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1. Introduction: The Problem of Uniqueness of Unconditional Basis

If (X, ‖ · ‖) is a quasi-Banach space (in particular a Banach space) with a normalized
unconditional basis (en)

∞
n=1 (i.e., ‖en‖ = 1 for all n ∈ N), X is said to have a unique

unconditional basis (up to permutation) if whenever (xn)
∞
n=1 is another normalized unconditional

basis of X, then (xn)
∞
n=1 is equivalent to (en)

∞
n=1 (after a permutation); that is, there exists an

automorphism of X which takes one basis to (a permutation of) the other.
The problem of uniqueness of unconditional basis is classical. It is well known that

c0, �1, and �2 have a unique unconditional basis and that any other Banach space with an
unconditional basis fails to have this property [1–3].

If an unconditional basis is unique, in particular it must be equivalent to all its
permutations and hencemust be symmetric. Thus, the obviousmodification for spaces whose
canonical basis is unconditional but not symmetric is to require uniqueness of unconditional
basis via a permutation, which in many ways is a more natural concept for unconditional
bases. Classifying those Banach spaces with unique unconditional bases up to permutation,
however, has turned out to be a much more difficult task. The first step toward this
classification was taken in 1976 by Edelstein and Wojtaszczyk [4], who showed that any
finite direct sum of c0, �1, and �2 had that property. After their work, Bourgain, Casazza,
Lindenstrauss, and Tzafriri embarked on a comprehensive study aimed at classifying those
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Banach spaces with unique uconditional basis up to permutation that culminated in 1985
with their AMS Memoir [5]. They considered infinite direct sums of the Banach spaces with
unique unconditional basis and showed that the spaces c0(�1), c0(�2), �1(c0), and �1(�2) all
have unique unconditional bases up to permutation, while, surprisingly, �2(�1) and �2(c0) do
not.

However, all hopes for a satisfactory classification were shattered when they
discovered that a space of a totally different character, a certain variant of Tsirelson space
T, also had a unique unconditional basis up to permutation. More recently, further examples
of “pathological” spaces with unique unconditional basis up to permutation have been given
in [6, 7].

In the context of quasi-Banach spaces which are not Banach spaces, the uniqueness
of unconditional basis seems to be the norm rather than the exception. For instance, it was
shown in [8] that a wide class of nonlocally convex Orlicz sequence spaces, including the �p
spaces for 0 < p < 1, have a unique unconditional basis. The same is true in nonlocally convex
Lorentz sequence spaces [9, 10] and in the Hardy spaces Hp(T) for 0 < p < 1 [11].

Analogously, it seemed only natural to translate the question of uniqueness of
unconditional basis up to permutation to the setting of nonlocally convex spaces that are
infinite direct sums of the classical quasi-Banach spaces with a unique unconditional basis,
namely, �p(�q), �p(c0), �p(�1), �p(�2), c0(�p), �1(�p), and �2(�p), where 0 < p, q < 1. With
the exception of �2(�p) that remains elusive, the uniqueness of unconditional basis has
been established for all the other spaces (see [10, 12–14], in chronological order). Although
the proofs are very different depending on each case, all of them rely explicitly on the
corresponding results for their respective Banach envelopes shown in [5] and revolve
around the all-pervading “large coefficient” technique ([10, Theorem2.3]) for establishing
the equivalence of basic sequences.

In this paper we change the strategy, and the proofs in Section 2 hinge on Theorem 1.1.
This is a general result on complemented unconditional basic sequences in lattice anti-
Euclidean quasi-Banach spaces which extends a result from [7]. We recall that a quasi-Banach
lattice is called sufficiently lattice Euclidean if there is a constant M so that for any n ∈ N there
are operators Sn : X → �n2 and Tn : �n2 → X so that Sn ◦ Tn = I�n2 , ‖Sn‖‖Tn‖ ≤ M, and
Sn is a lattice homomorphism. This is equivalent to asking that �2 is finitely representable
as a complemented sublattice of X. We will say that X is lattice anti-Euclidean if it is not
sufficiently lattice Euclidean. We will also use the term sequence space to mean a quasi-Banach
space of sequences so that the canonical basis vectors form a 1-unconditional basis.

Theorem 1.1 (see [14, Theorem3.4]). Let Y and Z be quasi-Banach sequence spaces. Suppose that
Z is p-convex for some p > 0 and that Y is isomorphic to a complemented subspace of Z. Suppose that
the Banach envelope ̂Y of Y is lattice anti-Euclidean. Then there exists N ∈ N and a complemented
disjoint positive sequence (vn) inZN that is equivalent to the unit vector basis (un) in Y . Furthermore,
the projection P of ZN onto [vn] may be given in the form

P(z) =
∞
∑

n=1

v∗
n(z)vn, (1.1)

where v∗
n ≥ 0 and supp (v∗

n) ⊆ supp (vn) for all n.

To help determine whether two unconditional bases are permutatively equivalent we
will use the following form of the Cantor-Bernstein principle.
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Theorem 1.2 (see [11, Proposition 2.11]). Suppose (un)
∞
n=1 and (vn)

∞
n=1 are two unconditional basic

sequences of a quasi-Banach space X, then (un) and (vn) are equivalent (up to permutation) if and
only if (un) is equivalent (up to permutation) to a subsequence of (vn) and (vn) is equivalent (up to
permutation) to a subsequence of (un).

2. Main Result

In this section we settle the question of uniqueness of unconditional basis in the spaces T(p)

for 0 < p < 1. These spaces are the nonlocally convex counterpart to the p-convexification of
Tsirelson space for p > 1, introduced by Figiel and Johnson in [15]. Those readers who are
unfamiliar with Tsirelson space will find a handy construction and some of its elementary
properties in [16]. For a more in-depth approach, the standard reference is [17] (cf. [15]).

Given 0 < p < ∞, the p-convexification T(p) of Tsirelson space T is obtained from T by
putting

‖x‖T(p) =
∥

∥

(

|an|p
)∞
n=1

∥

∥

1/p
T

(2.1)

for those sequences of real numbers x = (an)
∞
n=1 such that (|an|p)∞n=1 ∈ T. Equation (2.1)

defines a norm for 1 ≤ p and a p-norm when 0 < p < 1. Obviously, the space (T(1), ‖ · ‖T(1) ) is
simply (T, ‖ · ‖T).

The canonical unit vectors form a 1-unconditional basis of T(p) for all 0 < p <
∞. Casazza and Kalton established in [7] the uniqueness of unconditional basis up to
permutation of T and its complemented subspaces with unconditional basis as a byproduct
of their study of complemented basic sequences in lattice anti-Euclidean Banach spaces. Their
result answered a question by Bourgain et al. in [5], where the authors had proved the
uniqueness of unconditional basis up to permutation in the 2-convexification T(2) of T.

Here we show that for p < 1, the space T(p) and its complemented subspaces with
unconditional basis belong to the class of quasi-Banach spaces with a unique unconditional
basis, up to permutation. The proof follows the steps of the corresponding uniqueness result
for T. This will require first to extend some concepts and results from [7] to quasi-Banach
sequence spaces. Despite the fact that the changes are minor, we decided to include them
here for reference and for future use.

Definition 2.1. Borrowing the definition from [7, Section 5], if X is a quasi-Banach space with
unconditional basis we will say that X is left-dominant with constant γ ≥ 1 if whenever
(u1, u2, . . . , un) and (v1, v2, . . . , vn) are two disjoint sequences in c00 with ‖uk‖X ≥ ‖vk‖X and
such that max{supp uk} < min{supp vk} for 1 ≤ k ≤ n, then ‖

∑n
k=1 vk‖X ≤ γ‖

∑n
k=1 uk‖X .

Similarly, we will say that X is right-dominant with constant γ if whenever (u1, u2, . . . , un) and
(v1, v2, . . . , vn) are two disjoint sequences in c00 with ‖uk‖X ≤ ‖vk‖X and such that max{supp
uk} < min{supp vk} for 1 ≤ k ≤ n, then ‖

∑n
k=1 uk‖X ≤ γ‖

∑n
k=1 vk‖X . We will refer to any

normalized unconditional basic sequence as being left-or right-dominant if the the associated
sequence space is left-or right-dominant respectively.

For example, the �p spaces are left- and right-dominant when 0 < p < ∞. In turn, T
is a right-dominant space as shown in [7, Proposition 5.12], and by the Remark thereafter we
infer that so is T(p) for 0 < p < ∞.

Our next results, Propositions 2.2 and 2.5, are essentially Theorems 5.6 and 5.7 of [7],
respectively, slightly modified to suit our purposes.
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Proposition 2.2 (see [7, Theorem5.6]). Let X be a left- or right-dominant quasi-Banach space X
with unconditional basis (en)

∞
n=1. Suppose that (un)n∈S (|S| ≤ ∞) is a complemented normalized

disjoint sequence in X, then (un)n∈S is permutatively equivalent to a subsequence (ekn)
∞
n=1 of (en)

∞
n=1.

Proof. The proof in the locally convex case applies almost verbatim to this setting and hence
we omit it.

The next two lemmas will be used in what follows.

Lemma 2.3 (see [7, Proposition 5.4]). Suppose that (un)
∞
n=1 is a left- (resp, right-) dominant basis

of a quasi-Banach space X and that π is a permutation of the natural numbers such that (uπ(n))
∞
n=1 is

also left- (resp, right-) dominant. then there is a constant C such that for any (αk) ∈ c00,

∥

∥

∥

∥

∥

∞
∑

k=1

αku2k

∥

∥

∥

∥

∥

≤ C

∥

∥

∥

∥

∥

∞
∑

k=1

αkuπ(k)

∥

∥

∥

∥

∥

(2.2)

resp,

∥

∥

∥

∥

∥

∞
∑

k=1

αku2k

∥

∥

∥

∥

∥

≥ C−1

∥

∥

∥

∥

∥

∞
∑

k=1

αkuπ(k)

∥

∥

∥

∥

∥

. (2.3)

We say that (un) is equivalent to its square if (un) is permutatively equivalent to the basis
{(u1, 0), (0, u1), (u2, 0), . . . , } of [un] ⊕ [un].

Lemma 2.4 (see [7, Proposition 5.5]). Let (un)
∞
n=1 be a left- or right-dominant basis of a quasi-

Banach space X. In order that (un)
∞
n=1 be equivalent to its square it is necessary and sufficient that

(un)
∞
n=1 be equivalent to (u2n)

∞
n=1.

Recall from the theory of Schauder bases that if (xn)
∞
n=1 and (yn)

∞
n=1 are basic sequences

in a quasi-Banach space X, then (xn)
∞
n=1 dominates (yn)

∞
n=1 if for all choices of scalars (an)

∞
n=1,

whenever
∑∞

n=1 anxn ∈ [xn]
∞
n=1 then

∑∞
n=1 anyn ∈ [yn]

∞
n=1.

Proposition 2.5 (see [7, Theorem5.7]). Suppose that X is a quasi-Banach space with a left- (or
right-) dominant unconditional basis (en)

∞
n=1 which induces a p-convex lattice structure on X for

some 0 < p < 1 and such that (en)
∞
n=1 is equivalent to its square. Assume that the Banach envelope ̂X

of X is lattice anti-Euclidean. Then,

(1) every complemented normalized unconditional basic sequence (un)n∈S in X is permuta-
tively equivalent to a subsequence (ekn)

∞
n=1 of (en)

∞
n=1,

(2) X has a unique unconditional basis, up to permutation.

Proof. Consider the left-dominant case. This assumption combined with the fact that (en)
∞
n=1

is equivalent to its square implies by Lemma 2.4 that (en)
∞
n=1 and (e2n)

∞
n=1 are equivalent.
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If (un)n∈S is a complemented normalized unconditional basic sequence in X, then, by
Theorem 1.1, (un)n∈S is equivalent to a complemented disjoint sequence in X, which by
Proposition 2.2 will in turn be permutatively equivalent to a subsequence (ekn)

∞
n=1 of (en)

∞
n=1.

Thus (1) follows.
To show (2), suppose that (un)

∞
n=1 is a normalized unconditional basis of X. Applying

Theorem 1.1 again we see that (en)
∞
n=1 is equivalent to a complemented disjoint sequence

of the N-fold basis (un)
N of XN for some N ∈ N. The sequence (fn) = (ekn)

N written in
the obvious order is easily seen to be left-dominant, so (en)

∞
n=1 is permutatively equivalent

to a subset of (ekn)
N . On the other hand, (ekn)

N is permutatively equivalent to a subset of
(en)

N , which is permutatively equivalent to (en). Theorem 1.2 yields that (ekn)
N and (en) are

permutatively equivalent.
The sequence (fn) dominates (e2n) by Lemma 2.3, and similarly (en) dominates (f2n).

Since (en) and (e4n) are equivalent we deduce that (f2n) is equivalent to (en). Now (f2n−1)
∞
n=1

is dominated by (f1, f2, f4, . . . , f2n−2, . . .) and dominates (f1, f4, f8, . . . , f4n−4, . . .) and so is also
equivalent to (f2n). Therefore (fn) is equivalent to (en). Now (fNn) is equivalent to (eNn)
and hence to (en). Since fNn = (0, . . . , 0, ekn), (ekn) is equivalent to (en) and the proof is
complete.

Theorem 2.6. If 0 < p < 1, the p-convexified Tsirelson space T(p) and all its complemented subspaces
with unconditional basis have a unique unconditional basis, up to permutation.

Proof. For 0 < p < 1, the space T(p) is p-convex, right-dominant, and its Banach
envelope, �1, is lattice anti-Euclidean. Besides, a straightforward argument on equivalence
of basic sequences combined with the fact that (en)

∞
n=1 and (e2n)

∞
n=1 are equivalent in T

(see [17, page 14]) yields that (en)
∞
n=1 and (e2n)

∞
n=1 are equivalent also in T(p). An appeal

to Lemma 2.4 yields the equivalence of (en) and (en)
2 so that T(p) is lattice isomorphic

to its square. Hence the uniqueness of unconditional basis in T(p) is a consequence of
Proposition 2.5(2).

If Y is a (finite or infinite-dimensional) complemented subspace of T(p) with
normalized unconditional basis (un)n∈S, then (un)n∈S is permutatively equivalent to a
subsequence (ekn)

∞
n=1 of (en)

∞
n=1 by Proposition 2.5(1). Clearly, (ekn)

∞
n=1 is right-dominant and

equivalent to (ek2n)
∞
n=1 (see [17, page 14]) and the result follows in the same way as in the

preceding paragraph.

Remark 2.7. For 1 < p /= 2 the p-convexificationT(p) ofT does not have a unique unconditional
basis up to permutation. Indeed, as Kalton pointed out, this is so because T(p) can be
represented as (�1p⊕�2p⊕· · · �np ⊕· · · )T, and, in this sum, the factor �np has an unconditional basis
containing among its vectors an �k2 with k ∼ logn (see [18, page 1649]). This also implies that,
in this case, T(p) is sufficiently Euclidean and so the arguments in the proofs of Theorems 2.6
and [7, Theorem5.7] will not work.

Our work leaves open the following uniqueness questions.

Problem 1. Let 0 < p < 1. Does the space �p(T) have unique unconditional basis up to a
permutation?

Problem 2. It is known that c0(T) fails to have a unique unconditional basis up to permutation
[19]. It would be interesting to know whether the same holds or not in the spaces c0(T(p)) for
0 < p < 1.
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Problem 3. Determine if �1(T(p)) has a unique unconditional basis up to permutation when
p < 1 and when p = 1.
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[12] C. Leránoz, “Uniqueness of unconditional bases of c0(lp), 0 < p < 1,” Studia Mathematica, vol. 102, no.
3, pp. 193–207, 1992.
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