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1. Introduction

Let p be a fixed prime number. Throughout this paper, the symbols Z, Zp, Qp, and Cp will
denote the ring of rational integers, the ring of p-adic integers, the field of p-adic rational
numbers, and the completion of algebraic closure of Qp, respectively. Let N be the set of
natural numbers and Z+ = N ∪ {0}. Let vp be the normalized exponential valuation of Cp

with |p|p = p−vp(p) = 1/p. Let UD(Zp) be the space of uniformly differentiable function on Zp.
For f ∈ UD(Zp), the p-adic invariant integral on Zp is defined as

I
(
f
)
=
∫

Zp

f(x)dx = lim
N→∞

1
pN

pN−1∑

x=0

f(x), (1.1)

(see [1]). From the definition (1.1), we have

I
(
f1
)
= I

(
f
)
+ f ′(0), where f ′(0) =

df(x)
dx

∣∣∣∣
x=0

, f1(x) = f(x + 1). (1.2)
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Let fn(x) = f(x + n), (n ∈ N). Then we can derive the following equation from (1.2):

I
(
fn
)
= I

(
f
)
+

n−1∑

i=0

f ′(i), (1.3)

(see [1]). It is well known that the ordinary Bernoulli polynomials Bn(x) are defined as

t

et − 1e
xt =

∞∑

n=0

Bn(x)
tn

n!
, (1.4)

(see [1–25]), and the Bernoulli number Bn are defined as Bn = Bn(0).
Let d be a fixed positive integer. For n ∈ N, we set

X = Xd = lim
←
N

(
Z/dpNZ

)
, X1 = Zp;

X∗ =
⋃

0<a<dp,
(a,p)=1

(
a + dpZp

)
;

a + dpNZp =
{
x ∈ X | x ≡ a

(
moddpN

)}
,

(1.5)

where a ∈ Z lies in 0 ≤ a < dpN . It is easy to see that

∫

X

f(x)dx =
∫

Zp

f(x)dx, for f ∈ UD
(
Zp

)
. (1.6)

In [14], the Witt’s formula for the Bernoulli numbers are given by

∫

Zp

xndx = Bn, n ∈ Z+. (1.7)

Let χ be the Dirichlet’s character with conductor d ∈ N. Then the generalized Bernoulli
polynomials attached to χ are defined as

d∑

a=1

χ(a)teat

edt − 1 ext =
∞∑

n=0

Bn,χ(x)
tn

n!
, (1.8)

(see [22]), and the generalized Bernoulli numbers attached to χ, Bn,χ are defined as Bn,χ =
Bn,χ(0).

In this paper, we investigate the interesting identities of symmetry for the generalized
Bernoulli numbers and polynomials attached to χ by using the properties of p-adic invariant
integral on Zp. Finally, we will give relationship between the power sum polynomials and the
generalized Bernoulli numbers attached to χ.
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2. Symmetry of Power Sum and the Generalized Bernoulli Polynomials

Let χ be the Dirichlet character with conductor d ∈ N. From (1.3), we note that

∫

X

χ(x)extdx =
t
∑d−1

i=0 χ(i)e
it

edt − 1 =
∞∑

n=0

Bn,χ
tn

n!
, (2.1)

where Bn,χ(x) are the nth generalized Bernoulli numbers attached to χ. Now, we also see that
the generalized Bernoulli polynomials attached to χ are given by

∫

X

χ
(
y
)
e(x+y)tdy =

t
∑d−1

i=0 χ(i)e
it

edt − 1 ext =
∞∑

n=0

Bn,χ(x)
tn

n!
. (2.2)

By (2.1) and (2.2), we easily see that

∫

X

χ(x)xndx = Bn,χ,

∫

X

χ
(
y
)
(x + y)ndy = Bn,χ(x). (2.3)

From (2.2), we have

Bn,χ(x) =
n∑

�=0

(
n
�

)
B�,χx

n−�. (2.4)

From (2.2), we can also derive

∫

X

χ(x)extdx =
d−1∑

i=0

χ(i)
t

edt − 1e
(i/d)dt =

∞∑

n=0

(

dn−1
d−1∑

i=0

χ(i)Bn

(
i

d

))
tn

n!
. (2.5)

Therefore, we obtain the following lemma.

Lemma 2.1. For n ∈ Z+, one has

∫

X

χ(x)xndx = Bn,χ = dn−1
d−1∑

i=0

χ(i)Bi

(
i

d

)
. (2.6)

We observe that

1
t

(∫

X

χ(x)e(nd+x)tdx −
∫

X

extχ(x)dx
)

=
nd

∫
Xχ(x)e

xtdx
∫
Xe

ndxtdx
=

endt − 1
edt − 1

(
d−1∑

i=0

χ(i)eit
)

. (2.7)

Thus, we have

1
t

(∫

X

χ(x)e(nd+x)tdx −
∫

X

χ(x)extdx
)

=
∞∑

k=0

(
nd−1∑

�=0

χ(�)�k
)

tk

k!
. (2.8)
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Let us define the p-adic functional Tk(χ, n) as follows:

Tk
(
χ, n

)
=

n∑

�=0

χ(�)�k, for k ∈ Z+. (2.9)

By (2.8) and (2.9), we see that

1
t

(∫

X

χ(x)e(nd+x)tdx −
∫

X

χ(x)extdx
)

=
∞∑

n=0

(
Tk

(
χ, nd − 1)) t

k

k!
. (2.10)

By using Taylor expansion in (2.10), we have

∫

X

χ(x)(dn + x)kdx −
∫

X

χ(x)xkdx = kTk−1
(
χ, nd − 1), for k, n, d ∈ N . (2.11)

That is,

Bk,χ(nd) − Bk,χ = kTk−1
(
χ, nd − 1). (2.12)

Let w1, w2, d ∈ N. Then we consider the following integral equation:

d
∫∫

Xχ(x1)χ(x2)e(w1x1+w2x2)tdx1dx2
∫
Xe

dw1w2xtdx
=

t
(
edw1w2t − 1)

(
ew1dt − 1)(ew2dt − 1)

(
d−1∑

a=0

χ(a)ew1at

)(
d−1∑

b=0

χ(b)ew2bt

)

.

(2.13)

From (2.7) and (2.10), we note that

dw1
∫
Xχ(x)e

xtdx
∫
Xe

dw1xtdx
=
∞∑

k=0

(
Tk

(
χ, dw1 − 1

)) tk

k!
. (2.14)

Let us consider the p-adic functional Tχ(w1, w2) as follows:

Tχ(w1, w2) =
d
∫∫

Xχ(x1)χ(x2)e(w1x1+w2x2+w1w2x)tdx1dx2
∫
Xe

dw1w2x3tdx3
. (2.15)

Then we see that Tχ(w1, w2) is symmetric in w1 and w2, and

Tχ(w1, w2) =
t
(
edw1w2t − 1)ew1w2xt

(
ew1dt − 1)(ew2dt − 1)

(
d−1∑

a=0

χ(a)ew1at

)(
d−1∑

b=0

χ(b)ew2bt

)

. (2.16)
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By (2.15) and (2.16), we have

Tχ(w1, w2) =
(

1
w1

∫

X

χ(x1)ew1(x1+w2x)tdx1

)(
dw1

∫
Xχ(x2)ew2x2tdx2
∫
Xe

dw1w2xtdx

)

=

(
1
w1

∞∑

i=0

Bi,χ(w2x)
wi

1t
i

i!

)( ∞∑

k=0

Tk
(
χ, dw1 − 1

)wk
2 t

k

k!

)

=
1
w1

( ∞∑

�=0

(
�∑

i=0

Bi,χ(w2x)T�−i
(
χ, dw1 − 1

)
wi

1w
�−i
2 �!

i!(� − i)!

)
t�

�!

)

=
∞∑

�=0

(
�∑

i=0

(
�
i

)
Bi,χ(w2x)T�−i

(
χ, dw1 − 1

)
wi−1

1 w�−i
2

)
t�

�!
.

(2.17)

From the symmetric property of Tχ(w1, w2) in w1 and w2, we note that

Tχ(w1, w2) =
(

1
w2

∫

X

χ(x2)ew2(x2+w1x)tdx2

)(
dw2

∫
Xχ(x1)ew1x1tdx1
∫
Xe

dw1w2xtdx

)

=

(
1
w2

∞∑

i=0

Bi,χ(w1x)
wi

2t
i

i!

)( ∞∑

k=0

Tk
(
χ, dw2 − 1

)wk
1 t

k

k!

)

=
1
w2

( ∞∑

�=0

(
�∑

i=0

Bi,χ(w1x)wi
2T�−i

(
χ, dw2 − 1

)
w�−i

1 �!
i!(� − i)!

)
t�

�!

)

=
∞∑

�=0

(
�∑

i=0

(
�
i

)
wi−1

2 w�−i
1 Bi,χ(w1x)T�−i

(
χ, dw2 − 1

)
)

t�

�!
.

(2.18)

By comparing the coefficients on the both sides of (2.17) and (2.18), we obtain the following
theorem.

Theorem 2.2. For w1, w2, d ∈ N, one has

�∑

i=0

(
�
i

)
Bi,χ(w2x)T�−i

(
χ, dw1 − 1

)
wi−1

1 w�−i
2 =

�∑

i=0

(
�
i

)
Bi,χ(w1x)T�−i

(
χ, dw2 − 1

)
wi−1

2 w�−i
1 .

(2.19)

Let x = 0 in Theorem 2.2. Then we have

�∑

i=0

(
�
i

)
Bi,χT�−i

(
χ, dw1 − 1

)
wi−1

1 w�−i
2 =

�∑

i=0

(
�
i

)
Bi,χT�−i

(
χ, dw2 − 1

)
wi−1

2 w�−i
1 . (2.20)
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By (2.14) and (2.16), we also see that

Tχ(w1, w2) =
(
ew1w2xt

w1

∫

X

χ(x1)ew1x1tdx1

)(
dw1

∫
Xχ(x2)ew2x2tdx2
∫
Xe

dw1w2xtdx

)

=
(
ew1w2xt

w1

∫

X

χ(x1)ew1x1tdx1

)(
edw1w2t − 1
ew2dt − 1

)(
d−1∑

i=0

χ(i)ew2it

)

=
(
ew1w2xt

w1

∫

X

χ(x1)ew1x1tdx1

)(
w1−1∑

�=0

d−1∑

i=0

ew2(i+�d)tχ(i + �d)

)

=
(
ew1w2xt

w1

∫

X

χ(x1)ew1x1tdx1

)(
dw1−1∑

i=0

ew2itχ(i)

)

=
1
w1

dw1−1∑

i=0

χ(i)
∫

X

χ(x1)ew1(x1+w2x+(w2/w1)i)tdx1

=
1
w1

dw1−1∑

i=0

χ(i)
∞∑

k=0

Bk,χ

(
w2x +

w2

w1
i

)
wk

1 t
k

k!

=
∞∑

k=0

(
dw1−1∑

i=0

χ(i)Bk,χ

(
w2x +

w2

w1
i

)
wk−1

1

)
tk

k!
.

(2.21)

From the symmetric property of Tχ(w1, w2) in w1 and w2, we can also derive the following
equation:

Tχ(w1, w2) =
(
ew1w2xt

w2

∫

X

χ(x2)ew2x2tdx2

)(
dw2

∫
Xχ(x1)ew1x1tdx1
∫
Xe

dw1w2xtdx

)

=
(
ew1w2xt

w2

∫

X

χ(x2)ew2x2tdx2

)(
edw1w2t − 1
ew1dt − 1

)(
d−1∑

i=0

χ(i)ew1it

)

=
(
ew1w2xt

w2

∫

X

χ(x2)ew2x2tdx2

)(
w2−1∑

�=0

ew1d�t

)(
d−1∑

i=0

χ(i)ew1it

)

=
1
w2

dw2−1∑

i=0

χ(i)
∫

X

χ(x2)ew2(x2+w1x+(w1/w2)i)tdx2

=
1
w2

dw2−1∑

i=0

χ(i)
∞∑

k=0

Bk,χ

(
w1x +

w1

w2
i

)
wk

2 t
k

k!

=
∞∑

k=0

{
dw2−1∑

i=0

χ(i)Bk,χ

(
w1x +

w1

w2
i

)
wk−1

2

}
tk

k!
.

(2.22)

By comparing the coefficients on the both sides of (2.21) and (2.22), we obtain the following
theorem.
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Theorem 2.3. For w1, w2, d ∈ N, one has

dw1−1∑

i=0

χ(i)Bk,χ

(
w2x +

w2

w1
i

)
wk−1

1 =
dw2−1∑

i=0

χ(i)Bk,χ

(
w1x +

w1

w2
i

)
wk−1

2 . (2.23)

Remark 2.4. Let x = 0 in Theorem 2.3. Then we see that

dw1−1∑

i=0

χ(i)Bk,χ

(
w2

w1
i

)
wk−1

1 =
dw2−1∑

i=0

χ(i)Bk,χ

(
w1

w2
i

)
wk−1

2 . (2.24)

If we take w2 = 1, then we have

dw1−1∑

i=0

χ(i)Bk,χ

(
i

w1

)
wk−1

1 =
d−1∑

i=0

χ(i)Bk,χ(w1i). (2.25)

Remark 2.5. Let χ be trivial character. Then we can easily derive the “multiplication theorem
for Bernoulli polynomials” from Theorems 2.2 and 2.3 (see [14]).
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