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1. Introduction

Consider the following generalized neural networks with arbitrary delays:

x′(t) = A(t, x(t))[B(t, x(t)) + F(t, xt)], (1.1)

where A(t, x(t)) = diag(a1(t, x1(t)), a2(t, x2(t)), . . . , an(t, xn(t)), B(t, x(t)) = b1(t, x1(t)),
b2(t,x2(t)), . . . , bn(t, xn(t)))

T , F(t, xt) = (f1(t, xt), f2(t, xt), . . . , fn(t, xt))
T , fi(t, xt) = fi(t, x1t,

x2t, . . . , xnt), xt = (x1t, x2t, . . . , xnt)
T is defined by xt(θ) = x(t + θ) = (x1(t + θ), x2(t + θ),

. . . , xn(t + θ))T , θ ∈ E, and E is a subset of R− = (−∞, 0].
System (1.1) contains many neural networks, for examples, the higher-order Cohen-

Grossberg type neural networks with delays (see [1])
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x′
i(t) = −ai(xi(t))

⎡
⎣bi(xi(t)) −

n∑
j=1

aij(t)gj
(
xj(t)

) −
n∑
j=1

bij(t)gj
(
xj

(
t − τj(t)

))

−
n∑
j=1

n∑
l=1

bijl(t)gj
(
xj

(
t − τj(t)

))
gl(xl(t − τl(t))) + Ii(t)

⎤
⎦,

i = 1, 2, . . . , n,

(1.2)

the Cohen-Grossberg neural networks with bounded and unbounded delays (see [2])

x′
i(t) = −ai(t, xi(t))

⎡
⎣bi(t, xi(t)) −

n∑
j=1

cij(t)fj
(
xj

(
t − τij(t)

))

−
n∑
j=1

dij(t)gj
(∫∞

0
Kij(u)xj(t − u)du

)
+ Ii(t)

⎤
⎦, i = 1, 2, . . . , n,

(1.3)

the Cohen-Grossberg neural networks with time-varying delays (see [3])

x′
i(t) = −ai(t, xi(t))

⎡
⎣bi(t, xi(t)) −

n∑
j=1

cij(t)fj
(
xj(t)

)

−
n∑
j=1

dij(t)fj
(
xj

(
t − τij(t)

))
+ Ii(t)

⎤
⎦, i = 1, 2, . . . , n,

(1.4)

the celluar neural networks (see [4, Page 193]):

x′
i(t) = −ri(t)xi(t) +

n∑
j=1

aij(t)gj
(
xj(t)

)

+
n∑
j=1

bij(t)gj
(
xj

(
t − τij(t)

))
+ Ii(t), i = 1, 2, . . . , n,

(1.5)

and so on.
Since the model of Cohen-Grossberg neural networks was first introduced by Cohen

and Grossberg in [5], the dynamical characteristics (including stable, unstable, and periodic
oscillatory) of Cohen-Grossberg neural networks have been widely investigated for the sake
of theoretical interest as well as application considerations. Many good results have already
been obtained by some authors in [6–15] and the references cited therein. Moreover, the
existing results are based on the assumption that demanding either the activation functions,
the behaved functions, or delays is bounded in the above-mentioned literature. However, to
the best of our knowledge, few authors have discussed the existence and exponential stability
of periodic solutions of (1.1). In this paper, by using the continuation theorem of coincidence
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degree and M-matrix theory, we study model (1.1), and get some sufficient conditions for
the existence and exponential stability of the periodic solution of system (1.1); our results
generalize and improve many existing ones.

Let A = (aij)n×n, B = (bij)n×n ∈ Rn×n be two matrices, u = (u1, u2, . . . , un)
T ∈ Rn, v =

(v1, v2, . . . , vn)
T ∈ Rn be two vectors. For convenience, we introduce the following notations.

(i) A ≥ 0 (A > 0) means that each element aij is nonnegative (positive) respectively,

(ii) A ≥ B (> B)means A − B ≥ 0 (> 0),

(iii) u ≥ 0 (u > 0) means each element ui ≥ 0 (ui > 0),

(iv) u ≤ v (u < v)means v − u ≥ 0 (v − u > 0),

(v) |u| = (|u1|, |u2|, . . . , |un|)T .

For continuous ω-periodic function g : R → R, we denote |g| = max0≤t≤ω|g(t)|, CE =
C[E,Rn] is the family of continuous functions φ = (φ1, φ2, . . . , φn)

T from E ⊂ (−∞, 0] to Rn.
Clearly, it is a Banach space with the norm ‖φ‖ = max0≤i≤n|φi|, where |φi| = supθ∈E|φi(θ)|. The
initial conditions of system (1.1) are of the form

x0 = φ, that is, xi(θ) = φi(θ), θ ∈ E, i = 1, 2, . . . , n, (1.6)

where φ = (φ1, φ2, . . . , φn)
T ∈ CE. For V (t) ∈ C((a,+∞), R), let

D−V (t) = lim sup
h→ 0−

D(t + h) −D(t)
h

, D−V (t) = lim inf
h→ 0−

D(t + h) −D(t)
h

, t ∈ (a,+∞).

(1.7)

Throughout this paper, we assume the following:

(H1) For i = 1, 2, . . . , n, ai, bi ∈ C[R2, R], fi ∈ C[R × CE,R] and are ω-periodic for their
first arguments, respectively, that is, ai(t+ω, u) = ai(t, u), bi(t+ω, u) = bi(t, u), fi(t+
ω,φ) = fi(t, φ) so A(t + ω, u) = A(t, u), B(t + ω, u) = B(t, u), F(t + ω,φ) = F(t, φ),
for all t ∈ R, u ∈ Rn, φ ∈ CE.

(H2) There exists a positive diagonal matrix A = diag(a1, a2, . . . , an) such that A(t, u) ≥
A, for all (t, u) ∈ Rn+1.

(H3) There is a positive diagonal matrix B = diag(b1, b2, . . . , bn) such that |B(t, u)| ≥ B|u|,
and bi(t, ui)ui > 0 or bi(t, ui)ui < 0 for all (t, u) ∈ Rn+1, i = 1, 2, . . . , n.

(H4) There exist a nonnegative matrix C = (cij)n×n ∈ Rn×n and a nonnegative vector
D = (D1, D2, . . . , Dn)

T such that |F(t, φ)| ≤ C|φ| + D, for all (t, φ) ∈ R × CE, where
φ = (φ1, φ2, . . . , φn)

T ∈ CE, |φ| = (|φ1|, |φ2|, . . . , |φn|)T .

2. Preliminaries

In this section, we first introduce some definitions and lemmas which play an important role
in the proof of our main results in this paper.
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Definition 2.1. Let x̃(t) = (x̃1(t), x̃2(t), . . . , x̃n(t))
T be an ω-periodic solution of system (1.1)

with initial value φ̃ ∈ CE, if there exist two constants α > 0 and M > 1 such that for every
solution x(t) = (x1(t), x2(t), . . . , xn)

T of system (1.1)with initial value (1.6),

|xi(t) − x̃i(t)| ≤ M
∥∥∥φ − φ̃

∥∥∥e−αt, ∀t > 0, i = 1, 2, . . . , n. (2.1)

Then x̃(t) is said to be globally exponential stable.

Definition 2.2. A real matrix W = (wij)n×n ∈ Rn×n is said to be an M-matrix if wij ≤ 0, i, j =
1, 2, . . . , n, i /= j, andW−1 ≥ 0.

Lemma 2.3 (see [15, 16]). Assume that A is anM-matrix and Au ≤ d, u, d ∈ Rn, then u ≤ A−1d.

Lemma 2.4 (see [15, 16]). Let W = (wij)n×n with wij ≤ 0, i, j = 1, 2, . . . , n, i /= j, then the
following statements are equivalent.

(i) W is anM-matrix.

(ii) There exists a positive vector η = (η1, η2, . . . , ηn) > 0 such that ηW > 0.

(iii) There exists a positive vector ξ = (ξ1, ξ2, . . . , ξn)
T > 0 such that Wξ > 0.

Lemma 2.5 (see [15, 16]). Let A ≥ 0 be an n × n matrix and ρ(A) < 1, then (En −A)−1 ≥ 0, where
En denotes the identity matrix of size n, so En −A is an M-matrix.

Nowwe introduce Mawhin’s continuation theorem which will be fundamental in this
paper.

Lemma 2.6 (see [17]). Let X and Y be two Banach spaces and L a Fredholm mapping of index zero.
Assume that Ω ⊂ X is an open bounded set and N : X → Z is a continuous operator which is
L-compact on Ω. Then Lx = Nx has at least one solution in DomL ∩ Ω, if the following conditions
are satisfied:

(1) Lx/=λNx, for all (x, λ) ∈ (DomL ∩ ∂Ω) × (0, 1),

(2) QNx/= 0, for all x ∈ ∂Ω ∩ KerL,

(3) deg{JQN|Ker L∩Ω, Ω ∩ KerL, 0}/= 0.

Let

X = Y =
{
x = (x1, x2, . . . , xn)T ∈ C(R,Rn) : x(t +ω) = x(t), t ∈ R

}
(2.2)

with the norm defined by ‖x‖ = max1≤i≤n|xi|, where |xi| = maxt∈[0,ω]|xi(t)|. Clearly, X and
Y are two Banach spaces. Let x = (x1, x2, . . . , xn)

T ∈ X = Y , we define the linear operator
L : Dom L ⊂ X → Y as

(Lx)(t) = x′(t) =
(
x′
1(t), x

′
2(t), . . . , x

′
n(t)

)T
, DomL =

{
x ∈ X : x′ ∈ Y

}
, (2.3)
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and the operators N : X → X, P : X → X, Q : Y → Y as

(Nx)(t) = A(t, x(t))[B(t, x(t)) + F(t, xt)] := Δ(t, xt),

Px = Qx =
1
ω

∫ω

0
x(t)dt

=
(

1
ω

∫ω

0
x1(t)dt,

1
ω

∫ω

0
x2(t)dt, . . . ,

1
ω

∫ω

0
xn(t)dt

)T

.

(2.4)

It is not difficult to show that P andQ are continuous projectors and the following conditions
are satisfied:

Ker L = Rn = Im P = Im Q,

Im L =
{
y ∈ Y = X :

∫ω

0
y(t)dt = 0

}
= Ker Q = Im (I −Q),

Im L is closed in Y, dim Ker L = n = codim Im L.

(2.5)

Thus, the mapping L is a Fredholm mapping of index zero and the isomorphism J : Im Q →
Ker L is the identity operator; the generalized inverse (of L|Dom L∩Ker P ) KP : Im L → Ker P ∩
Dom L exists, which has the form

(KPx)(t) =
∫ t

0
x(s) ds − 1

ω

∫ω

0

∫ t

0
x(s)ds dt, ∀x ∈ Im L. (2.6)

Therefore

(QNx)(t) =
1
ω

∫ω

0
Δ(t, xt)dt,

(KP (I −Q)Nx)(t) =
∫ t

0
Δ(s, xs)ds − 1

ω

∫ω

0

∫ t

0
Δ(s, xs)dsdt +

(
1
2
− t

ω

)∫ω

0
Δ(s, xs)ds.

(2.7)

3. Existence of Periodic Solutions

In this section, we shall use Lemma 2.6 to study the existence of at least one periodic solution
of system (1.1).

Theorem 3.1. Let (H1)–(H4) hold. Moveover, suppose that

(H5) E −K is aM-matrix, where the matrix K = (kij)n×n = B−1C.

then

(i) system (1.1) has at least one ω-periodic solution;

(ii) there exists a nonnegative constant δ such that for all ω-periodic solution x(t) =
(x1(t), x2(t), . . . , xn(t))

T of system (1.1), |xi(t)| ≤ δ, i = 1, 2, . . . , n.
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Proof. Clearly, QN and KP (I −Q)N are continuous functions and for every bounded subset
Ω ⊂ X, QN(Ω), KP (I − Q)N(Ω), and (KP (I −Q)Nx)′, x ∈ Ω are bounded. By using the
Arzela-Ascoli theorem, QN(Ω) and KP (I − Q)N(Ω) are compact, therefore N is L-compact
on Ω. Consider the following operator equation:

Lx = λNx, λ ∈ (0, 1). (3.1)

That is,

x′(t) = λA(t, x(t))[B(t, x(t)) + F(t, xt)], (3.2)

or

x′
i(t) = λai(t, xi(t))

[
bi(t, xi(t)) + fi(t, xt)

]
, i = 1, 2, . . . , n. (3.3)

Assume that x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ X is a solution of (3.3) for some λ ∈ (0, 1). Then,

for any i = 1, 2, . . . , n, xi(t) are all continuous ω-periodic functions, and there exist ti ∈ [0, ω],
such that

|xi(ti)| = max
t∈[0, ω]

|xi(t)| = |xi|, x′
i(ti) = 0, i = 1, 2, . . . , n, (3.4)

from (H2), we have

bi(ti, xi(ti)) + fi(ti, xti) = 0, i = 1, 2, . . . , n. (3.5)

It follows from (H3) that

bi|xi| ≤ |bi(ti, xi(ti))| =
∣∣fi(ti, xti)

∣∣

≤
n∑
j=1

cij
∣∣xjti

∣∣ +Di ≤
n∑
j=1

cij
∣∣xj

∣∣ +Di, i = 1, 2, . . . , n.
(3.6)

Thus

|xi| ≤ b−1i
n∑
j=1

cij
∣∣xj

∣∣ + b−1i Di, i = 1, 2, . . . , n, (3.7)

we denote the vector d = (d1, d2, . . . , dn)
T , |x| = (|x1|, |x2|, . . . , |xn|)

T
, where di = b−1i (Di + 1) >

0, i = 1, 2, . . . , n. It follows from (3.7) that

(E −K)|x| < d. (3.8)
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Since (H5), and application of Lemma 2.3 yields

|x| < (E −K)−1d = (h1, h2, . . . , hn)
T = h, (3.9)

where h satisfies the equation h = Kh + d, that is, hi =
∑n

j=1 kijhj + di > 0.
Take

Ω =
{
x ∈ X : |xi| < hi, i = 1, 2, . . . , n

}
. (3.10)

It is easy to see that Ω satisfies condition (1) in Lemma 2.6.
For all x = (x1, x2, . . . , xn)

T ∈ ∂Ω ∩ Ker L, x is a constant vector in Rn and there exists
some i ∈ {1, 2, . . . , n} such that |xi| = |xi| = hi, we claim that

|(QNx)i| > 0, so that QNx/= 0. (3.11)

We firstly claim that

(1) if bi(t, ui)ui > 0, then xi(QNx)i > 0,

(2) if bi(t, ui)ui < 0, then xi(QNx)i < 0.

We only prove (1), since the proof of (2) is similar. If bi(t, ui)ui > 0, we have

xi

[
bi(t, xi(t)) + fi(t, xt)

] ≥ bix
2
i − |xi|

⎡
⎣

n∑
j=1

cij
∣∣xj

∣∣ +Di

⎤
⎦

> bihi

⎡
⎣hi −

⎛
⎝

n∑
j=1

b−1i cijhj + di

⎞
⎠
⎤
⎦

= bihi

⎡
⎣hi −

⎛
⎝

n∑
j=1

kijhj + di

⎞
⎠
⎤
⎦ = 0.

(3.12)

Therefore

xi(QNx)i = ω−1xi

∫ω

0
ai(t, xi(t))

[
bi(t, xi(t)) + fi(t, xt)

]
dt > 0. (3.13)

Thus (3.11) is valid.
Next, we define continuous functions Hi : (Ω ∩ Ker L) × [0, 1] → Ω ∩ Ker L, i = 1, 2,

by

H1(x, t) = tx + (1 − t)QNx, ∀(x, t) ∈ (Ω ∩ Ker L) × [0, 1],

H2(x, t) = −tx + (1 − t)QNx, ∀(x, t) ∈ (Ω ∩ Ker L) × [0, 1],
(3.14)
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respectively. If bi(t, ui)ui > 0, from (i)we have

H1(x, t) /= 0, ∀(x, t) ∈ Ker L
⋂

∂Ω × [0, 1], (3.15)

If bi(t, ui)ui < 0, from (2) we can get

H2(x, t)/= 0, ∀(x, t) ∈ Ker L
⋂

∂Ω × [0, 1]. (3.16)

Using the homotopy invariance theorem, we obtain if bi(t, ui)ui > 0,

deg
{
JQN|Ω∩Ker L,Ω ∩ Ker L, 0

}
= deg{H1(·, 0),Ω ∩ Ker L, 0}
= deg{H1(·, 1),Ω ∩ Ker L, 0}
= deg{x,Ω ∩ Ker L, 0} = 1,

(3.17)

or if bi(t, ui)ui < 0,

deg
{
JQN|Ω∩Ker L,Ω ∩ Ker L, 0

}
= deg{H2(·, 0),Ω ∩ Ker L, 0}
= deg{H2(·, 1),Ω ∩ Ker L, 0}
= deg{−x,Ω ∩ Ker L, 0} = (−1)n.

(3.18)

To summarize, Ω satisfies all the conditions of Lemma 2.6. This completes the proof of (i).
For all ω-periodic solution x(t) = (x1(t), x2(t), . . . , xn(t))

T of system (1.1), from (3.3)–
(3.7) we have

|xi| ≤ b−1i
n∑
j=1

cij
∣∣xj

∣∣ + b−1i Di,

|x| ≤ (E −K)−1υ = ν = (ν1, ν2, . . . , νn)T ,

(3.19)

where υ = (υ1, υ2, . . . , υn)
T , |x| = (|x1|, |x2|, . . . , |xn|)

T
, υi = b−1i Di ≥ 0, i = 1, 2, . . . , n. Notes

δ = max1≤i≤nνi ≥ 0, thus |xi(t)| ≤ δ, for all i = 1, 2, . . . , n. This completes the proof of (ii).

From the proof of Theorem 3.1, we can easily obtain the following corollary.

Corollary 3.2. Suppose that (H1)–(H5) hold, and D = 0 in (H4), then system (1.1) has only one
ω-periodic solution x(t) = 0.

Some special cases of Theorem 3.1 are in what follows.

Corollary 3.3. Equation (1.3) has at least one ω-periodic solution, if the following conditions are
satisfied.

(A1) For i, j = 1, 2, . . . , n, ai, bi, aij , bij , τj , Ii : R → R are continuous ω-periodic (ω > 0)
functions.
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(A2) For i = 1, 2, . . . , n, ai(x) are positive, and there exist ai > 0 such that ai(x) ≥ ai > 0.

(A3) For i = 1, 2, . . . , n, there exist bi > 0 such that

|bi(x)| ≥ bi|x|, bi(x)x > 0, or bi(x)x < 0, ∀x ∈ R. (3.20)

(A4) For i = 1, 2, . . . , n, there exist Gi, pi, qi ≥ 0 such that

∣∣gi(x)
∣∣ ≤ Gi,

∣∣gi(x)
∣∣ ≤ pi|x| + qi. (3.21)

(A5) ρ(K) < 1, K = (kij)n×n, and kij = b−1i (|aij | + |bij | +
∑n

j=1 |bijl|Gl)pj , i, j = 1, 2, . . . , n.

Proof. It is clear that

A(t, x) = diag(a1(x1), a2(x2), . . . , an(xn))

≥ diag(a1, a2, . . . , an) = A,

|B(t, x)| = (|b1(x1)|, |b2(x2)|, . . . , |bn(xn)|)T

≥ (b1|x1|, b2|x2|, . . . , bn|xn|)T

= diag(b1, b2, . . . , bn)(|x1|, |x2|, . . . , |xn|)T = B|x|,

∣∣fi
(
t, φ

)∣∣ =
∣∣∣∣∣∣

n∑
j=1

aij(t)gj
(
φj(0)

)
+

n∑
j=1

bij(t)gj
(
φj

(−τj(t)
))

+
n∑
j=1

n∑
l=1

bijl(t)gj
(
φj

(−τj(t)
))
gl
(
φl(−τl(t))

) − Ii(t)

∣∣∣∣∣∣

≤
n∑
j=1

∣∣aij

∣∣[pj
∣∣φj

∣∣ + qj
]
+

n∑
j=1

∣∣bij
∣∣[pj

∣∣φj

∣∣ + qj
]

+
n∑
j=1

n∑
l=1

Gl

∣∣bijl
∣∣(pj

∣∣φj

∣∣ + qj
)
+ |Ii|

=
n∑
j=1

[∣∣aij

∣∣ + ∣∣bij
∣∣ +

n∑
l=1

∣∣bijl
∣∣Gl

]
pj
∣∣φj

∣∣

+
n∑
j=1

[∣∣aij

∣∣ + ∣∣bij
∣∣ +

n∑
l=1

∣∣bijl
∣∣Gl

]
qj + |Ii| =

n∑
j=1

cij
∣∣φj

∣∣ +Di, i = 1, 2, . . . , n.

(3.22)

Thus

∣∣f(t, φ)∣∣ ≤ C
∣∣φ∣∣ +D, (3.23)
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where C = (cij)n×n ∈ Rn×n, D = (D1, D2, . . . , Dn)
T , cij = [|aij | + |bij | +

∑n
l=1 |bijl|Gl]pj ≥ 0, Di =∑n

j=1[|aij |+ |bij |+
∑n

l=1 |bijl|Gl]qj + |Ii| ≥ 0, i, j = 1, 2, . . . , n. Therefore, by using Lemma 2.5 and
Theorem 3.1, we know that (1.3) has an ω-periodic solution. The proof is complete.

Remark 3.4. For [1, Equation (1.2)], τj(t), j = 1, 2, . . . , n are continuous differentiable ω-
periodic solutions and 0 ≤ τ ′j(t) ≤ 1, this implies that τj(t), j = 1, 2, . . . , n are constant
functions, thus ξj = 1, j = 1, 2, . . . , n. It is not difficult to verify that all of conditions
of Corollary 3.3 are satisfied under the conditions of [1, Theorem1] moreover the other
requirements of [1, Theorem1] are more restrictive than ours. Therefore, Corollary 3.3
improves the corresponding result obtained in [1].

Corollary 3.5. If the following conditions are satisfied:

(B1) for i, j = 1, 2, . . . , n, cij , dij , τij , Ii : R → R are continuous ω-periodic (ω > 0) functions,
ai, bi are continuous functions on R2, and are ω-periodic for their first arguments,
respectively,

(B2) for i = 1, 2, . . . , n, there exist positive constants ai such that ai(t, u) ≥ ai, for all t, u ∈ R,

(B3) for i = 1, 2, . . . , n, there exist positive constants bi such that |bi(t, u)| ≥ bi|u|, bi(u)u >
0 or bi(u)u < 0, for all t, u ∈ R,

(B4) there exist nonnegative constants p
f

j , q
f

j , p
g

j , q
g

j such that

∣∣fj(u)
∣∣ ≤ p

f

j |u| + q
f

j ,
∣∣gj(u)

∣∣ ≤ p
g

j |u| + q
g

j , ∀u ∈ R, j = 1, 2, . . . , n, (3.24)

(B5) the delay kernels Kij : [0,∞] → R satisfy

∫∞

0

∣∣Kij(s)
∣∣ds ≤ kij , i, j = 1, 2, . . . , n, (3.25)

(B6) ρ(K) < 1, K = (kij)n×n ∈ Rn×n, where kij = b−1i (|cij |pfj + |dij |kijpgj ), i, j = 1, 2, . . . , n.

then (1.3) has at least one ω-periodic solution.

Remark 3.6. In [2, Theorem3.1], the activation functions fj(u), gj(u), j = 1, 2, . . . , n, are
required to be Lipschitzian, which implies that condition (B3) in Corollary 3.5 holds.
Therefore, Corollary 3.5 improves Theorem3. In 2.

Corollary 3.7. Assume that the following conditions are satisfied:

(C1) cij , dij , τij , Ii : R → R are continuous ω-periodic (ω > 0) functions, ai, bi are continuous
functions on R2, and are ω-periodic in the first variable,

(C2) there exist positive constants ai such that

ai(t, u) ≥ ai, ∀t, u ∈ R, i = 1, 2, . . . , n, (3.26)
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(C3) there exist positive constants bi such that

|bi(t, u)| ≥ bi|u|, bi(u)u > 0 or bi(u)u < 0, ∀t, u ∈ R, i = 1, 2, . . . , n, (3.27)

(C4) There exist nonnegative constants pi, qi such that

∣∣fi(u)
∣∣ ≤ pi|u| + qi, ∀u ∈ R, i = 1, 2, . . . , n, (3.28)

(C5) ρ(K) < 1, where K = (kij)n×n ∈ Rn×n and kij = b−1i (|cij | + |dij |)pj , i, j = 1, 2, . . . , n.

Then (1.4) has at least one ω-periodic solution.

Remark 3.8. In [3, Theorem3.1], the activation functions fj(u), j = 1, 2, . . . , n, are Lipschitzian
(which also implies that condition (C4) in Corollary 3.7 holds) and the behaved functions
bi(t, u) are required to satisfy that there exist positive constants bi, bi such that 0 ≤
ubi(t, u), bi|u| ≤ |bi(t, u)| ≤ bi|u| for all t, u ∈ R, i = 1, 2, . . . , n, which are more restrictive
than that of Corollary 3.7.

Corollary 3.9. Assume that the following conditions are satisfied

(D1) For i, j = 1, 2, . . . , n, Ii, aij , bij , τij : R → R are continuous ω-periodic solution (ω > 0)
functions.

(D2) For j = 1, 2, . . . , n, gj : R → R are continuous functions and there exist nonnegative
constants pj , qj such that

∣∣gj(v)
∣∣ ≤ pj |v| + qj , ∀v ∈ R, j = 1, 2, . . . , n, (3.29)

(D3) ρ(K) < 1, K = (kij)n×n ∈ Rn×n and kij = r−1i (|aij | + |bij |)pj , i, j = 1, 2, . . . , n,

then (1.5) has at least one ω-periodic solution.

The proofs of Corollaries 3.5–3.9 are the same as that of Corollary 3.3.

4. Uniqueness and Exponential Stability of Periodic Solution

In this section, we establish some results for the uniqueness and exponential stability of the
ω-periodic solution of (1.1).

Theorem 4.1. Assume that E is a bounded subset of R−, and (H1)–(H3) and (H5) hold. Suppose also
the following conditions are satisfied.

(H4)
′ There exists a nonnegative matrix C = (cij)n×n ∈ Rn×n such that

∣∣F(t, φ) − F
(
t, ϕ

)∣∣ ≤ C
∣∣φ − ϕ

∣∣, ∀(t, φ), (t, ϕ) ∈ R × CE, (4.1)

where φ = (φ1, φ2, . . . , φn)
T , ϕ = (ϕ1, ϕ2, . . . , ϕn)

T ∈ CE, |φ − ϕ| = (|φ1 − ϕ1|, |φ2 − ϕ2|,
. . . , |φn − ϕn|)T .
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(H6) ai, i = 1, 2, . . . , n, are Lipschitzian with Lipschitz constants La
i > 0, and there exist ai such

that

ai(t, u) ≤ ai, |ai(t, u) − ai(t, v)| ≤ La
i |u − v|, ∀(t, u), (t, v) ∈ R2, i = 1, 2, . . . , n. (4.2)

(H7) For all t, u, v ∈ R, i = 1, 2, . . . , n, there exist positive constants Lab
i such that

[ai(t, u)bi(t, u) − ai(t, v)bi(t, v)](u − v) ≤ 0, i = 1, 2, . . . , n,

|ai(t, u)bi(t, u) − ai(t, v)bi(t, v)| ≥ Lab
i |u − v|, i = 1, 2, . . . , n.

(4.3)

(H8) For i = 1, 2, . . . , n, set Δi = max0≤t≤ω|fi(t, 0)|, and assume that En −W is an M-matrix,
whereW = (wij)n×n ∈ Rn×n, and

wij =
(
Lab
i − La

i Δi

)−1(
ai + La

i δ
)
cij , Lab

i − La
i Δi > 0, i, j = 1, 2, . . . , n. (4.4)

Proof. Obviously, (H4)
′ implies (H4), since (H1)–(H5) hold, it follows from Theorem 3.1 that

system (1.1) has at least one ω-periodic solution

x̃(t) = (x̃1(t), x̃2(t), . . . , x̃n(t))
T (4.5)

with the initial value φ̃ = (φ̃1, φ̃2, . . . , φ̃n)
T ∈ CE. Let

x(t) = (x1(t), x2(t), . . . , xn(t))T (4.6)

be an arbitrary solution of system (1.1)with the initial value (1.6), set y(t) = x(t)− x̃(t). Then
for i = 1, 2, . . . , n,

y′
i(t) = ai

(
t, yi(t) + x̃i(t)

)
bi
(
t, yi(t) + x̃i(t)

) − ai(t, x̃i(t))bi(t, x̃i(t))

+ ai

(
t, yi(t) + x̃i(t)

)[
fi
(
t, yt + x̃t

) − fi(t, x̃t)
]

+ fi(t, x̃t)[ai(t, xi(t)) − ai(t, x̃i(t))].

(4.7)

Thus, for i = 1, 2, . . . , n,

D−∣∣yi(t)
∣∣ ≤ −Lab

i

∣∣yi(t)
∣∣ + ai

n∑
j=1

cij
∣∣yit

∣∣ + La
i

∣∣yi(t)
∣∣
⎡
⎣

n∑
j=1

cij |x̃it| +
∣∣fi(t, 0)

∣∣
⎤
⎦

≤ −
(
Lab
i − La

i Δi

)∣∣yi(t)
∣∣ + (ai + La

i δ
) n∑
j=1

cij
∣∣yit

∣∣,
(4.8)
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for (H8) and Lemma 2.4, there exist a positive constant σ > 0 and a positive constant vector
ξ = (ξ1, ξ2, . . . , ξn)

T > 0 such that (En −W)ξ > (σ, σ, . . . , σ)T . Hence

ξi −
n∑
j=1

wijξj > σ, (4.9)

where wij = (Lab
i − La

i Δi)
−1
(ai + La

i δ)cij , i, j = 1, 2, . . . , n. Moreover for all i = 1, 2, . . . , n,

−
(
Lab
i − La

i Δi

)
ξi +

(
ai + La

i δ
) n∑
j=1

cijξj <
(
Lab
i − La

i Δi

)
σ. (4.10)

Since, E is a bounded subset of R−, we can choose a positive constant α < 1, such that ∀θ ∈ E

αξi +

⎡
⎣−

(
Lab
i − La

i Δi

)
ξi +

(
ai + La

i δ
) n∑
j=1

cijξje
−αθ

⎤
⎦ < 0, i = 1, 2, . . . , n, (4.11)

and also can choose a positive constant β > 1 such that

βξie
−αθ > 1, ∀θ ∈ E, i = 1, 2, . . . , n. (4.12)

Set, for all ε > 0, for all t ∈ E,

Zi(t) = βξi

⎡
⎣

n∑
j=1

∣∣yj0
∣∣ + ε

⎤
⎦e−αt, i = 1, 2, . . . , n. (4.13)

It follows from (4.11) and (4.13) that

D−Zi(t) = −αβξi
⎡
⎣

n∑
j=1

∣∣yj0
∣∣ + ε

⎤
⎦e−αt

>

⎡
⎣−

(
Lab
i − La

i Δi

)
ξi +

(
ai + La

i δ
) n∑
j=1

cijξje
−αθ

⎤
⎦β

⎡
⎣

n∑
j=1

∣∣yj0
∣∣ + ε

⎤
⎦e−αt

= −
(
Lab
i − La

i Δi

)
ξiβ

⎡
⎣

n∑
j=1

∣∣yj0
∣∣ + ε

⎤
⎦e−αt

+
(
ai + La

i δ
) n∑
j=1

cijξje
−α(θ+t)β

⎡
⎣

n∑
j=1

∣∣yj0
∣∣ + ε

⎤
⎦, ∀θ ∈ E.

(4.14)
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Thus

D−Zi(t) ≥ −
(
Lab
i − La

i Δi

)
Zi(t) +

(
ai + La

i δ
) n∑
j=1

cij
∣∣Zjt

∣∣, (4.15)

where |Zjt| = supθ∈EZj(t + θ), from (4.12) and (4.13), we can get

Zi(t) = βξi

⎡
⎣

n∑
j=1

∣∣yj0
∣∣ + ε

⎤
⎦e−αt >

n∑
j=1

∣∣yj0
∣∣ + ε >

∣∣yi(t)
∣∣, ∀t ∈ E. (4.16)

We claim that

∣∣yi(t)
∣∣ < Zi(t), ∀t > 0, i = 1, 2, . . . , n. (4.17)

Suppose that it is not true, then there exits some i ∈ {1, 2, . . . , n} and ti > 0 such that

∣∣yi(ti)
∣∣ = Zi(ti),

∣∣yj(t)
∣∣ ≤ Zj(t), ∀t < ti, j = 1, 2, . . . , n. (4.18)

Thus

0 ≤ D−(∣∣yi(ti)
∣∣ − Zi(ti)

)

= lim sup
h→ 0−

[∣∣yi(ti + h)
∣∣ − Zi(ti + h)

] − [∣∣yi(ti)
∣∣ − Zi(ti)

]

h

≤ lim sup
h→ 0−

∣∣yi(ti + h)
∣∣ − ∣∣yi(ti)

∣∣
h

− lim inf
h→ 0−

Zi(ti + h) − Zi(ti)
h

≤ D−∣∣yi(ti)
∣∣ −D−Zi(ti).

(4.19)

It follows from (4.8), (4.15), and (4.18) that

D−∣∣yi(ti)
∣∣ ≤ −

(
Lab
i − La

i Δi

)∣∣yi(ti)
∣∣ + (ai + La

i δ
) n∑
j=1

cij
∣∣yjti

∣∣

≤ −
(
Lab
i − La

i Δi

)
|Zi(ti)| +

(
ai + La

i δ
) n∑
j=1

cij
∣∣Zjti

∣∣ < D−Zi(ti),

(4.20)

which contradicts to (4.19), thus (4.17) holds. Set ε → 0+ and M = nmax1≤i≤n{βξi + 1} > 1,
from (4.17), we have

|xi(t) − x̃i(t)| =
∣∣yi(t)

∣∣ ≤ βξi
n∑
j=1

∣∣yj0
∣∣e−αt ≤ βξin

∥∥∥φ − φ̃
∥∥∥e−αt ≤ M

∥∥∥φ − φ̃
∥∥∥e−αt, (4.21)

where i = 1, 2, . . . , n. This completes the proof of Theorem 4.1.
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5. Conclusion

In this paper, a class of generalized neural networks with arbitrary delays have been studied.
Some sufficient conditions for the existence and exponential stability of the periodic solutions
have been established. These obtained results are new and they improve and complement
previously known results.
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