and Operator

We recall some basic results on the function space which we will use. Let N ≥ 2, α ∈ (0, 2),
and

2∗α =

⎧
⎪⎪⎨

⎪⎪⎩

4
α
∈ (2,∞) if N = 2,

2N
N − 2 + α

∈
(
2,

2N
N − 2

)
if N ≥ 3.

(2.1)

The exponent 2∗α has the role of the critical exponent in the classical Sobolev embedding.
The natural energy space for problem (1.1) involves the space D1

0(Ω, ρ), defined as the
closure of C∞

0 (Ω)with respect to the norm

‖u‖D1
0(Ω,ρ)

:=
(∫

Ω
ρ(x)|∇u|2dx

)1/2

. (2.2)

The space D1
0(Ω, ρ) is a Hilbert space with respect to the scalar product

(u, v) :=
∫

Ω
ρ(x)∇u∇v dx. (2.3)

The following lemma comes from [21, Propositions 3.3–3.5].

Lemma 2.1. Assume that Ω is a bounded domain in R
N , N ≥ 2, and ρ satisfies (H1). Then the

following embeddings hold:

(i) D1
0(Ω, ρ) ↪→ L2∗α(Ω) continuously,

(ii) D1
0(Ω, ρ) ↪→ Lp(Ω) compactly if p ∈ [1, 2∗α).

It is known (see [19]) that there exists a complete orthonormal system of eigenvectors
(ej , λj) of the operator A = div(ρ(x)∇) such that

(
ej , ek

)
= δjk, −div

(
ρ(x)∇ej

)
= λjej , j, k = 1, 2, . . . ,

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . , λj −→ +∞, as j −→ ∞.
(2.4)

2.2. The Translation-Bounded Functions

Definition 2.2. Let E be a reflexive Banach space. A function ϕ ∈ L2
loc(R

+,E) is said to be
translation-bounded if

∥∥ϕ
∥∥2
L2
b
=
∥∥ϕ
∥∥
L2
b
(R+,E) = sup

t∈R+

∫ t+1

t

∥∥ϕ
∥∥2
E ds <∞. (2.5)
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We will denote by L2
b(R

+,E) the set of all translation-bounded functions in L2
loc(R

+,E).
Let g ∈ L2

b
(R+,E) and Hw(g) be the closure of the set {g(· + h) | h ∈ R

+} in L2
loc(R

+,E) with
the weak topology. The following results are well-known.

Lemma 2.3 (see [1, Chapter 5, Proposition 4.2]). (1) For all σ ∈ Hw(g), ‖σ‖2L2
b
≤ ‖g‖2

L2
b
.

(2) The translation group {T(h)} is weakly continuous on Hw(g).
(3) T(h)Hw(g) ⊂ Hw(g) for h ≥ 0.
(4) Hw(g) is weakly compact.

2.3. Uniform Attractors of Multivalued Semiprocesses

Denote R
+
d = {(t, τ) : 0 ≤ τ ≤ t}. Let X be a complete metric space, let P(X) and B(X) be

the set of all nonempty subsets and the set of all nonempty bounded subsets of the space X,
respectively, and let Σ be a compact metric space.

Definition 2.4. The mapU : R
+
d ×X → P(X) is called a multivalued semiprocess (MSP) if

(1) U(τ, τ, ·) = Id (the identity map)

(2) U(t, τ, x) ⊂ U(t, s,U(s, τ, x)), for all x ∈ X, t, s, τ ∈ R
+, τ ≤ s ≤ t.

It is called a strict multivalued semiprocess ifU(t, τ, x) = U(t, s,U(s, τ, x)).

We consider the family of MSP {Uσ}σ∈Σ and define the map UΣ : R
+
d × X → P(X) by

UΣ(t, τ, x) =
⋃
σ∈ΣUσ(t, τ, x), which is also a multivalued semiprocess. For B ⊂ X, denote

γτT,σ(B) = ∪t≥TUσ(t, τ, B). (2.6)

Definition 2.5. The family of MSP {Uσ}σ∈Σ is called uniformly asymptoticall upper
semicompact if for any B ∈ B(X) and τ ∈ R+ such that, for some T = T(B, τ), γτT,Σ(B) =⋃
σ∈Σ γ

τ
T,σ(B) ∈ B(X), any sequence {ξn}, ξn ∈ Uσn(tn, τ, B), σn ∈ Σ, tn → +∞, is precompact in

X.

Definition 2.6. The family of MSP {Uσ}σ∈Σ is called pointwise dissipative if there exists B0 ∈
B(X) such that, for all x ∈ X,

dist(UΣ(t, 0, x), B0) −→ 0, as t −→ ∞. (2.7)

Definition 2.7. Let X and Y be two metric spaces. The multivalued map F : X → Y is said to
be w-upper semicontinuous (w-u.s.c.) at x0 if for any ε > 0 there exists δ > 0 such that

F(x) ⊂ Oε(F(x0)), ∀x ∈ Oδ(x0). (2.8)

The map F is w-u.s.c. if it is w-u.s.c. at any x ∈ D(F) = {y ∈ X : F(x)/= ∅}.
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Definition 2.8. The set A is called a uniform global attractor for the family of multivalued
semiprocesses UΣ if the following are satisfied.

(1) It is negatively semiinvariant, that is,A ⊂ UΣ(t, 0,A).

(2) It is uniformly attracting, that is, dist(UΣ(t, τ, B),A) → 0, as t → ∞, for all B ∈
B(X) and τ ≥ 0.

(3) For any closed uniformly attracting set Y , we have A ⊂ Y (minimality).

The following result comes from [6, Theorem 2] and [10, Theorem 3.12].

Theorem 2.9. Let F(R+, Z) be a space of functions with values in Z, where Z is a topological space,
and let Σ ⊂ F(R+, Z) be a compact metric space. Suppose that the family of multivalued semiprocesses
{Uσ}σ∈Σ satisfies the following conditions.

(1) On Σ is defined the continuous shift operator T(s)σ(t) = σ(t + s), s ∈ R
+ such that

T(h)Σ ⊂ Σ, and for any (t, τ) ∈ R
+
d
, σ ∈ Σ, s ∈ R

+, x ∈ X, one has

Uσ(t + s, τ + s, x) = UT(s)σ(t, τ, x). (2.9)

(2) Uσ is uniformly asymtopically upper semicompact.
(3) Uσ is pointwise dissipative.
(4) The map (x, σ) 
→ Uσ(t, 0, x) has closed values and is w-upper semicontinuous.

Then the family of multivalued semiprocesses {Uσ}σ∈Σ has a uniform global compact attractor
A. Moreover, if Σ is a connected space, the map (x, σ) 
→ Uσ(t, 0, x) is upper semicontinuous with
connected values and the global attractor A is contained in a connected bounded subset of X, then A
is a connected set.

3. Existence of Uniform Global Attractors

We denote

A = −div
(
ρ(x)∇),

V = L2
(
τ, T ;D1

0
(
Ω, ρ
)) ∩ Lp(τ, T ;Lp(Ω)),

V ∗ = L2
(
τ, T ;D−1(Ω, ρ

))
+ Lp

′(
τ, T ;Lp

′
(Ω)
)
,

(3.1)

where p′ is the conjugate index of p. In what follows, we assume that uτ ∈ L2(Ω) is given.

Definition 3.1. A function u(x, t) is called a weak solution of (1.1) on (τ, T) if and only if

u ∈ V, ∂u

∂t
∈ V ∗,

u|t=τ = uτ , a.e. in Ω,
∫T

τ

〈
ut, ϕ

〉
+
∫T

τ

∫

Ω
ρ∇u∇ϕ +

∫T

τ

〈
f(x, u), ϕ

〉
=
∫T

τ

(
g(t), ϕ

)
,

(3.2)

for all test functions ϕ ∈ V .



International Journal of Differential Equations 7

It follows from Theorem 1.8 in [1, page 33] that if u ∈ V and du/dt ∈ V ∗ then u ∈
C([τ, T];L2(Ω)). This makes the initial condition in problem (1.1)meaningful.

Proposition 3.2. For any τ ∈ R
+, T > τ, and uτ ∈ L2(Ω) given, problem (1.1) has at least one weak

solution on (τ, T).

Proof. The proof is classical, but we give some a priori estimates used later.
Consider the approximating solution un(t) in the form

un(t) =
n∑

k=1

unk(t)ek, (3.3)

where {ej}∞j=1 are the eigenvectors of the operator A = −div(ρ(x)∇). We get un from solving
the problem

〈
dun
dt

, ek

〉
+ 〈Aun, ek〉 +

〈
f(x, un), ek

〉
=
(
g, ek

)
,

(un(τ), ek) = (uτ , ek), k = 1, . . . , n.

(3.4)

Using the Peano theorem, we get the local existence of un. We have

1
2
d

dt
‖un‖2L2(Ω) + ‖un‖2D1

0(Ω,ρ)
+
∫

Ω
f(x, un)un =

∫

Ω
g(t)un. (3.5)

Using hypothesis (1.3) and the Cauchy inequality, we get

1
2
d

dt
‖un‖2L2(Ω) + ‖un‖2D1

0(Ω,ρ)
+ C2‖un‖pLp(Ω) − ‖h2‖L1(Ω) ≤

1
2λ1

∥∥g(t)
∥∥2
L2(Ω) +

λ1
2
‖un‖2L2(Ω), (3.6)

where λ1 > 0 is the first eigenvalue of the operator A in Ω with the homogeneous Dirichlet
condition (noting that ‖u‖2D1

0(Ω,ρ)
≥ λ1‖u‖2L2(Ω)). Hence

d

dt
‖un‖2L2(Ω) + ‖un‖2D1

0(Ω,ρ)
+ 2C2‖un‖pLp(Ω) ≤

1
λ1

∥∥g(t)
∥∥2
L2(Ω) + 2‖h2‖L1(Ω). (3.7)

We show that the local solution un can be extended to the interval [τ,∞). Indeed, from (3.7)
we have

d

dt
‖un‖2L2(Ω) + λ1‖un‖2L2(Ω) ≤ 2‖h2‖L1(Ω) +

1
λ1

∥∥g(t)
∥∥2
L2(Ω). (3.8)
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By the Gronwall inequality, we obtain

‖un(t)‖2L2(Ω)

� ‖un(τ)‖2L2(Ω)e
−λ1(t−τ) +

2
λ1

(
1 − e−λ1(t−τ)

)
‖h2‖L1(Ω) +

1
λ1

∫ t

τ

e−λ1(t−s)
∥
∥g(s)

∥
∥2
L2(Ω)ds

� ‖un(τ)‖2L2(Ω)e
−λ1(t−τ) +

2
λ1

(
1 − e−λ1(t−τ)

)
‖h2‖L1(Ω) +

1
λ1
(
1 − e−λ1)

∥
∥g
∥
∥2
L2
b
,

(3.9)

where we have used the fact that

∫ t

τ

e−λ1(t−s)
∥
∥g(s)

∥
∥2
L2(Ω)ds �

∫ t

t−1
e−λ1(t−s)

∥
∥g(s)

∥
∥2
L2(Ω)ds +

∫ t−1

t−2
e−λ1(t−s)

∥
∥g(s)

∥
∥2
L2(Ω)ds + · · ·

�
∫ t

t−1

∥∥g(s)
∥∥2
L2(Ω)ds + e

−λ1
∫ t−1

t−2

∥∥g(s)
∥∥2
L2(Ω)ds + · · ·

�
(
1 + e−λ1 + e−2λ1 + · · ·

)∥∥g
∥∥2
L2
b
=

1
1 − e−λ1

∥∥g
∥∥2
L2
b
.

(3.10)

We now establish some a priori estimates for un. Integrating (3.7) on [τ, t], τ < t ≤ T,we have

‖un(t)‖2L2(Ω) +
∫ t

τ

‖un(s)‖2D1
0(Ω,ρ)

ds + 2C2

∫ t

τ

‖un(s)‖pLp(Ω)ds

≤ ‖un(τ)‖2L2(Ω) +
1
λ1

∫ t

τ

∥∥g(s)
∥∥2
L2(Ω)ds + 2(t − τ)‖h2‖L1(Ω).

(3.11)

The last inequality implies that

{un} is bounded in L∞
(
τ, T ;L2(Ω)

)
,

{un} is bounded in L2
(
τ, T ;D1

0
(
Ω, ρ
))
,

{un} is bounded in Lp(τ, T ;Lp(Ω)).

(3.12)

Using hypothesis (1.2), one can prove that {f(x, un)} is bounded in Lp
′
(τ, T ;Lp

′
(Ω)). By

rewriting the equation as

dun
dt

= −Aun − f(x, un) + g, (3.13)
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we see that {dun/dt} is bounded in V ∗ and, therefore, in Lp
′
(τ, T ;D−1(Ω, ρ) + Lp

′
(Ω)).

Therefore, we have

un ⇀ u in L2
(
τ, T ;D1

0
(
Ω, ρ
))
,

dun
dt

⇀
du

dt
in V ∗,

f(x, un)⇀ η in Lp
′(
τ, T ;Lp

′
(Ω)
)
,

Aun ⇀ Au in L2
(
τ, T ;D−1(Ω, ρ

))
,

(3.14)

up to a subsequence. Hence by standard arguments [22, Chapter 1], one can show that u is a
weak solution of problem (1.1).

Denote by Dτ,σ(uτ) the set of all global weak solutions (defined for t ≥ τ) of problem
(1.1) with the external force gσ instead of g and the initial datum u(τ) = uτ . We put Σ =
Hω(g), so it is clear that T(s)Σ ⊂ Σ, where T(s)σ = σ(· + s) = g(· + s), t ≥ 0, and that this map
is continuous. For each σ = gσ ∈ Σ, we define the map.

Uσ(t, τ, uτ) = {u(t) : u(·) ∈ Dτ,σ(uτ)}. (3.15)

Lemma 3.3. Uσ(t, τ, uτ) is a strict multivalued semiprocess. Moreover,

Uσ(t + s, τ + s, uτ) = UT(s)σ(t, τ, uτ) ∀uτ ∈ L2(Ω), s ≥ 0, t ≥ τ ≥ 0. (3.16)

Proof. Given that z ∈ Uσ(t, τ, uτ), we have to prove that z ∈ Uσ(t, s,Uσ(s, τ, uτ)). Take y(·) ∈
Dτ,σ(uτ) such that y(τ) = uτ and y(t) = z. Clearly, y(s) ∈ Uσ(s, τ, uτ). Then if we define
z(t) = y(t) for t ≥ s, then we have z(s) = y(s) and obviously z(·) ∈ Ds,σ(y(s)). Consequently,
z(t) ∈ Uσ(t, s,Uσ(s, τ, uτ)).

Let now z ∈ Uσ(t, s,Uσ(s, τ, uτ)). Then there exist u ∈ Dτ,σ(uτ) and v ∈ Ds,σ(u(s))
such that z = v(t). Define the function

y(r) =

⎧
⎨

⎩

u(r) if r ∈ [τ, s],

v(r − s) if r ∈ [s, t + s].
(3.17)

It is easy to see that y ∈ Dτ,σ(uτ), so that z = y(t + s) ∈ Uσ(t + s, τ, uτ).
Let z ∈ Uσ(t+ s, τ + s, uτ). Then there exists u(·) ∈ Dτ+s,σ(uτ) such that z = u(t+ s) and

v(·) = u(· + s) ∈ Dτ,T(s)σ(uτ), so that z = v(t) ∈ UT(s)σ(t, τ, uτ). Conversely, if z ∈ Uτ,T(s)σ(uτ),
then there is z ∈ Dτ,T(s)σ(uτ) such that z = u(t) and v(·) = u(−s + ·) ∈ Dτ+s,σ(uτ) so that
z = v(t + s) ∈ Uσ(t + s, τ + s, uτ).

Lemma 3.4. Let conditions (H1)–(H3) hold and let {un} ⊂ Dτ,σn(un(τ)) be an arbitrary sequence of
solutions of (1.1) with initial data un(τ) → η weakly in L2(Ω) and external forces gσn → gσ in Σ.
Then for any T > τ and tn → t0, tn, t0 ∈ (τ, T], there exists a subsequence such that un(tn) → u(t0)
strongly in L2(Ω), where u(·) ∈ Dτ,σ(η) is a weak solution of (1.1) with initial datum u(τ) = η.
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Proof. Repeating the proof of inequality (3.11), we see that the solution un satisfies

‖un(t)‖2L2(Ω) +
∫ t

s

‖un(v)‖2D1
0(Ω,ρ)

dv + 2C2

∫ t

s

‖un(v)‖pLp(Ω)dv ≤ ‖un(s)‖2L2(Ω)

+
1
λ1

∫ t

s

∥
∥gσn(v)

∥
∥2
L2(Ω)dv + 2(t − s)‖h2‖L1(Ω),

(3.18)

and a similar inequality holds for the solution u. Hence, by the arguments as in the proof of
Proposition 3.2 and the Aubin-Lions lemma [22], we infer up to a subsequence that

un ⇀ u in L2
(
τ, T ;D1

0
(
Ω, ρ
))
,

un −→ u in L2
(
τ, T ;L2(Ω)

)
,

un(t, x) −→ u(t, x) for a.a. (t, x) ∈ (τ, T) ×Ω,

un(t)⇀ u(t) in L2(Ω) uniformly on [τ, T],

(3.19)

where u ∈ Dτ,σ(η).
Let now tn → t0, with tn, t0 ∈ (τ, T]. We will prove that un(tn) → u(t0) strongly in

L2(Ω). Since un(tn) → u(t0)weakly in L2(Ω), we have

‖u(t0)‖2L2(Ω) ≤ lim inf
n→∞

‖un(tn)‖2L2(Ω). (3.20)

Thus, if we can show that lim supn→∞‖un(tn)‖2L2(Ω) ≤ ‖u(t0)‖2L2(Ω), then the proof will be
finished. It is easy to check that un and u satisfy the following inequalities:

‖un(t)‖2L2(Ω) ≤ ‖un(s)‖2L2(Ω) + 2(t − s)‖h2‖L1(Ω) +
∫ t

s

(
gσn(v), un(v)

)
dv,

‖u(t)‖2L2(Ω) ≤ ‖u(s)‖2L2(Ω) + 2(t − s)‖h2‖L1(Ω) +
∫ t

s

(
gσ(v), u(v)

)
ds,

(3.21)

for all t ≥ s, t, s ∈ [τ, T]. Therefore, the functions

Jn(t) = ‖un(t)‖2L2(Ω) − 2t‖h2‖L1(Ω) −
∫ t

τ

(
gσn(s), un(s)

)
ds,

J(t) = ‖u(t)‖2L2(Ω) − 2t‖h2‖L1(Ω) −
∫ t

τ

(
gσ(s), u(s)

)
ds

(3.22)

are continuous and nonincreasing on [τ, T]. Moreover, Jn(t) → J(t) for a.a. t ∈ (τ, T).
We now prove that lim sup Jn(tn) ≤ J(t0), and this will imply that

lim sup
n→∞

‖un(tn)‖2L2(Ω) ≤ ‖u(t0)‖2L2(Ω), (3.23)



International Journal of Differential Equations 11

as desired. Indeed, suppose that {tm} is an increasing sequence in (τ, t0) such that Jn(tm) →
J(tm) as n → ∞. We can assume that tm < tn, so that

Jn(tn) − J(t0) ≤ Jn(tm) − J(t0) ≤ |Jn(tm) − J(tm)| + |J(tm) − J(t0)|. (3.24)

Hence for any ε > 0, there exist tm and n0(tm) such that Jn(tn) − J(t0) ≤ ε for all n ≥ n0, and
the result follows.

Theorem 3.5. Let conditions (H1)–(H3) hold. Then the family of multivalued semiprocesses
{Uσ(t, τ)}σ∈Σ has a uniform global compact attractor A in L2(Ω).

Proof. From (3.7), we obtain

d

dt
‖u(t)‖2L2(Ω) + ‖u(t)‖2D1

0(Ω,ρ)
+ 2C2‖u(t)‖pLp(Ω) ≤

1
λ1

∥∥g(t)
∥∥2
L2(Ω) + 2‖h2‖L1(Ω). (3.25)

Hence, similar to (3.9), we get

‖u(t)‖2L2(Ω) � ‖u(0)‖2L2(Ω)e
−λ1t +

2
λ1

(
1 − e−λ1t

)
‖h2‖L1(Ω) +

1
λ1
(
1 − e−λ1)

∥∥g
∥∥2
L2
b
. (3.26)

The last inequality implies that there is a positive constant R such that

‖u(t)‖2L2(Ω) ≤ ‖u(0)‖2L2(Ω)e
−t + R2. (3.27)

Hence the ball B0 = {u ∈ L2(Ω) : ‖u‖L2(Ω) ≤
√
R2 + ε} is an absorbing set for the map (t, u) 
→

UΣ(t, 0, u), that is, for any B ∈ B(L2(Ω)) there exists T(B) such that UΣ(t, 0, B) ⊂ B0, for all
t ≥ T(B).

We define now the set K = UΣ(1, 0, B0). Lemma 3.4 implies that K is compact.
Moreover, since B0 is absorbing, using Lemma 3.3 we have

Uσ(t, τ, B) = Uσ(t, t − 1, Uσ(t − 1, τ, B))

= UT(t−1)σ
(
1, 0, UT(τ)σ(t − 1 − τ, 0, B)) ⊂ UΣ(1, 0, B0) ⊂ K,

(3.28)

for all σ ∈ Σ, B ∈ B(L2(Ω)), and t ≥ T(B, τ). It follows that any sequence {ξn} such that {ξn} ∈
Uσn(tn, τ, B0), σn ∈ Σ, tn → +∞, B ∈ B(L2(Ω)), is precompact in L2(Ω). It is a consequence of
Lemma 3.4 that the mapUσ has compact values for any σ ∈ Σ.

Finally, let us prove that the map (σ, x) 
→ Uσ(t, τ, x) is upper semicontinuous for each
fixed t ≥ τ ≥ 0. Suppose that it is not true, that is, there exist u0 ∈ L2(Ω), t ≥ τ ≥ 0, σ0 ∈ Σ, ε > 0,
δn → 0, un ∈ Bδn(u0), σn → σ0, and ξn ∈ Uσn(t, τ, un) such that {ξn}/∈Bε(Uσ0(t, τ, u0)). But
Lemma 3.4 implies (up to a subsequence) that ξn → ξ ∈ Uσ0(t, τ, u0), which is a contradiction.
The existence of the uniform global compact attractor follows then from Theorem 2.9.
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4. The Kneser Property and Connectedness of the Attractors

Let Dτ,T (uτ) be the set of all weak solutions of the problem (1.1) on (τ, T) with the initial
datum u(τ) = uτ . In this section we will check that the set

Kt(uτ) = {u(t) : u(·) ∈ Dτ,T (uτ)} (4.1)

is connected in L2(Ω).
We define a sequence of smooth functions ψk : R+ → [0, 1] satisfying

ψk(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if 0 ≤ s ≤ k,
0 ≤ ψk(s) ≤ 1 if k ≤ s ≤ k + 1,

0 if s ≥ k + 1.

(4.2)

For every k ≥ 1 we put fk(x, u) = ψk(|u|)f(x, u) + (1 − ψk(|u|))|u|p−2u. Then fk(x, ·) ∈ C(R,R)
and sup|u|≤A|fk(x, u) − f(x, u)| → 0 as k → ∞, for all A > 0.

Let ρε : R → R be amollifier, that is, ρε ∈ C∞
0 (R,R) such that supp ρε ⊂ Bε,

∫
R
ρε(s)ds =

1, ρε(s) ≥ 0, for all s ∈ R, where Bε = {u ∈ R : |u| ≤ ε}.
We define the functions fε

k
(x, u) =

∫
R
ρε(s)fk(x, u − s)ds. Since, for any k ≥ 1, fk(x, .)

is uniformly continuous on Bk+1, there exists εk ∈ (0, 1) such that, for any u satisfying |u| ≤ k
and for all s for which |u − s| < εk, we have

∣∣fk(x, u) − fk(x, s)
∣∣ ≤ 1

k
. (4.3)

We put fk(x, u) = fεk
k
(x, u). Then fk(x, .) ∈ C∞(R,R), for all k ≥ 1.

We now prove the following lemma.

Lemma 4.1. For all k ≥ 1, the following statements hold:

sup
|u|≤A

∣∣∣fk(x, u) − f(x, u)
∣∣∣ −→ 0, as k −→ ∞, ∀A > 0, (4.4)

∣∣∣fk(x, u)
∣∣∣ ≤ D1|u|p−1 +D2(x), (4.5)

fk(x, u)u ≥ D3|u|p −D4(x), (4.6)

fku (x, u) ≥ −D5(k), ∀u ∈ R, (4.7)

whereD2 ∈ L∞(Ω) and D4 ∈ L1(Ω) are nonnegative functions,D5(k) is a nonnegative number, and
the positive constants D1, D3 do not depend on k.

Proof. Because of (4.3), for any u such that |u| < k, we have

∣∣∣fk(x, u) − fk(x, u)
∣∣∣ ≤
∫

R

ρεk(u − s)∣∣fk(x, s) − fk(x, u)
∣∣ds ≤ 1

k
, (4.8)
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we obtain that for any A > 0 and any u such that |u| ≤ A,

∣
∣
∣fk(x, u) − f(x, u)

∣
∣
∣ ≤
∣
∣
∣fk(x, u) − fk(x, u)

∣
∣
∣ +
∣
∣fk(x, u) − f(x, u)

∣
∣, ∀k ≥ A. (4.9)

Hence (4.4) holds.
We prove that fk satisfies conditions type of (H2). Indeed, we have

fk(x, u)u = ψk(|u|)f(x, u)u +
(
1 − ψk(|u|)

)(|u|p−2u
)
u

≥ ψk(|u|)
(
C2|u|p − h2(x)

)
+
(
1 − ψk(|u|)

)|u|p

≥ C̃2|u|p − h̃2(x),

(4.10)

where C̃2 = min{1, C2}, h̃2 ∈ L1(Ω), and

∣∣fk(x, u)
∣∣ ≤ D

(∣∣f(x, u)
∣∣ +
∣∣∣|u|p−2u

∣∣∣
)

≤ D
(
C1|u|p−1 + h1(x) + |u|p−1

)

≤ D(C1 + 1)|u|p−1 +Dh1(x),

(4.11)

for some constant D > 0.
Now we check that fk satisfies (4.5) and (4.6). Using the above estimates for fk, we

have

∣∣∣fk(x, u)
∣∣∣ =
∣∣∣∣

∫

R

ρεk(s)fk(x, u − s)ds
∣∣∣∣

≤
∫

R

ρεk(s)
∣∣fk(x, u − s)∣∣ds

≤
∫

R

ρεk(s)
(
D(C1 + 1)|u − s|p−1 +Dh1(x)

)
ds

≤
∫

R

ρεk(s)
(
C̃|u|p−1 + C̃|s|p−1 +Dh1(x)

)
ds

≤
∫

R

ρεk(s)
(
C̃|u|p−1 + C̃|εk|p−1 +Dh1(x)

)
ds

≤ D1|u|p−1 +D2(x), where D2 ∈ L∞(Ω).

(4.12)
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On the other hand, using Young’s inequality and the estimates for fk, we obtain

fk(x, u)u =
∫

R

ρεk(s)fk(x, u − s)(u − s)ds +
∫

R

ρεk(s)fk(x, u − s)s ds

≥
∫

R

ρεk(s)
(
C̃2|u − s|p − h̃2(x)

)
ds −

∫

R

ρεk(s)

(
C̃2

2D(C1 + 1)

∣
∣fk(u − s)∣∣p′ +K0|s|p

)

ds

≥
∫

R

ρεk(s)
(
C̃2|u − s|p − h̃2(x)

)
ds −

∫

R

ρεk(s)

(
C̃2

2
|u − s|p + D̃hp′1 (x) +K0|εk|p

)

ds

≥
∫

R

ρεk(s)
C̃2

2
|u − s|pds − h̃2(x) − D̃hp

′

1 (x) − K̃0

≥ D3|u|p −D4(x), with D4 ∈ L1(Ω),
(4.13)

where in the last inequality we have used the fact that, for someM > 0,

|u|p = |u − s + s|p ≤M(|u − s|p + |s|p) ≤M
(
|u − s|p + εpk

)
. (4.14)

Let us show that fku (x, u) ≥ −C5(k), for all u ∈ R. Indeed, if |u| > k + 1, we have

fku(x, u) =
∂fk(x, u)

∂u
=
∂
(
|u|p−2u

)

∂u
=
(
p − 1

)|u|p−2 ≥ 0. (4.15)

Then for |u| > k + 2, we get

fku (x, u) =
∫

R

ρεk(s)fku(x, u)ds ≥ 0. (4.16)

Finally, if |u| ≤ k + 2, we have

∣∣∣fku (x, u)
∣∣∣ ≤
∫

R

∣∣ρεku(u − s)∣∣∣∣fk(x, s)
∣∣ds ≤ D5(k), (4.17)

where we have used the above estimate for fk with noting that h1 ∈ L∞(Ω).

Remark 4.2. In fact, if we are concerned with the existence of the uniform global compact
attractor in L2(Ω), we only need to assume that h1 ∈ Lp′(Ω). The stronger assumption, namely,
h1 ∈ L∞(Ω), is used to prove (4.7), which is nessceary for the proof of the Kneser property
and the connectedness of the uniform global attractor.

We are now in a position to prove the following theorem.
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Theorem 4.3. The set Kt(uτ) is connected in L2(Ω) for any t ∈ [τ, T].

Proof. The proof is quite standard (see, e.g., [9, 15]), so we only give its sketch.
The case t = τ is obvious. Suppose then, that for some t∗ ∈ (τ, T], the set Kt∗(uτ) is not

connected. Then there exist two compact sets A1, A2 in L2(Ω) such that A1 ∪ A2 = Kt∗(uτ),
A1 ∩ A2 /= ∅. Let u1, u2 ∈ Dτ,T (uτ) be such that u1(t∗) ∈ U1, u2(t∗) ∈ U2, where U1, U2 are
disjoint open neighborhoods of A1, A2, respectively.

Let uki (t, γ), i = 1, 2, be equal to ui(t) if t ∈ [τ, γ] and be a solution of the problem

∂u

∂t
− div(σ(x)∇u) + fk(x, u) = g(t, x), (t, x) ∈ (γ, T) ×Ω,

u|∂Ω = 0, u|t=γ = ui
(
γ, x
)

(4.18)

if t ∈ [γ, T]. Since Lemma 4.1 and Proposition 3.2, problem (4.18) has at least one weak
solution. It follows from (4.7) that this solution is unique. Also, the maps uki (t, γ) are
continuous on γ for each fixed k ≥ 1 and t ∈ [τ, T]. For details of the proof of these facts,
see, for example, [9]. Using (4.6), one can prove that the functions uki satisfy the estimate

∥∥∥uki (t)
∥∥∥
2

L2(Ω)
+ 2
∫ t

γ

∥∥∥uki (s)
∥∥∥
2

D1
0(Ω,σ)

ds + 2D3

∫ t

γ

∥∥∥uki (s)
∥∥∥
p

Lp(Ω)

≤
∥∥∥uki (γ)

∥∥∥
2

L2(Ω)
+K

(∫ t

γ

∥∥g(s)
∥∥2
L2(Ω)ds + 1

)

.

(4.19)

Now we put

γ(λ) =

⎧
⎨

⎩

τ − (T − τ)λ if λ ∈ [−1, 0],
τ + (T − τ)λ if λ ∈ [0, 1]

(4.20)

and define the function

ϕk(λ)(t) =

⎧
⎨

⎩

uk1
(
t, γ(λ)

)
if λ ∈ [−1, 0],

uk2
(
t, γ(λ)

)
if λ ∈ [0, 1].

(4.21)

We have ϕk(−1)(t) = uk1(t, T) = u1(t), ϕk(1)(t) = uk2(t, T) = u2(t). The map λ 
→ ϕk(λ)(t) is
continuous for any fixed k ≥ 1, t ∈ [τ, T] (note that uk1(t, τ) = uk2(t, τ)) and ϕk(−1)(t∗) ∈ U1,
ϕk(1)(t∗) ∈ U2, so that there exists λk ∈ [−1, 1] such that ϕk(λk)(t∗)/∈U1 ∪U2.

Denote uk(t) = ϕk(λk)(t). Note that, for each k ≥ 1, we have either uk(t) = uk1(t, γ(λk))
or uk(t) = uk2(t, γ(λk)). For some subsequence it is equal to one of them; say uk1(t, γ(λk)). Now
we will consider the function uk1(t, γ(λk)), t ∈ [τ, T]. We have

uk(t) =

⎧
⎨

⎩

u1(t) if t ∈ [τ, γ(λk)
]
,

uk1
(
t, γ(λk(t))

)
if t ∈ [γ(λk), T

]
,

(4.22)
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where γ(λk) → γ0 ∈ [τ, T]. We define the function

f̃ k(x, v(t)) =

⎧
⎨

⎩

f(x, v(t)) if t ∈ [τ, γ(λk)
]
,

fk(x, v(t)) if t ∈ (γ(λk), T
]
.

(4.23)

By the continuity, u1(γ(λk)) → u1(γ0) as k → ∞. Moreover, from (4.18), (4.5), and (4.6), one
can show that {uk} is bounded in V , {f̃ k(x, uk)} is bounded in Lp

′
(τ, T ;Lp

′
(Ω)), and, therefore,

{duk/dt} is bounded in Lp
′
(τ, T ;V ∗). By the Aubin-Lions lemma [22], we can prove that uk

converges weakly to a weak solution u of (1.1) satisfying u(τ) = uτ .
Finally, we can prove also that uk(t∗) → u(t∗) in L2(Ω) (see again [9]). From this we

immediately obtain that u(t∗)/∈U1 ∪ U2, which is a contradiction. This completes the proof.

Corollary 4.4. If A ⊂ L2(Ω) is an arbitrary connected set, then

Kt(A) = {u(t) : u(·) ∈ Dτ,T (A)} ⊂ L2(Ω) (4.24)

is connected.

Proof. The proof is similar to the one of Corollary 7 in [9], so we omit it.

We now give the proof of the main theorem.

Proof of Theorem 1.1. Under conditions (H1)–(H3), we have shown the existence of the
uniform global compact attractor A of the family of processes {Uσ}σ∈Σ in Theorem 3.5. In
addition, Uσ is upper semicontinuous and has the compact values. Moreover, Uσ has the
connected values since Theorem 4.3. Since both L2(Ω) and Σ are connected, A is connected
in L2(Ω).
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[22] J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Paris,
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