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1. Introduction

Let C be a subset of real Banach spaceX. Let T be a self-mapping of C and let F(T) denote the
fixed points set of T , that is, F(T) := {x ∈ C : Tx = x}. Recall that a mapping T is said to be
asymptotically nonexpansive on C if there exists a sequence {bn} in [0,∞) with limn→∞bn = 0
such that for each x, y ∈ C,

∥
∥Tnx − Tny

∥
∥ ≤ (1 + bn)

∥
∥x − y

∥
∥, ∀n ≥ 1. (1.1)

If bn = 0 for all n ≥ 1, then T is known as a nonexpansive mapping. T is called
generalized asymptotically quasi-nonexpansive [1] if there exist sequences {bn}, {cn} in [0,∞)
with limn→∞ bn = 0 = limn→∞ cn such that

∥
∥Tnx − p

∥
∥ ≤ (1 + bn)

∥
∥x − p

∥
∥ + cn, ∀n ≥ 1, (1.2)



2 Abstract and Applied Analysis

for all x ∈ C and all p ∈ F(T). If cn = 0 for all n ≥ 1, then T is known as an
asymptotically quasi-nonexpansive mapping. T is called asymptotically nonexpansive mapping
in the intermediate sense [2] provided that T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(∥
∥Tnx − Tny

∥
∥ − ∥

∥x − y
∥
∥
) ≤ 0. (1.3)

T is said to be (L − γ) uniform Lipschitz [3] if there are constants L > 0 and γ > 0 such that

∥
∥Tnx − Tny

∥
∥ ≤ L

∥
∥x − y

∥
∥
γ
, ∀n ≥ 1, (1.4)

for all x, y ∈ C. A mapping T is called semicompact if any bounded sequence {xn} in C with
limn→∞ ‖xn − Txn‖ = 0, there exists a subsequence {xni} of {xn} such that {xni} converges
strongly to some x∗ in C.

Remark 1.1. Let T be asymptotically nonexpansive mapping in the intermediate sense. Put
Gn = supx,y∈C (‖Tnx − Tny‖ − ‖x − y‖) ∨ 0, ∀n ≥ 1.

If F(T)/=Ø, we obtain that ‖Tnx−p‖ ≤ ‖x−p‖+Gn for all x ∈ C and all p ∈ F(T). Since
limn→∞ Gn = 0, therefore T is a generalized asymptotically quasi-nonexpansive mapping.

Recall that a mapping T : C → C with F(T)/=Ø is said to satisfy condition (I) [4] if
there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(t) > 0 for all
t ∈ (0,∞) such that ‖x − Tx‖ ≥ f(d(x, F(T))) for all x ∈ C, where d(x, F(T)) = inf {‖x − p‖ :
p ∈ F(T)}.

Fixed-point iteration processes for asymptotically quasi-nonexpansive mapping in
Banach spaces including Mann and Ishikawa iterations processes have been studied
extensively by many authors; see [3, 5–11]. Many of them are used widely to study the
approximate solutions of the certain problems. In 1974, Senter and Dotson [4] studied the
convergence of the Mann iteration scheme defined by x1 ∈ C,

xn+1 = αnTxn + (1 − αn)xn
, ∀n ≥ 1, (1.5)

in a uniformly convex Banach space, where {αn} is a sequence satisfying 0 < a ≤ αn ≤ b <
1 for all n ≥ 1 and T is a nonexpansive (or a quasi-nonexpansive)mapping. They established
a relation between condition (I) and demicompactness.

Recall that a mapping T : C → C is demicompact if for every bounded sequence
{xn} in C such that {xn − Txn} converges, there exists a subsequence say {xnj} of {xn}
that converges strongly to some y in C. Every compact and semicompact mapping is
demicompact. They actually showed that condition (I) is weaker than demicompactness for a
nonexpansive mapping defined on bounded set.

Xu and Noor [12], in 2002, introduced a three-step iterative scheme as follows:

zn = anT
nxn + (1 − an)xn

,

yn = bnT
nzn + (1 − bn)xn

,

xn+1 = αnT
nyn + (1 − αn)xn

, n ≥ 1,

(1.6)
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where {an}, {bn}, {αn} are appropriate sequences in [0, 1]. The theory of three-step iterative
scheme is very rich, and this scheme, in the context of one or more mappings, has been
extensively studied (e.g., see Khan et al. [6], Plubtieng and Wangkeeree [7], Fukhar-ud-din
and Khan [5], Petrot [13], and Suantai [14]). It has been shown in [15] that three-step method
performs better than two-step and one-step methods for solving variational inequalities.

In 2001, Khan and Takahashi [16] have approximated common fixed points of two
asymptotically nonexpansive mappings by the modified Ishikawa iteration. Jeong and
Kim [17] have approximated common fixed points of two asymptotically nonexpansive
mappings. Plubtieng et al. [18], in 2006, modified Noor iterations with errors and have
approximated common fixed points of three asymptotically nonexpansive mappings.
Shahzad and Udomene [10] established convergence theorems for the modified Ishikawa
iteration process of to asymptotically quasi-nonexpansive mappings to a common fixed point
of the mappings. Plubtieng and Wangkeeree [7], in 2006, established strong convergence
theorems of the modified multistep Noor iterations with errors for an asymptotically quasi-
nonexpansivemapping and asymptotically nonexpansivemapping in the intermediate sense.

Very recently, Khan et al. [6], in 2008, established convergence theorems for
the modified multistep Noor iterations process of finite family of asymptotically quasi-
nonexpansive mappings to a common fixed point of the mappings. For rerated results with
errors terms, we refer to [5–7, 17–21]. Inspired and motivated by these facts, we introduce a
new iteration process for a finite family of {Ti : i = 1, 2, . . . , k} of generalized asymptotically
quasi-nonexpansive mappings as follows.

Let Ti : C → C (i = 1, 2, . . . , k) be mappings and F :=
⋂k

i=1F(Ti). For a given x1 ∈ C,
and a fixed k ∈ N (N denote the set of all positive integers), compute the iterative sequences
{xn} and {yin} by

xn+1 = ykn = αknT
n
k y(k−1)n + βknxn + γknukn,

y(k−1)n = α(k−1)nTn
k−1y(k−2)n + β(k−1)nxn + γ(k−1)nu(k−1)n,

...

y3n = α3nT
n
3 y2n + β3nxn + γ3nu3n,

y2n = α2nT
n
2 y1n + β2nxn + γ2nu2n,

y1n = α1nT
n
1 y0n + β1nxn + γ1nu1n,

(1.7)

where y0n = xn and {u1n}, {u2n}, . . . , {ukn} are bounded sequences in C with {αin}, {βin}, and
{γin} are appropriate real sequences in [0, 1] such that αin + βin + γin = 1 for all i = 1, 2, . . . , k
and all n. Our iteration includes and extends the Mann iteration (1.5), three-step iteration by
Xu and Noor (1.6), the multistep Noor iterations with errors by Plubtieng and Wangkeeree
[7], and the iteration defined by Khan et al. [6] simultaneously.

The purpose of this paper is to establish several strong convergence theorems of the
iterative scheme (1.7) for a finite family of generalized asymptotically quasi-nonexpansive
mappings when one mapping Ti satisfies a condition which is weaker than demicompactness
and we also weak convergence theorem for a finite family of generalized asymptotically
quasi-nonexpansive mappings in a uniformly convex Banach space satisfying Opial’s
property. Our results generalize and improve the corresponding ones announced by Khan
et al. [6], Fukhar-ud-din and Khan [5], and many others.
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2. Preliminaries

In the sequel, the following lemmas are needed to prove our main results.
A mapping T with domain D(T) and range R(T) in X is said to be demiclosed at 0 if

whenever {xn} is a sequence inD(T) such that {xn} converges weakly to x ∈ D(T) and {Txn}
converging strongly to 0, we have Tx = 0.

A Banach spaceX is said to satisfyOpial’s property if for each x inX and each sequence
{xn}weakly convergent to x, the following condition holds for x /=y:

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥
∥xn − y

∥
∥. (2.1)

It is well known that all Hilbert spaces and lp (1 < p < ∞) spaces have Opial’s property
while Lp spaces (p /= 2) have not. A family {Ti : i = 1, 2, . . . , k} of self-mappings of C with
F :=

⋂k
i=1F(Ti)/=Ø is said to satisfy the following conditions.

(1) Condition (A) [22]. If there is a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0 and f(t) > 0 for all t ∈ (0,∞) such that 1/k

∑k
i=1 ‖x − Tix‖ ≥ f(d(x, F)) for

all x ∈ C, where d(x, F) = inf {‖x − p‖ : p ∈ F}.
(2) Condition (B) [22]. If there is a nondecreasing function f : [0,∞) → [0,∞) with

f(0) = 0 and f(t) > 0 for all t ∈ (0,∞) such that max1≤i≤k {‖x − Tix‖} ≥ f(d(x, F))
for all x ∈ C.

(3) Condition (C) [22]. If there is a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0 and f(t) > 0 for all t ∈ (0,∞) such that ‖x − Tlx‖ ≥ f(d(x, F)) for all x ∈ C
and for at least one Tl, l = 1, 2, . . . , k.

Note that (B) and (C) are equivalent, condition (B) reduces to condition (I)when all but one
of Ti’s are identities, and in addition, it also condition (A).

It is well known that every continuous and demicompact mapping must satisfy
condition (I) (see [4]). Since every completely continuous T : C → C is continuous and
demicompact so that it satisfies condition (I). Thus we will use condition (C) instead of the
demicompactness and complete continuity of a family {Ti : i = 1, 2, . . . , k}.

Lemma 2.1 (see [8, Lemma 1]). Let {an}, {bn}, and {δn} be sequences of nonnegative real numbers
satisfying the inequality

an+1 ≤ (1 + δn)an + bn, ∀n = 1, 2, . . . . (2.2)

If
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞, then

(i) limn→∞ an exists;

(ii) limn→∞ an = 0 whenever lim infn→∞ an = 0.

Lemma 2.2 (see [7, Lemma 3.1]). Let X be a uniformly convex Banach space, {xn}, {yn} ⊂ X, real
numbers a ≥ 0, α, β ∈ (0, 1), and let {αn} be a real sequence number which satisfies

(i) 0 < α ≤ αn ≤ β < 1, for all n ≥ n0 and for some n0 ∈ N;

(ii) lim supn→∞ ‖xn‖ ≤ a and lim supn→∞ ‖yn‖ ≤ a;

(iii) limn→∞ ‖αnxn + (1 − αn)yn‖ = a. Then limn→∞ ‖xn − yn‖ = 0.
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Lemma 2.3 (see [14, Lemma 2.7]). Let X be a Banach space which satisfies Opial’s property and let
{xn} be a sequence in X. Let u, v ∈ X be such that limn→∞ ‖xn − u‖ and limn→∞ ‖xn − v‖ exist.
If {xnk} and {xmk} are subsequences of {xn} which converge weakly to u and v, respectively, then
u = v.

3. Convergence Theorems in Banach Spaces

Our first result is the strong convergence theorems of the iterative scheme (1.7) for a finite
family of generalized asymptotically quasi-nonexpansive mappings in a Banach space. In
order to prove our main results, the following lemma is needed.

Lemma 3.1. Let X be a Banach space and C a nonempty closed and convex subset of X, and {Ti : i =
1, 2, . . . , k} a finite family of generalized asymptotically quasi-nonexpansive self-mappings of C with
the sequences {bin}, {cin} ⊂ [0,∞) such that

∑∞
n=1 bin < ∞ and

∑∞
n=1 cin < ∞ for all i = 1, 2, . . . , k.

Assume that F /=Ø and
∑∞

n=1 γin < ∞ for each i = 1, 2, . . . , k. For a given x1 ∈ C, let the sequences
{xn} and {yin} be defined by (1.7). Then

(a) there exist sequences {vn} and {ein} in [0,∞) such that
∑∞

n=1 vn < ∞,
∑∞

n=1 ein < ∞, and
‖yin − p‖ ≤ (1 + vn)

i‖xn − p‖ + ein, for all i = 1, 2, . . . , k and all p ∈ F;

(b) limn→∞ ‖xn − p‖ exists for all p ∈ F;

(c) there exist constant M > 0 and {si} in [0,∞) such that
∑∞

i=1 si < ∞ and ‖xn+m − p‖ ≤
M‖xn − p‖ +∑∞

i=n si for all p ∈ F and n,m ∈ N.

Proof. (a) Let p ∈ F, vn = max1≤i≤k {bin} and dn = max1≤i≤k {cin} for all n.
Since

∑∞
n=1 bin < ∞ and

∑∞
n=1 cin < ∞, for all i = 1, 2, . . . , k, therefore

∑∞
n=1 vn < ∞ and

∑∞
n=1 dn < ∞. For each n ≥ 1, we note that

∥
∥y1n − p

∥
∥ =

∥
∥α1nT

n
1 y0n + β1nxn + γ1nu1n − p

∥
∥

≤ α1n
∥
∥Tn

1 xn − p
∥
∥ + β1n

∥
∥xn − p

∥
∥ + γ1n

∥
∥u1n − p

∥
∥

≤ α1n(1 + b1n)
∥
∥xn − p

∥
∥ + α1nc1n + β1n

∥
∥xn − p

∥
∥ + γ1n

∥
∥u1n − p

∥
∥

≤ α1n(1 + vn)
∥
∥xn − p

∥
∥ + α1ndn + β1n(1 + vn)

∥
∥xn − p

∥
∥ + γ1n

∥
∥u1n − p

∥
∥

≤ (1 + vn)
∥
∥xn − p

∥
∥ + e1n,

(3.1)

where e1n = α1ndn + γ1n‖u1n − p‖. Since {u1n} is bounded,
∑∞

n=1 γ1n < ∞ and
∑∞

n=1 dn < ∞, we
obtain that

∑∞
n=1 e1n < ∞. It follows from (3.1) that

‖y2n − p‖ ≤ α2n
∥
∥Tn

2 y1n − p
∥
∥ + β2n

∥
∥xn − p

∥
∥ + γ2n

∥
∥u2n − p

∥
∥

≤ α2n(1 + vn)
∥
∥y1n − p

∥
∥ + α2ndn + β2n

∥
∥xn − p

∥
∥ + γ2n

∥
∥u2n − p

∥
∥

≤ α2n(1 + vn)
(

(1 + vn)
∥
∥xn − p

∥
∥ + e1n

)

+ α2ndn + β2n(1 + vn)2
∥
∥xn − p

∥
∥ + γ2n

∥
∥u2n − p

∥
∥

=
(

α2n + β2n
)

(1 + vn)2
∥
∥xn − p

∥
∥ + α2n(1 + vn)e1n + α2ndn + γ2n

∥
∥u2n − p

∥
∥

≤ (1 + vn)2
∥
∥xn − p

∥
∥ + e2n,

(3.2)
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where e2n = α2n(1+vn)e1n +α2ndn + γ2n‖u2n −p‖. Since {u2n}, {vn} are bounded,
∑∞

n=1 e1n < ∞,
∑∞

n=1 dn < ∞, and
∑∞

n=1 γ2n < ∞, it follows that
∑∞

n=1 e2n < ∞. Moreover, we see that

∥
∥y3n − p

∥
∥ ≤ α3n

∥
∥Tn

3 y2n − p
∥
∥ + β3n

∥
∥xn − p

∥
∥ + γ3n

∥
∥u3n − p

∥
∥

≤ α3n(1 + vn)
∥
∥y2n − p

∥
∥ + α3ndn + β3n

∥
∥xn − p

∥
∥ + γ3n

∥
∥u3n − p

∥
∥

≤ α3n(1+vn)
(

(1+vn)2
∥
∥xn − p

∥
∥ + e2n

)

+α3ndn + β3n(1 + vn)3
∥
∥xn − p

∥
∥ + γ3n

∥
∥u3n − p

∥
∥

=
(

α3n + β3n
)

(1 + vn)3
∥
∥xn − p

∥
∥ + α3n(1 + vn)e2n + α3ndn + γ3n

∥
∥u3n − p

∥
∥

≤ (1 + vn)3
∥
∥xn − p

∥
∥ + e3n,

(3.3)

where e3n = α3n(1 + vn)e2n + α3ndn + γ3n‖u3n − p‖. Since {u3n}, {vn} are bounded,
∑∞

n=1 e2n <
∞,

∑∞
n=1 dn < ∞, and

∑∞
n=1 γ3n < ∞, it follows that

∑∞
n=1 e3n < ∞. By continuing the above

method, there are nonnegative real sequences {ein} in [0,∞) such that
∑∞

n=1 ein < ∞ and

∥
∥yin − p

∥
∥ ≤ (1 + vn)i

∥
∥xn − p

∥
∥ + ein ∀i = 1, 2, . . . , k. (3.4)

This completes the proof of (a).
(b) From part (a), for the case i = k, we have

∥
∥xn+1 − p

∥
∥ ≤ (1 + vn)k

∥
∥xn − p

∥
∥ + ekn, ∀n, p ∈ F. (3.5)

It follows from Lemma 2.1(i) that limn→∞ ‖xn − p‖ exists, for all p ∈ F.
(c) If t ≥ 0, then 1 + t ≤ et and so, (1 + t)k ≤ ekt, for k = 1, 2, . . . . Thus, from (3.5), it

follows that

∥
∥xn+m − p

∥
∥ ≤ (1 + vn+m−1)k

∥
∥xn+m−1 − p

∥
∥ + ek(n+m−1)

≤ exp {kvn+m−1}
∥
∥xn+m−1 − p

∥
∥ + ek(n+m−1)

≤ · · · ≤ exp

{

k
n+m−1∑

i=n

vi

}

∥
∥xn − p

∥
∥ +

n+m−1∑

i=n

eki

≤ exp

{

k
∞∑

i=1

vi

}

∥
∥xn − p

∥
∥ +

∞∑

i=n

eki

≤ M
∥
∥xn − p

∥
∥ +

∞∑

i=n

si,

(3.6)

where M = exp{k∑∞
i=1 vi} and si = eki.
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Theorem 3.2. LetX be a Banach space and C a nonempty closed and convex subset ofX and {Ti : i =
1, 2, . . . , k} a finite family of generalized asymptotically quasi-nonexpansive self-mappings of C with
the sequences {bin}, {cin} ⊂ [0,∞) such that

∑∞
n=1 bin < ∞ and

∑∞
n=1 cin < ∞ for all i = 1, 2, . . . , k.

Assume that F /= ∅ is closed and
∑∞

n=1 γin < ∞ for each i = 1, 2, . . . , k. Then the iterative sequence
{xn} defined by (1.7) converges strongly to a common fixed point of the family of mappings if and
only if lim infn→∞ d(xn, F) = 0.

Proof. We prove only the sufficiency because the necessity is obvious. From (3.5), we have
‖xn+1 − p‖ ≤ (1 + vn)

k‖xn − p‖ + ekn, for all n and all p ∈ F.
Hence, we have

d(xn+1, F) ≤ (1 + vn)kd(xn, F) + ekn

=

(

1 +
k∑

r=1

k(k − 1) . . . (k − r + 1)
r!

vr
n

)

d(xn, F) + ekn.
(3.7)

Since
∑∞

n=1 vn < ∞, it follows that
∑∞

n=1
∑k

r=1(k(k−1) · · · (k−r+1)/r!)vr
n < ∞. Since

∑∞
n=1 ekn <

∞ and lim infn→∞ d(xn, F) = 0, it follows from Lemma 2.1(ii) that limn→∞ d(xn, F) = 0. Next,
we prove that {xn} is a Cauchy sequence. From Lemma 3.1(c), we have

∥
∥xn+m − p

∥
∥ ≤ M

∥
∥xn − p

∥
∥ +

∞∑

i=n

si, ∀p ∈ F, n,m ∈ N. (3.8)

Since limn→∞d(xn, F) = 0 and
∑∞

i=1 si < ∞, therefore for ε > 0, there exists n0 ∈ N such that

d(xn, F) <
ε

4M
,

∞∑

i=n0

si <
ε

4
, ∀n ≥ n0. (3.9)

Therefore, there exists z1 in F such that

‖xn0 − z1‖ <
ε

4M
. (3.10)

From (3.8) to (3.10), for all n ≥ n0 and m ≥ 1, we have

‖xn+m − xn‖ ≤ ‖xn+m − z1‖ + ‖xn − z1‖

≤ M‖xn0 − z1‖ +
∞∑

i=n0

si +M‖xn0 − z1‖ +
∞∑

i=n0

si

< M
ε

4M
+
ε

4
+M

ε

4M
+
ε

4
= ε.

(3.11)

This shows that {xn} is a Cauchy sequence, hence xn → z ∈ C. It remains to show that z ∈ F.
Notice that

|d(z, F) − d(xn, F)| ≤ ‖z − xn‖, ∀n. (3.12)

Since limn→∞d(xn, F) = 0, we obtain that z ∈ F.
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The following corollary follows from Theorem 3.2.

Corollary 3.3. LetX be a Banach space andC a nonempty closed and convex subset ofX and {Ti : i =
1, 2, . . . , k} a finite family of generalized asymptotically quasi-nonexpansive self-mappings of C with
the sequences {bin}, {cin} ⊂ [0,∞) such that

∑∞
n=1 bin < ∞ and

∑∞
n=1 cin < ∞ for all i = 1, 2, . . . , k.

Assume that F /= ∅ is closed and
∑∞

n=1 γin < ∞ for each i = 1, 2, . . . , k. Then the iterative sequence
{xn}, defined by (1.7), converges strongly to a point p ∈ F if and only if there exists a subsequence
{xnj} of {xn} converging to p.

Since an asymptotically quasi-nonexpansive mapping is generalized asymptotically
quasi-nonexpansive mapping, so we have the following result.

Corollary 3.4. LetX be a Banach space andC a nonempty closed and convex subset ofX and {Ti : i =
1, 2, . . . , k} a finite family of asymptotically quasi-nonexpansive self-mappings ofC with the sequences
{bin} ⊂ [0,∞) such that

∑∞
n=1 bin < ∞ for all i = 1, 2, . . . , k. Assume that F /=Ø and

∑∞
n=1 γin < ∞

for each i = 1, 2, . . . , k. Then the iterative sequence {xn}, defined by (1.7), converges strongly to a
common fixed point of the family of mappings if and only if lim infn→∞ d(xn, F) = 0.

Remark 3.5. Theorem 3.2 generalizes and extends Theorem 2.2 of Khan et al. [6], for a finite
family of asymptotically quasi-nonexpansive mappings, Theorem 1 of Fukhar-ud-din and
Khan [5], and Theorem 3.2 of Shahzad and Udomene [10] for two asymptotically quasi-
nonexpanaive mappings to the more general class of generalized asymptotically quasi-
nonexpansive mappings.

Theorem 3.6. LetX be a Banach space and C a nonempty closed and convex subset ofX and {Ti : i =
1, 2, . . . , k} a finite family of generalized asymptotically quasi-nonexpansive self-mappings of C with
the sequences {bin}, {cin} ⊂ [0,∞) such that

∑∞
n=1 bin < ∞ and

∑∞
n=1 cin < ∞ for all i = 1, 2, . . . , k.

Suppose that F /= ∅ is closed. Let x1 ∈ C and {xn} be the sequence defined by (1.7). If
∑∞

n=1 γin < ∞,
limn→∞ ‖xn − Tixn‖ = 0 for all i = 1, 2, . . . , k and {Ti : i = 1, 2, . . . , k} satisfies condition (C), then
{xn} converges strongly to a common fixed point of the family of mappings.

Proof. From limn→∞ ‖xn − Tixn‖ = 0 for all i = 1, 2, . . . , k and {Ti : i = 1, 2, . . . , k} satisfying
condition (C), there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and
f(t) > 0 for all t ∈ (0,∞) such that ‖xn − Ti0xn‖ ≥ f(d(xn, F)) for some i0 ∈ {1, 2, . . . , k}, it
follows that limn→∞ d(xn, F) = 0. From Theorem 3.2, we obtain that {xn} converges strongly
to a common fixed point of the family of mappings.

4. Convergence Theorems in Uniformly Convex Banach Spaces

In this section, we establish weak and strong convergence theorems of the iterative scheme
(1.7) for a finite family of generalized asymptotically quasi-nonexpansive and (L−γ) uniform
Lipschitz mappings in a uniformly convex Banach space. In order to prove our main results,
we need the following lemma.

Lemma 4.1. LetC be a nonempty closed and convex subset of a uniformly convex Banach spaceX and
{Ti, i = 1, 2, . . . , k} a finite family of (L− γ) uniform Lipschitz and generalized asymptotically quasi-
nonexpansive self-mappings of C with the sequences {bin}, {cin} ⊂ [0,∞) such that

∑∞
n=1 bin < ∞

and
∑∞

n=1 cin < ∞ for all i = 1, 2, . . . , k. Assume that F /=Ø and
∑∞

n=1 γin < ∞ for all i = 1, 2, . . . , k.
For a given x1 ∈ C let {xn} and {yin} be the sequences defined by (1.7) with 0 < η ≤ αin ≤ ρ < 1,
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for all i = 1, 2, . . . , k and all n ≥ n0 and for some n0 ∈ N. Then

(i) limn→∞‖Tn
j y(j−1)n − xn‖ = 0 for all j = 1, 2, . . . , k,

(ii) limn→∞ ‖Tjxn − xn‖ = 0 for all j = 1, 2, . . . , k,

(iii) limn→∞ ‖yjn − xn‖ = 0 for all j = 1, 2, . . . , k.

Proof. Let p ∈ F, vn = max1≤i≤k {bin} and dn = max1≤i≤k {cin} for all n.
(i) From Lemma 3.1(b), we have that lim n→∞ ‖xn − p‖ exists for all p ∈ F. Suppose

that

lim
n→∞

∥
∥xn − p

∥
∥ = a. (4.1)

From (3.4) and (4.1), we get that

lim sup
n→∞

∥
∥yjn − p

∥
∥ ≤ a, for 1 ≤ j ≤ k − 1. (4.2)

For each j ∈ {1, 2, . . . , k − 1} and n ∈ N, we have

∥
∥yjn − p

∥
∥ ≤ αjn

∥
∥
∥Tn

j y(j−1)n − p
∥
∥
∥ + βjn

∥
∥xn − p

∥
∥ + γjn

∥
∥ujn − p

∥
∥

≤ αjn(1 + vn)
∥
∥
∥y(j−1)n − p

∥
∥
∥ + αjn(1 + vn)dn

+
(

1 − αjn

)

(1 + vn)
∥
∥xn − p

∥
∥ + γjn(1 + vn)

∥
∥ujn − p

∥
∥.

(4.3)

By using (4.3) and (1.7), for each j = 1, 2, . . . , k − 1, we have

∥
∥xn+1 − p

∥
∥ =

∥
∥αkn

(

Tn
k y(k−1)n − p

)

+ βkn
(

xn − p
)

+ γkn
(

ukn − p
)∥
∥

≤ αkn(1 + vn)
∥
∥y(k−1)n − p

∥
∥ + (1 − αkn)(1 + vn)

∥
∥xn − p

∥
∥

+ αkn(1 + vn)dn + γkn
∥
∥ukn − p

∥
∥(1 + vn)

≤ (

αknα(k−1)n
)

(1 + vn)2
∥
∥y(k−2)n − p

∥
∥

+
(

1 − αknα(k−1)n
)

(1 + vn)2
∥
∥xn − p

∥
∥ +

(

αkn + α(k−1)n
)

(1 + vn)2dn

+
(

γkn
∥
∥ukn − p

∥
∥ + γ(k−1)n

∥
∥u(k−1)n − p

∥
∥
)

(1 + vn)2

...

≤
(

αknα(k−1)n · · ·α(j+1)n
)

(1 + vn)(k−j)
∥
∥yjn − p

∥
∥

+
(

1 − αknα(k−1)n · · ·α(j+1)n
)

(1 + vn)(k−j)
∥
∥xn − p

∥
∥

+
(

αkn + α(k−1)n + · · · + α(j+1)n
)

(1 + vn)(k−j)dn

+
(

γkn
∥
∥ukn − p

∥
∥ + γ(k−1)n

∥
∥u(k−1)n − p

∥
∥ + · · · + γ(j+1)n

∥
∥u(j+1)n − p

∥
∥

)

(1 + vn)k−j .

(4.4)
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Since 0 < η ≤ αin ≤ ρ < 1, for all i = 1, 2, . . . , k and all n ≥ n0, we have that for all n ≥ n0 and
all j = 1, 2, . . . , k − 1,

∥
∥xn − p

∥
∥ ≤

∥
∥xn − p

∥
∥

ηk−j −
∥
∥xn+1 − p

∥
∥

ηk−j(1 + vn)k−j
+
∥
∥yjn − p

∥
∥ +

ξjn

ηk−j dn +
ϑjn

ηk−j , (4.5)

where ξjn = αkn + α(k−1)n + · · · + α(j+1)n and ϑjn = γkn‖ukn − p‖ + γ(k−1)n‖u(k−1)n − p‖ + · · · +
γ(j+1)n‖u(j+1)n − p‖. Since limn→∞ ‖xn − p‖ = a and limn→∞ ϑjn = limn→∞ dn = limn→∞ vn = 0,
it follows that

a ≤ lim inf
n→∞

∥
∥yjn − p

∥
∥, ∀j = 1, 2, . . . , k − 1. (4.6)

From (4.2) and (4.6), we have

lim
n→∞

∥
∥yjn − p

∥
∥ = a = lim

n→∞
∥
∥xn − p

∥
∥, ∀j = 1, 2, . . . , k − 1. (4.7)

That is, for each j = 1, 2, . . . , k, we have

lim
n→∞

∥
∥
∥αjn

(

Tn
j y(j−1)n − p + γjn

(

ujn − xn

))

+
(

1 − αjn

)(

xn − p + γjn
(

ujn − xn

))
∥
∥
∥ = a. (4.8)

Since

∥
∥
∥Tn

j y(j−1)n − p + γjn
(

ujn − xn

)
∥
∥
∥ ≤ ‖Tn

j y(j−1)n − p‖ + γjn
∥
∥ujn − xn

∥
∥

≤ (1 + vn)
∥
∥
∥y(j−1)n − p

∥
∥
∥ + dn + γjn

∥
∥ujn − xn

∥
∥,

∥
∥xn − p + γjn

(

ujn − xn

)∥
∥ ≤ ∥

∥xn − p
∥
∥ + γjn

∥
∥ujn − xn

∥
∥,

(4.9)

it follows that

lim sup
n→∞

∥
∥
∥Tn

j y(j−1)n − p + γjn
(

ujn − xn

)
∥
∥
∥ ≤ a, (4.10)

lim sup
n→∞

∥
∥xn − p + γjn

(

ujn − xn

)∥
∥ ≤ a, ∀j = 1, 2, . . . , k. (4.11)

From (4.8) to (4.11), we can conclude from Lemma 2.2 that

lim
n→∞

∥
∥
∥Tn

j y(j−1)n − xn

∥
∥
∥ = 0, ∀j = 1, 2, . . . , k. (4.12)
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(ii) It follows from part (i) in the case j = 1 that limn→∞ ‖Tn
1 xn − xn‖ = 0. For j =

2, 3, . . . , k, we obtain from part (i) that

∥
∥
∥Tn

j xn − xn

∥
∥
∥ ≤

∥
∥
∥Tn

j xn − Tn
j y(j−1)n

∥
∥
∥ +

∥
∥
∥Tn

j y(j−1)n − xn

∥
∥
∥

≤ L
∥
∥
∥xn − y(j−1)n

∥
∥
∥

γ
+
∥
∥
∥Tn

j y(j−1)n − xn

∥
∥
∥

≤ L
(

α(j−1)n
∥
∥
∥Tn

j−1y(j−2)n − xn

∥
∥
∥ + γ(j−1)n

∥
∥
∥u(j−1)n − xn

∥
∥
∥

)γ

+
∥
∥
∥Tn

j y(j−1)n − xn

∥
∥
∥ → 0 as n → ∞.

(4.13)

Therefore,

lim
n→∞

∥
∥
∥Tn

j xn − xn

∥
∥
∥ = 0, ∀j = 1, 2, . . . , k. (4.14)

Since

∥
∥xn − Tjxn

∥
∥ ≤ ‖xn+1 − xn‖ +

∥
∥
∥xn+1 − Tn+1

j xn+1

∥
∥
∥

+
∥
∥
∥Tn+1

j xn+1 − Tn+1
j xn

∥
∥
∥ +

∥
∥
∥Tn+1

j xn − Tjxn

∥
∥
∥

≤ αkn

∥
∥Tn

k y(k−1)n − xn

∥
∥ + γkn‖ukn − xn‖ +

∥
∥
∥xn+1 − Tn+1

j xn+1

∥
∥
∥

+ L
(

αkn

∥
∥Tn

k y(k−1)n − xn

∥
∥ + γkn‖ukn − xn‖

)γ + L
∥
∥
∥Tn

j xn − xn

∥
∥
∥

γ
,

(4.15)

it follows from (i) and (4.14) that

lim
n→∞

∥
∥Tjxn − xn

∥
∥ = 0, ∀j = 1, 2, . . . , k. (4.16)

(iii) Since limn→∞ γjn = 0 and

∥
∥yjn − xn

∥
∥ ≤ αjn

∥
∥
∥Tn

j y(j−1)n − xn

∥
∥
∥ + γjn

∥
∥ujn − xn

∥
∥ (4.17)

for all j ∈ {1, 2, . . . , k}, (iii) is directly obtained by (i).

Theorem 4.2. Let C be a nonempty closed and convex subset of a uniformly convex Banach space X
satisfying the Opial’s property, and {Ti, i = 1, 2, . . . , k} a finite family of (L−γ) uniform Lipschitz and
generalized asymptotically quasi-nonexpansive self-mappings of C with the sequences {bin}, {cin} ⊂
[0,∞) such that

∑∞
n=1 bin < ∞ and

∑∞
n=1 cin < ∞ for all i = 1, 2, . . . , k. Assume that F /=Ø and

∑∞
n=1 γin < ∞ for all i = 1, 2, . . . , k. For a given x1 ∈ C let {xn} be the sequence defined by (1.7)

with 0 < η ≤ αin ≤ ρ < 1, for all i = 1, 2, . . . , k and all n ≥ n0 and for some n0 ∈ N. If I − Ti,
i = 1, 2, . . . , k, is demiclosed at 0, then {xn} converges weakly to a common fixed point of the family
{Ti : i = 1, 2, . . . , k}.



12 Abstract and Applied Analysis

Proof. By Lemma 4.1(ii), we have limn→∞ ‖Tixn − xn‖ = 0, for all i = 1, 2, . . . , k. Since X is
uniformly convex and {xn} is bounded, without loss of generality we may assume that xn →
u weakly as n → ∞ for some u ∈ C. Since I − Ti, i = 1, 2, . . . , k, is demiclosed at 0, we have
u ∈ F. Suppose that there are subsequences {xnk} and {xmk} of {xn} that converge weakly
to u and v, respectively. Again, as above, we can prove that u, v ∈ F. By Lemma 3.1(b),
limn→∞ ‖xn − u‖ and limn→∞ ‖xn − v‖ exist. It follows from Lemma 2.3 that u = v. Therefore
{xn} converges weakly to a common fixed point of {Ti : i = 1, 2, . . . , k}.
Theorem 4.3. Under the hypotheses of Lemma 4.1, assume that the family {Ti : i = 1, 2, . . . , k}
satisfies condition (C). Then {xn} and {yjn} converge strongly to a common fixed point of the family
of mappings for all j = 1, 2, . . . , k.

Proof. From (3.5), we have

∥
∥xn+1 − p

∥
∥ ≤ (1 + vn)k

∥
∥xn − p

∥
∥ + ekn, ∀n, p ∈ F. (4.18)

Therefore,

d(xn+1, F) ≤ (1 + vn)kd(xn, F) + ekn

=

(

1 +
k∑

r=1

k(k − 1) · · · (k − r + 1)
r!

vr
n

)

d(xn, F) + ekn.
(4.19)

Since
∑∞

n=1 vn < ∞, it follows that
∑∞

n=1
∑k

r=1(k(k − 1) · · · (k − r + 1)/r!)vr
n < ∞. Since

∑∞
n=1 ekn < ∞, we obtain from Lemma 2.1(i) that limn→∞ d(xn, F) exists. By Lemma 4.1(ii),

we have limn→∞ ‖Tixn − xn‖ = 0 for all i = 1, 2, . . . , k. Since {Ti : i = 1, 2, . . . , k} satisfies
condition (C), there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and
f(t) > 0 for all t ∈ (0,∞) such that ‖xn − Ti0xn‖ ≥ f(d(xn, F)) for some i0 ∈ {1, 2, . . . , k},
it follows that limn→∞d(xn, F) = 0. By Theorem 3.2, we can conclude that {xn} converges
strongly to a common fixed point q of the family {Ti : i = 1, 2, . . . , k}. From Lemma 4.1(iii),
we have limn→∞ ‖yjn − xn‖ = 0 for all j = 1, 2, . . . , k, and we obtain that limn→∞ yjn = q for all
j = 1, 2, . . . , k.

Remark 4.4. The family of generalized asymptotically quasi-nonexpansive mappings in
Theorem 4.2 and 4.3 can be replaced by a family of asymptotically quasi-nonexpansive
mappings. Lemma 3.1 and 4.1 generalize and improve [6, Lemma 3.1], [19, Lemmas 3.4
and 3.5], [18, Lemma 2.3], [7, Lemma 4.2], and [17, Lemma 3.3] to a finite family of
(L − γ) uniform Lipschitz and generalized asymptotically quasi-nonexpansive mappings.
Theorem 4.2 generalizes and improves [6, Theorems 3.2 and 4.2], [18, Theorem 2.9],
[17, Theorem 3.1], and [21, Theorem 1] to the more general class of a finite family of
(L − γ) uniform Lipschitz and generalized asymptotically quasi-nonexpansive mappings.
Theorem 4.3 generalizes and improves [6, Theorem 3.3], [7, Theorem 4.3], [5, Theorem 2],
[18, Theorem 2.4], [19, Theorem 4.2], [17, Theorem 3.2], [10, Theorem 3.4], [20, Theorem 2]
and [21, Theorem 2] by using condition (C) instead of condition (A) or semicompactness or
completely continuous or compactness to the more general class of a finite family of (L − γ)
uniform Lipschitz and generalized asymptotically quasi-nonexpansive mappings.

Remark 4.5. From Remark 1.1, Theorems 3.2 to 4.3 hold true for a finite family {Ti}ki=1 of
asymptotically nonexpansive mappings in the intermediate sense.
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