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1. Introduction

We are concerned with the following differential inclusion which arises from a Budyko-North
type energy balance climate models:

−(ku′)′(x) + g(x, u(x)) ∈ μF(x, u(x)), x ∈ (0, 1) a.e.

u′(0) = 0, u′(1) = 0;
(1.1)

see [1–6] and the references therein. In particular, the set-valued right-hand side arises from
a jump discontinuity of the albedo at the ice-edge in these models. By filling in such a gap,
one arrives at the set-valued problem (1.1). As in [6], we are here interested in a considerably
simplified version as compared to the situation from climate modeling; for example, a one-
dimensional regular Sturm-Liouville differential operator substitutes for a two-dimensional
Laplace-Beltrami operator or a singular Legendre-type operator, and the jump discontinuity
is transformed to u = 0 in a way, which resembles only locally the climatological problem.

Assume that

(H1) k ∈ C1([0, 1]), inf k > 0;
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(H2) g ∈ C([0, 1] × R), g(x, ·) strictly increasing for x ∈ [0, 1],

g1(x) := lim
|y|→ 0

g
(
x, y

)

y
(1.2)

exists uniformly for x ∈ [0, 1], and g1(x) > 0 on [0, 1],

(H2′) g satisfies that

g2(x) := lim
|y|→∞

g
(
x, y

)

y
(1.3)

exists uniformly for x ∈ [0, 1];

(H3) f+ ∈ C([0, 1] × R+, (0,∞)), inf f+ > 0, f− ∈ C([0, 1] × R−, (−∞, 0)), sup f− < 0.

Let F in (1.1) be given by

F
(
x, y

)
:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{
f+
(
x, y

)}
, x ∈ [0, 1], y > 0,

[
f−(x, 0), f+(x, 0)

]
, x ∈ [0, 1],

{
f−
(
x, y

)}
x ∈ [0, 1], y < 0,

(1.4)

and set

S :=
{(
μ,w

) ∈ R × C1([0, 1]) | (μ,w)
solves (1.1)

}
. (1.5)

Throughout S will be considered as subset of the Banach space Y := R × C1[0, 1] under the
norm

∥∥(μ,w)
∥∥
Y := max

{∣∣μ
∣∣, ‖w‖∞,

∥∥w′∥∥
∞
}
. (1.6)

Let

Z+ := {0, 1, 2, . . .}. (1.7)

Using a Sturm-Liouville version of Rabinowitz’s bifurcation theorem and an
approximation procedure, Hetzer [6] proved the following.

Theorem A (see [6, Theorem]). Let (H1)–(H3) be fulfilled. Then there exist sequences {C±
n}n∈Z+

of unbounded, closed, connected subsets of S with (0, 0) ∈ C±
n and the property that u has exactly n

zeroes, which are all simple, if (μ, u) ∈ C±
n \ {(0, 0)}. Moreover, u is positive (negative) on an interval

(0, x̃) for some x̃ ∈ (0, 1], if (μ, u) ∈ C+
n ((μ, u) ∈ C−

n) and u/≡ 0.
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It is easy to see from Theorem A that the effect of the discontinuity at zero is a solution
branch which consists of infinitely many subbranches all meeting in (0, 0). Two subbranches
are distinguished by the number of zeroes of the respective solutions. However, Theorem A
provides no any information about the asymptotic behavior of C±

n at infinity.
It is the purpose of this paper to study the asymptotic behavior of C±

n at infinity, and
accordingly, to determine values of μ, for which there exist infinitely many nodal solutions of
(1.1) (here and after, a function u ∈ AC1[0, 1] is a nodal solution of (1.1) if all of zeroes of u are
simple). To wit, we have the following.

Theorem 1.1. Let (H1)–(H3) and (H2′) be fulfilled. Assume that

(H4)

(
f+
)
∞(x) =

(
f−
)
∞(x) =: b(x) ∈ C([0, 1], (0,∞)), (1.8)

where

(
f+
)
∞(x) := lim

s→+∞
f+(x, s)

s
,

(
f−
)
∞(x) := lim

s→−∞
f−(x, s)

s
. (1.9)

Then for each n ∈ Z+, C+
n joins (0, 0) with (ηn,∞), C−

n joins (0, 0) with (ηn,∞), where ηn,
(n ∈ Z+), is the n-th eigenvalue of the linear problem:

−(ku′)′(x) + g2(x)u(x) = ηb(x)u(x), x ∈ [0, 1],

u′(0) = 0, u′(1) = 0.
(1.10)

Corollary 1.2. Let (H1)–(H4) and (H2′) be fulfilled. Let k ∈ N be fixed. Then
(1) for each μ ∈ [ηk−1, ηk), (1.1) has infinitely many solutions:

uνj , ν ∈ {+,−}, j ∈ {k, k + 1 . . .}, (1.11)

which satisfies that u+j has exactly j simple zeroes and u+j is positive on an interval (0, x̃) for some
x̃ ∈ (0, 1], u−j has exactly j simple zeroes and u−j is negative on an interval (0, x̃) for some x̃ ∈ (0, 1);

(2) for each μ ∈ (0, η0), (1.1) has infinitely many solutions:

uνj , ν ∈ {+,−}, j ∈ {0, 1, 2 . . .} (1.12)

which satisfies that u+j has exactly j simple zeroes, and u+j is positive on an interval (0, x̃) for some
x̃ ∈ (0, 1], u−j has exactly j simple zeroes, and u−j is negative on an interval (0, x̃) for some x̃ ∈ (0, 1).
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2. Notations and Preliminary Results

Recall Kuratowski’s notion of lower and upper limits of sequences of sets.

Definition 2.1 (see [7]). Let X be a metric space and let {Zl}l∈N
be a sequence of subsets of X.

The set

lim sup
l→∞

Zl :=
{
x ∈ X : lim inf

l→∞
dist (x,Zl) = 0

}
(2.1)

is called the upper limit of the sequence {Zl}, whereas

lim inf
l→∞

Zl :=
{
x ∈ X : lim

l→∞
dist (x,Zl) = 0

}
(2.2)

is called the lower limit of the sequence {Zl}.

Definition 2.2 (see [7]). A component of a setM is meant a maximal connected subset ofM.

Lemma 2.3 (see [7]). Suppose that Y is a compact metric space, A and B are nonintersecting closed
subsets of Y , and no component of Y intersects both A and B. Then there exist two disjoint compact
subsets YA and YB, such that Y = YA ∪ YB, A ⊂ YA, B ⊂ YB.

Using the above Whyburn Lemma, Ma and An [8] proved the following.

Lemma 2.4 (see [8, Lemma 2.1]). Let Z be a Banach space and let {An} be a family of closed
connected subsets of Z. Assume that

(i) there exist zn ∈ An, n = 1, 2, . . . , and z∗ ∈ Z, such that zn → z∗;

(ii) rn = sup{‖x‖ | x ∈ An} = ∞;

(iii) for every R > 0, (
⋃∞
n=1An) ∩ BR is a relatively compact set of Z, where

BR = {x ∈ Z | ‖x‖ ≤ R}. (2.3)

Then there exists an unbounded component C in lim supl→∞Al and z∗ ∈ C.

Remark 2.5. The limiting processes for sets go back at least to the work of Kuratowski [9].
Lemma 2.4 will play an important role in the proof of Theorem 1.1. It is a slight generalization
of the following well-known results due to Whyburn [7].

Proposition 2.6 (Whyburn [7, page 12]). LetZ be a Banach space and let {An} be a family of closed
connected subsets ofZ. Let lim infl→∞Al /= ∅ and⋃l∈N

Al is relatively compact. Then lim supl→∞Al

is nonempty, compact, and connected.

Lemma 2.7. Let q ∈ C([0, 1], (0,∞)). Let pm ∈ C([0, 1], (0,∞)) be such that

pm(t) ≥ ρ, t ∈ [0, 1] (2.4)
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for some ρ > 0. Suppose that the sequence {(μm, ym)} satisfies

−(ky′
m

)′ + q(t)ym = μmpm(t)ym, y′
m(0) = y

′
m(1) = 0 (2.5)

with either

(
ym|I

)
(t) > 0 ∀m sufficiently large (2.6)

or

(
ym|I

)
(t) < 0 ∀m sufficiently large, (2.7)

where I := [α, β] with α < β being a given closed subinterval of (0, 1). Then

∣∣μm
∣∣ ≤M0 (2.8)

for some positive constantM0.

Proof. We only deal with the case that (ym|I)(t) > 0 for allm sufficiently large. The other case
can be treated by the similar way. We may assume that (ym|I)(t) > 0 for allm ∈ N.

We divide the proof into three cases.

Case 1. Let (αm, βm) be a subinterval of [0, 1] satisfying

(i) I ⊂ (αm, βm);

(ii) ym(αm) = ym(βm) = 0;

(iii) ym(t) > 0 for all t ∈ (αm, βm).

Let ψm(t) and ϕm(t) be the unique solution of the problems:

−(ky′)′ + q(t)y = 0, t ∈ (
αm, βm

)
,

y(αm) = 0, y′(αm) = 1,

−(ky′)′ + q(t)y = 0, t ∈ (
αm, βm

)
,

y
(
βm

)
= 0, y′(βm

)
= −1,

(2.9)

respectively. Then it is easy to check ψm(·) is nondecreasing on (αm, βm), ϕm(·) is
nonincreasing on (αm, βm), and that Green’s function Gm(t, s) of

−(ky′)′ + q(t)y = 0, t ∈ (
αm, βm

)
,

y(αm) = y
(
βm

)
= 0

(2.10)
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is explicitly given by

Gm(t, s) =
1

ϕm(αm)

⎧
⎪⎨

⎪⎩

ψm(t)ϕm(s), αm ≤ t ≤ s ≤ βm,

ϕm(t)ψm(s), αm ≤ s ≤ t ≤ βm.
(2.11)

Let Ψ(t) and Φ(t) be the unique solution of the problems:

−(ky′)′ + q(t)y = 0, t ∈ (0, 1),

y(0) = 0, y′(0) = 1,

−(ky′)′ + q(t)y = 0, t ∈ (0, 1),

y(1) = 0, y′(1) = −1,

(2.12)

respectively. Then it is easy to check that Ψ(·) is nondecreasing on (0, 1) and Φ(·) is
nonincreasing on (0, 1), and

Φ(0) ≥ ϕm(αm), Ψ(1) ≥ ψm
(
βm

)
. (2.13)

Let ψI(t) and ϕI(t) be the unique solution of the problems

−(ky′)′ + q(t)y = 0, t ∈ (
α, β

)
,

y(α) = 0, y′(α) = 1,

−(ky′)′ + q(t)y = 0, t ∈ (
α, β

)
,

y
(
β
)
= 0, y′(β

)
= −1,

(2.14)

respectively. Then, for (t, s) ∈ [α + (β − α)/4, β − (β − α)/4] × [α + (β − α)/4, β − (β − α)/4],

Gm(t, s) ≥ 1
Φ(0)

ψI

(
α +

β − α
4

)
ϕI

(
β − β − α

4

)
. (2.15)



International Journal of Differential Equations 7

Since

Gm(t, s)
Gm(s, s)

≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψm(t)
ψm(s)

, αm ≤ t ≤ s ≤ βm,

ϕm(t)
ϕm(s)

, αm ≤ s ≤ t ≤ βm,

≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψm(t)
Ψ(1)

, αm ≤ t ≤ s ≤ βm,

ϕm(t)
Φ(0)

, αm ≤ s ≤ t ≤ βm,

≥ min
{
ψm(t)
Ψ(1)

,
ϕm(t)
Φ(0)

}
=: δm(t),

(2.16)

it follows that for t ∈ [α + (β − α)/4, β − (β − α)/4],

ym(t) = μm

∫βm

αm

Gm(t, s)pm(s)ym(s)ds

≥ δm(t)μm
∫βm

αm

Gm(s, s)pm(s)ym(s)ds

≥ δm(t)
∥∥∥
(
ym

∣∣
[αm,βm]

)∥∥∥
∞

≥ δm(t)
∥∥∥
(
ym

∣∣
[α+(β−α)/4,β−(β−α)/4]

)∥∥∥
∞

≥ δI(t)
∥∥∥
(
ym

∣∣
[α+(β−α)/4,β−(β−α)/4]

)∥∥∥
∞
,

(2.17)

where

δI(t) := min
{
ψI(t)
Ψ(1)

,
ϕI(t)
Φ(0)

}
. (2.18)

Set

δ0 := min
{
δI(t) | t ∈

[
α +

β − α
4

, β − β − α
4

]}
. (2.19)

Then

min
t∈[α+(β−α)/4,β−(β−α)/4]

ym(t) ≥ δ0
∥∥∥
(
ym

∣∣
[α+(β−α)/4,β−(β−α)/4]

)∥∥∥
∞
. (2.20)
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By (2.5), we have that

ym(t) = μm

∫βm

αm

Gm(t, s)pm(s)ym(s)ds, (2.21)

which together with (2.15) and (2.20) imply that for t ∈ [α + (β − α)/4, β − (β − α)/4],

ym(t)

≥ μm
∫

I

Gm(t, s)ρym(s)ds

≥ μm
∫β−(β−α)/4

α+(β−α)/4
Gm(t, s)ρym(s)ds

≥ δ0μm
∫β−(β−α)/4

α+(β−α)/4
Gm(t, s)ρ ds ·

∥∥∥
(
ym

∣∣
[α+(β−α)/4,β−(β−α)/4]

)∥∥∥
∞

≥ δ0
μm
Φ(0)

ψI

(
α +

β − α
4

)
ϕI

(
β − β − α

4

)
ρ

∫β−(β−α)/4

α+(β−α)/4
ds ·

∥∥∥
(
ym

∣∣
[α+(β−α)/4,β−(β−α)/4]

)∥∥∥
∞
.

(2.22)

Therefore

∣∣μm
∣∣ ≤

(
δ0 ρ

Φ(0)
ψI

(
α +

β − α
4

)
ϕI

(
β − β − α

4

)
· β − α

2

)−1
. (2.23)

Case 2. Let (0, βm) be a subinterval of [0, 1] satisfying

(i) I ⊂ (0, βm);

(ii) y′
m(0) = 0, ym(βm) = 0;

(iii) ym(t) > 0 for all t ∈ (0, βm).

Let ψm(t) and ϕm(t) be the unique solution of the problems:

−(ky′)′ + q(t)y = 0, t ∈ (
0, βm

)
,

y′(0) = 0, y
(
βm

)
= 1,

−(ky′)′ + q(t)y = 0, t ∈ (
0, βm

)
,

y
(
βm

)
= 0, y′(βm

)
= −1,

(2.24)

respectively. Then it is easy to check that ψm(·) is nondecreasing on (0, βm), ϕm(·) is
nonincreasing on (0, βm), and Green’s function G∗(t, s) of

−(ky′)′ + q(t)y = 0, t ∈ (
0, βm

)
,

y′(0) = y
(
βm

)
= 0

(2.25)
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is explicitly given by

G∗(t, s) =
1

ϕm(0)

⎧
⎨

⎩

ψm(t)ϕm(s), 0 ≤ t ≤ s ≤ βm,
ϕm(t)ψm(s), 0 ≤ s ≤ t ≤ βm.

(2.26)

By the similar method to prove Case 1, we may get the desired results.

Case 3. Let (αm, 1) be a subinterval of [0, 1] satisfying

(i) I ⊂ (αm, 1);

(ii) ym(αm) = 0, y′
m(1) = 0;

(iii) ym(t) > 0 for all t ∈ (αm, 1).

Using the same method to prove Case 2, with obvious changes, we may show that
(2.8) is true.

Case 4. Let (αm, βm) = (0, 1). We may assume that ym(t) > 0 for all (0, 1).
Let ψ(t) and ϕ(t) be the unique solution of the problems

−(ky′)′ + q(t)y = 0, t ∈ (0, 1),

y(0) = 0, y′(0) = 1,

−(ky′)′ + q(t)y = 0, t ∈ (0, 1),

y(1) = 0, y′(1) = −1,

(2.27)

respectively. Then, it is easy to verify that ψ is strictly increasing on [0, 1] and ϕ is strictly
decreasing on [0, 1]. Using the same method to deal with Case 1, we may get the desired
results.

3. Proof of the Results

Recall the proof of Theorem A.
By [6, Remark 1], the hypotheses (H1)–(H3) imply that

S ∩
(
(−∞, 0] × C1([0, 1])

)
= (−∞, 0] × {0}. (3.1)

Actually, such continua can be obtained as upper limits in the sense of Kuratowski of
sequences of solution continua from associated continuous problems. To this end one sets

df := min
{
inf f+, inf

∣∣f−
∣∣} (3.2)
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and selects an approximation sequence {fl} ∈ C([0, 1] × R,R)N of F satisfying

(A1) fl(x, y) = ly for x ∈ [0, 1] and y ∈ [−df/2l, df/2l];
(A2) fl(x, y)×sgn(y) ≥ df/2 for x ∈ [0, 1] and |y| ≥ df/2l; fl ≤ f+ on [0, 1]×[df/2l, df/l];

fl ≥ f− on [0, 1] × [−df/l,−df/2l];
(A3) fl(x, y) = f+(x, y) for x ∈ [0, 1] and y ≥ df/l; fl(x, y) = f−(x, y) for x ∈ [0, 1] and

y ≤ −df/l;
(A4) {fl(x, y)}l∈N

is nondecreasing in l for (x, y) ∈ [0, 1] × (0,∞); {fl(x, y)}l∈N
is

nonincreasing in l for (x, y) ∈ [0, 1] × (−∞, 0).

Remark 3.1. Let

ξ(x, u) := g(x, u) − g1(x)u. (3.3)

Wemay show that there exists a positive constant γ , independent of l, such that for each l ∈ N,

fl(x, u)
u

− ξ(x, u)
γu

≥ ρ0, ∀γ ≥ γ (3.4)

for some constant ρ0 > 0.
In fact, it is easy to see from the definition of fl that

fl(x, u)
u

≥ ρ1, u /= 0 (3.5)

for some positive constant ρ1, independent of l.
Applying (H2) and (H2′), it concludes that

0 ≤
∣∣∣∣
ξ(x, u)
u

∣∣∣∣ ≤ ρ2 (3.6)

for some positive constant ρ2. Therefore, if we take

γ :=
2ρ2
ρ1

, ρ0 =
ρ1
2
, (3.7)

then (3.4) holds.

It is easy to see thanks to (H2) and (A1) that

−(kv′)′(x) + g(x, v(x)) = μfl(x, v(x)), x ∈ [0, 1],

v′(0) = 0, v′(1) = 0
(3.8l)

falls into the scope of the Sturm-Liouville version of the celebrated Rabinowitz bifurcation
theorem (cf. [10] for a more general, but somewhat different setting).
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Indeed, denote the strictly increasing sequence of simple eigenvalues of

−(kψ ′)′(x) + g1(x)ψ(x) = λψ(x), x ∈ [0, 1],

ψ ′(0) = 0, ψ ′(1) = 0,
(3.9)

by {λn}n∈Z+
and set

μn,l :=
λn
l
. (3.10)

Then (μn,l, 0) is a bifurcation point of the solution set of (3.8l) for every n ∈ Z+, and for each
(n, l) ∈ Z+ × N, there exist two unbounded closed connected subsets C±

n,l
of the solution set of

(3.8l) with the following.

(a) C+
n,l

∩ C−
n,l

= {(μn,l, 0)}. Moreover, (μn,l, 0) is the only bifurcation point contained in
C±
n,l.

(b) If (μ, ϑ) ∈ C+
n,l and ϑ/≡ 0, then ϑ possesses exactly n simple zeroes (and no multiple

zeroes) in (0, 1) and is positive on (0, δ) for some δ > 0.

(c) If (μ, ϑ) ∈ C−
n,l and ϑ/≡ 0, then ϑ possesses exactly n simple zeroes (and no multiple

zeroes) in (0, 1) and is negative on (0, δ) for some δ > 0.

Combining the above with the fact

lim
l→∞

(
μn,l, 0

)
= (0, 0) (3.11)

and utilizing Lemma 2.4, it concludes that there exists an unbounded component Cν
n with

(0, 0) ∈ Cν
n,

Cν
n ⊆ lim sup

l→∞
Cν
n,l, ν ∈ {+,−}. (3.12)

As an immediate consequence of [6, Lemma 4-6], we have the following

Lemma 3.2. If (μ, u) ∈ C±
n , then (μ, u) is a solution of (1.1) and u ∈ W2,∞([0, 1]). Moreover, if

(μ, u) ∈ C+
n with u/≡ 0, u has exactly n simple zeroes in [0, 1], and u is positive on an interval (0, x̃)

for some x̃ ∈ (0, 1]; if (μ, u) ∈ C−
n with u/≡ 0, u has exactly n simple zeroes in [0, 1], and u is negative

on an interval (0, x̃) for some x̃ ∈ (0, 1].

Lemma 3.3. Let (H1)–(H4), (H2′) and (A1)–(A4) be fulfilled. Then for each (n, l) ∈ Z+ × N, the
connected component C±

n,l
joins (μn,l, 0) with (ηn,∞).
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Proof. Assume that {(rk, yk)} ⊂ C+
n,l for some fixed (n, l) ∈ Z+ × N with

|rk| +
∥
∥yk

∥
∥
C1 −→ ∞. (3.13)

The case {(rk, yk)} ⊂ C−
n,l can be treated by the same way.

We divide the proof into two steps.

Step 1. We show that if there exists a constant numberM > 0 such that

rk ∈ (0,M], (3.14)

then C+
n,l

joins (μn,l, 0) with (ηn,∞). In this case it follows that

∥∥yk
∥∥
C1 −→ ∞. (3.15)

Define

ζl(r, x, u) := r
[
fl(x, u) − b(x)u

] − [
g(x, u) − g2(x)u

]
. (3.16)

Then {(rk, yk)} satisfies the problem:

−(ky′
k

)′(x) + g2(x)yk(x) = rkb(x)yk(x) + ζl
(
rk, x, yk(x)

)
, x ∈ [0, 1],

y′
k(0) = 0, y′

k(1) = 0.
(3.17l)

Set

ζ̃l(u) = max
0≤|s|≤u,x∈[0,1],r∈[0,M]

|ζl(r, x, s)| (3.18)

then ζ̃ is nondecreasing, and (H4) and (H2′) yields

lim
u→∞

ζ̃(u)
u

= 0. (3.19)

Now, we divide (3.17l) by ||yk||C1 and set yk = (yk/||yk||C1). Since yk is bounded in
C2[0, 1], after taking a subsequence if necessary, we have that yk → y for some y ∈ C1[0, 1]
with ||y||C1 = 1. Moreover, from the definition of fl and (3.19) and the fact that ζ̃ is
nondecreasing, we have that

lim
k→∞

∣∣ζl
(
rk, x, yk(x)

)∣∣
∥∥yk

∥∥
C1

= 0 (3.20)
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since

∣
∣ζl

(
rk, x, yk(x)

)∣∣
∥
∥yk

∥
∥
C1

≤ ζ̃
(∣∣yk(x)

∣
∣)

∥
∥yk

∥
∥
C1

≤ ζ̃
(∥∥yk

∥
∥
∞
)

∥
∥yk

∥
∥
C1

≤
ζ̃
(∥
∥yk

∥
∥
C1

)

∥
∥yk

∥
∥
C1

. (3.21)

By standard limit procedure, we get

−(ky ′)′(x) + g2(x)y(x) = rb(x)y(x), x ∈ [0, 1],

y ′(0) = 0, y′(1) = 0,
(3.22)

where r := limk→∞rk, again choosing a subsequence and relabeling if necessary. Moreover,
the fact that yk, k ∈ Z+, has exactly n simple zeroes in [0, 1] implies that y has exactly n simple
zeroes in [0, 1], too. Therefore r = ηn.

Step 2. We show that there exists a constantM such that rk ∈ (0,M], for all n. Suppose there
is no suchM, choosing a subsequence and relabeling if necessary, it follows that

lim
k→∞

rk = ∞. (3.23)

Let

τ(1, k) < · · · < τ(n, k) (3.24)

denote the zeroes of yk, and set

0 = τ(0, k), τ(n + 1, k) = 1. (3.25)

Then, after taking a subsequence if necessary,

lim
k→∞

τ(l, k) := τ(l,∞), l ∈ {0, 1, . . . , n + 1}. (3.26)

We claim that for all l ∈ {0, 1, . . . , n}

τ(l + 1,∞) − τ(l,∞) = 0. (3.27)

Suppose on the contrary that there exists l0 ∈ {0, 1, . . . , n} such that

τ(l0,∞) < τ(l0 + 1,∞). (3.28)
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Define a function p : [0, 1] → R by

pl(x) :=

⎧
⎪⎨

⎪⎩

fl
(
x, yk(x)

)

yk(x)
− ξ

(
x, yk(x)

)

rkyk(x)
, x ∈ [0, 1], yk(x)/= 0,

l, yk(x) = 0.
(3.29)

Then by Remark 3.1, there exists ρ0, such that

pl(x) ≥ ρ0, x ∈ [0, 1]. (3.30)

Now we choose a closed interval I ⊂ (τ(l0,∞), τ(l0 + 1,∞)) with positive length, then we
know from Lemma 2.7 that yk (after taking a subsequence if necessary) must change sign on
I. However, this contradicts the fact that for all k sufficiently large, we have I ⊂ (τ(l0, k), τ(l0+
1, k)) and

(−1)l0νyk(x) > 0, x ∈ (τ(l0, k), τ(l0 + 1, k)). (3.31)

Therefore, (3.27) holds.
On the other hand, it follows

1 = τ(n + 1, k) − τ(0, k) =
n∑

l=0

(τ(l + 1, k) − τ(l, k)) (3.32)

that

1 =
n∑

l=0

(τ(l + 1,∞) − τ(l,∞)) (3.33)

which contradicts (3.27).
Therefore

|rk| ≤M (3.34)

for some constant numberM > 0, independent of k ∈ N.

Now we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. We only prove that C+
n has the desired property, the case of C−

n can be
treated by the same way.

Assume that {(μk, zk)} ⊂ C+
n is a sequence with

∣∣μk
∣∣ + ‖zk‖C1 −→ ∞. (3.35)
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We claim that

lim
k→∞

(
μk, zk

)
=
(
ηn,∞

)
. (3.36)

Assume on the contrary that (3.36) is not true. We divide the proof into two cases.

Case 1. limk→∞ μk /=ηn.In this case, we may take a subsequence of {μk}, denote it by {μk}
again, with the property that there exists ε0 > 0, such that for each k ∈ N,

∣
∣μk − ηn

∣
∣ ≥ ε0. (3.37)

Since {(μk, zk)} ⊂ C+
n , it follows that for each k ∈ Z+, there exists a sequence

{(γkj , zkj )} ⊂ C+
n,kj

, such that

lim
j→∞

γkj = μk, lim
j→∞

zkj = zk. (3.38)

Now let us consider the sequence {(γkk , zkk)}. Obviously, we have that

(
γkk , zkk

) ∈ C+
n,kk

,

∣∣γkk
∣∣ + ‖zkk‖C1 −→ ∞.

(3.39)

Equation (3.39) implies that

−
(
kz′kk

)′
(x) + g2(x)zkk(x) = γkkb(x)zkk(x) + ζkk

(
γkk , x, zkk(x)

)
, x ∈ [0, 1],

z′kk(0) = 0, z′kk(1) = 0,
(3.40)

Noticing that ρ0 in (3.30) is independent of l and using Remark 3.1 and the method to prove
Lemma 3.3 and with obvious changes, we may show that {γkk} is bounded, and subsequently

lim
k→∞

γkk = ηn. (3.41)

However, this contradicts (3.37).

Case 2. limk→∞ ||zk||C1 /=∞. In this case, after taking a subsequence of {zk} and relabeling if
necessary, we may assume that

‖zk‖C1≤M0 (3.42)

for some constantM0 > 0. Equation (3.35) together with (3.42) implies

lim
k→∞

μk = +∞. (3.43)
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Using the same notations as those in Case 1, we have from (3.43) that

lim
k→∞

γkk = +∞. (3.44)

Combining this with (3.40) and using Remark 3.1 and the similar method to prove Step 2
of Lemma 3.3 and noticing that ρ0 in (3.30) is independent of l, it concludes that {γkk} is
bounded. This is a contradiction.

Remark 3.4. It is easy to see from Theorem 1.1 and its proof that the “jumping” of F at u = 0:
f+(x, 0) − f−(x, 0)(=: Δ(x)) does not affect the asymptotic behavior of C±

n at infinity. In other
words, for any nonnegative function Δ(x), the asymptotic behavior of C±

n at infinity is the
same.
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