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If F is a continuous function on the real line and f = F ′ is its distributional derivative, then
the continuous primitive integral of distribution f is

∫b
af = F(b) − F(a). This integral contains

the Lebesgue, Henstock-Kurzweil, and wide Denjoy integrals. Under the Alexiewicz norm, the
space of integrable distributions is a Banach space. We define the convolution f ∗ g(x) = ∫∞

−∞f(x −
y)g(y)dy for f an integrable distribution and g a function of bounded variation or an L1 function.
Usual properties of convolutions are shown to hold: commutativity, associativity, commutation
with translation. For g of bounded variation, f ∗ g is uniformly continuous and we have the
estimate ‖f ∗ g‖∞ ≤ ‖f‖‖g‖BV , where ‖f‖ = supI |

∫
If | is the Alexiewicz norm. This supremum

is taken over all intervals I ⊂ R. When g ∈ L1, the estimate is ‖f ∗ g‖ ≤ ‖f‖‖g‖1. There are results
on differentiation and integration of convolutions. A type of Fubini theorem is proved for the
continuous primitive integral.

Copyright q 2009 Erik Talvila. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction and Notation

The convolution of two functions f and g on the real line is f ∗ g(x) =
∫∞
−∞f(x − y)g(y)dy.

Convolutions play an important role in pure and applied mathematics in Fourier analysis,
approximation theory, differential equations, integral equations, andmany other areas. In this
paper, we consider convolutions for the continuous primitive integral. This integral extends
the Lebesgue, Henstock-Kurzweil, and wide Denjoy integrals on the real line and has a very
simple definition in terms of distributional derivatives.

Some of the main results for Lebesgue integral convolutions are that the convolution
defines a Banach algebra on L1 and ∗ : L1 × L1 → L1 such that ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. The
convolution is commutative, associative, and commutes with translations. If f ∈ L1 and g ∈
Cn, then f ∗ g ∈ Cn and (f ∗ g)(n)(x) = f ∗ g(n)(x). Convolutions also have the approximation
property that if f ∈ Lp (1 ≤ p < ∞) and g ∈ L1, then ‖f ∗ gt − af‖p → 0 as t → 0, where
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gt(x) = g(x/t)/t and a =
∫∞
−∞g. When f is bounded and continuous, there is a similar result

for p = ∞. For these results see, for example, [1]; see [2] for related results with the Henstock-
Kurzweil integral. Using the Alexiewicz norm, all of these results have generalizations to
continuous primitive integrals that are proven in what follows.

We now define the continuous primitive integral. For this, we need some notation
for distributions. The space of test functions is D = C∞

c (R) = {φ : R → R | φ ∈
C∞(R) and supp(φ) is compact}. The support of function φ is the closure of the set on which
φ does not vanish and is denoted supp(φ). Under usual pointwise operations, D is a linear
space over field R. In D, we have a notion of convergence. If {φn} ⊂ D, then φn → 0 as
n → ∞ if there is a compact set K ⊂ R such that for each n, supp(φn) ⊂ K, and for each
m ≥ 0, we have φ(m)

n → 0 uniformly on K as n → ∞. The distributions are denoted D′ and
are the continuous linear functionals on D. For T ∈ D′ and φ ∈ D, we write 〈T, φ〉 ∈ R. For
φ, ψ ∈ D and a, b ∈ R,we have 〈T, aφ+bψ〉 = a〈T, φ〉+b〈T, ψ〉. Moreover, if φn → 0 inD, then
〈T, φn〉 → 0 in R. Linear operations are defined in D′ by 〈aS + bT, φ〉 = a〈S, φ〉 + b〈T, φ〉 for
S, T ∈ D′; a, b ∈ R and φ ∈ D. If f ∈ L1

loc, then 〈Tf , φ〉 =
∫∞
−∞f(x)φ(x)dx defines a distribution

Tf ∈ D′. The integral exists as a Lebesgue integral. All distributions have derivatives of all
orders that are themselves distributions. For T ∈ D′ and φ ∈ D, the distributional derivative of T
is T ′ where 〈T ′, φ〉 = −〈T, φ′〉. This is also called the weak derivative. If p : R → R is a function
that is differentiable in the pointwise sense at x ∈ R, then we write its derivative as p′(x). If
p is a C∞ bijection such that p′(x)/= 0 for any x ∈ R, then the composition with distribution
T is defined by 〈T ◦ p, φ〉 = 〈T, (φ ◦ p−1)/(p′ ◦ p−1)〉 for all φ ∈ D. Translations are a special
case. For x ∈ R, define the translation τx on distribution T ∈ D′ by 〈τxT, φ〉 = 〈T, τ−xφ〉 for test
function φ ∈ D, where τxφ(y) = φ(y − x). All of the results on distributions we use can be
found in [3].

The following Banach space will be of importance: BC = {F : R → R | F ∈
C0(R), F(−∞) = 0, F(∞) ∈ R}. We use the notation F(−∞) = limx→−∞F(x) and F(∞) =
limx→∞F(x). The extended real line is denoted by R = [−∞,∞]. The space BC then consists of
functions continuous onRwith a limit of 0 at −∞. We denote the functions that are continuous
on R that have real limits at ±∞ by C0(R). Hence, BC is properly contained in C0(R), which is
itself properly contained in the space of uniformly continuous functions on R. The space BC is
a Banach space under the uniform norm; ‖F‖∞ = supx∈R

|F(x)| = maxx∈R
|F(x)| for F ∈ BC. The

continuous primitive integral is defined by taking BC as the space of primitives. The space of
integrable distributions isAC = {f ∈ D′ | f = F ′ for F ∈ BC}. If f ∈ AC, then

∫b
af = F(b)−F(a)

for a, b ∈ R. The distributional differential equation T ′ = 0 has only constant solutions so the
primitive F ∈ BC satisfying F ′ = f is unique. Integrable distributions are then tempered and
of order one. This integral, including a discussion of extensions to R

n, is described in [4]. A
more general integral is obtained by taking the primitives to be regulated functions, that is,
functions with a left and right limit at each point, see [5].

Examples of distributions in AC are Tf for functions f that have a finite Lebesgue,
Henstock-Kurzweil, or wide Denjoy integral. We identify function f with the distribution Tf .
Pointwise function values can be recovered from Tf at points of continuity of f by evaluating
the limit 〈Tf , φn〉 for a delta sequence converging to x ∈ R. This is a sequence of test functions
{φn} ⊂ D such that for each n, φn ≥ 0,

∫∞
−∞φn = 1, and the support of φn tends to {x} as

n → ∞. Note that if F ∈ C0(R) is an increasing function with F ′(x) = 0 for almost all x ∈ R,

then the Lebesgue integral
∫b
aF

′(x)dx = 0 but F ′ ∈ AC and
∫b
aF

′ = F(b) − F(a). For another
example of a distribution in AC, let F ∈ C0(R) be continuous and nowhere differentiable in
the pointwise sense. Then F ′ ∈ AC and

∫b
aF

′ = F(b) − F(a) for all a, b ∈ R.
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The space AC is a Banach space under the Alexiewicz norm; ‖f‖ = supI⊂R
|∫ If |, where

the supremum is taken over all intervals I ⊂ R. An equivalent norm is ‖f‖′ = supx∈R
|∫x−∞f |.

The continuous primitive integral contains the Lebesgue, Henstock-Kurzweil, and wide
Denjoy integrals since their primitives are continuous functions. These three spaces of
functions are not complete under the Alexiewicz norm and in fact AC is their completion.
The lack of a Banach space has hampered application of the Henstock-Kurzweil integral to
problems outside of real analysis. As we will see in what follows, the Banach space AC is a
suitable setting for applications of nonabsolute integration.

We will also need to use functions of bounded variation. Let g : R → R. The variation
of g is Vg = sup

∑ |g(xi) − g(yi)| where the supremum is taken over all disjoint intervals
{(xi, yi)}. The functions of bounded variation are denoted BV = {g : R → R | Vg <∞}. This is
a Banach space under the norm ‖g‖BV = |g(−∞)| + Vg. Equivalent norms are ‖g‖∞ + Vg and
|g(a)| + Vg for each a ∈ R. Functions of bounded variation have a left and right limit at each
point in R and limits at ±∞, so, as above, we will define g(±∞) = limx→±∞g(x).

If g ∈ L1
loc, then the essential variation of g is ess var g = sup

∫∞
−∞gφ

′, where the
supremum is taken over all φ ∈ D with ‖φ‖∞ ≤ 1. Then EBV = {g ∈ L1

loc | ess var g < ∞}.
This is a Banach space under the norm ‖g‖EBV = ess sup |g| + ess var g. Let 0 ≤ γ ≤ 1. For
g : R → R, define gγ(x) = (1 − γ)g(x−) + γg(x+). For left continuity, γ = 0 and for right
continuity γ = 1. The functions of normalized bounded variation are NBVγ = {gγ | g ∈ BV}. If
g ∈ EBV, then ess var g = inf Vh such that h = g almost everywhere. For each 0 ≤ γ ≤ 1,
there is exactly one function h ∈ NBVγ such that g = h almost everywhere. In this case,
ess var g = Vh. Changing g on a set of measure zero does not affect its essential variation.
Each function of essential bounded variation has a distributional derivative that is a signed
Radon measure. This will be denoted μg where 〈g ′, φ〉 = −〈g, φ′〉 = −∫∞−∞gφ′ =

∫∞
−∞φdμg for

all φ ∈ D.

We will see that ∗ : AC × BV → C0(R) and that ‖f ∗ g‖∞ ≤ ‖f‖‖g‖BV. Similarly for
g ∈ EBV. Convolutions for f ∈ AC and g ∈ L1 will be defined using sequences in BV ∩ L1

that converge to g in the L1 norm. It will be shown that ∗ : AC × L1 → AC and that ‖f ∗ g‖ ≤
‖f‖‖g‖1.

Convolutions can be defined for distributions in several different ways.

Definition 1.1. Let S, T ∈ D′ and φ, ψ ∈ D. Define φ̃(x) = φ(−x): (i) 〈T ∗ ψ, φ〉 = 〈T, φ ∗ ψ̃〉, (ii)
for each x ∈ R, let T ∗ ψ(x) = 〈T, τxψ̃〉; (iii) 〈S ∗ T, φ〉 = 〈S(x), 〈T(y), φ(x + y)〉〉.

In (i), ∗ : D′ × D → D′. This definition also applies to other spaces of test functions
and their duals, such as the Schwartz space of rapidly decreasing functions or the compactly
supported distributions. In (ii), ∗ : D′ × D → C∞. In [1], it is shown that definitions
(i) and (ii) are equivalent. In (iii), ∗ : D′ × D′ → D′. However, this definition requires
restrictions on the supports of S and T . It suffices that one of these distributions has compact
support. Other conditions on the supports can be imposed (see [3, 6]). This definition
is an instance of the tensor product, 〈S ⊗ T,Φ〉 = 〈S(x), 〈T(y),Φ(x, y)〉〉, where now
Φ ∈ D(R2).

Under (i), T∗ψ is inC∞. It satisfies (T∗ψ)∗φ = T∗(ψ∗φ), τx(T∗ψ) = (τxT)∗ψ = T∗(τxψ),
and (T ∗ ψ)(n) = T ∗ψ(n) = T (n) ∗ψ. Under (iii), with appropriate support restrictions, S∗T is in
D′. It is commutative and associative, commutes with translations, and satisfies (S ∗ T)(n) =
S(n) ∗ T = S ∗ T (n). It is weakly continuous in D′, that is, if Tn → T in D′, then Tn ∗ ψ → T ∗ ψ
in D′ see [1, 3, 6, 7] for additional properties of convolutions of distributions.
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Although elements of AC are distributions, we show in this paper that their behavior
as convolutions is more like that of integrable functions.

An appendix contains the proof of a type of Fubini theorem.

2. Convolution in AC × BV
In this section, we prove basic results for the convolution when f ∈ AC and g ∈ BV. Under
these conditions, f ∗ g is commutative, continuous on R, and commutes with translations.
It can be estimated in the uniform norm in terms of the Alexiewicz and BV norms. There is
also an associative property. We first need the result that BV forms the space of multipliers
for AC, that is, if f ∈ AC, then fg ∈ AC for all g ∈ BV. The integral

∫
Ifg is defined using the

integration by parts formula in the appendix. The Hölder inequality (A.5) shows that BV is
the dual space ofAC.

We define the convolution of f ∈ AC and g ∈ BV as f ∗ g(x) =
∫∞
−∞(f ◦ rx)g, where

rx(t) = x − t. We write this as f ∗ g(x) = ∫∞
−∞f(x − y)g(y)dy.

Theorem 2.1. Let f ∈ AC and let g ∈ BV. Then (a) f ∗ g exists on R. (b) Let f ∗ g =
g ∗ f. (c) Let ‖f ∗ g‖∞ ≤ |∫∞−∞f |infR|g| + ‖f‖Vg ≤ ‖f‖‖g‖BV. (d) Assume f ∗ g ∈ C0(R),
limx→±∞f ∗ g(x) = g(±∞)

∫∞
−∞f. (e) If h ∈ L1, then f ∗ (g ∗ h) = (f ∗ g) ∗ h ∈ C0(R).

(f) Let x, z ∈ R, then τz(f ∗ g)(x) = (τzf) ∗ g(x) = (f ∗ τzg)(x). (g) For each f ∈ AC, define
Φf : BV → C0(R) by Φf[g] = f ∗ g. Then Φf is a bounded linear operator and ‖Φf‖ ≤ ‖f‖.
There exists a nonzero distribution f ∈ AC such that ‖Φf‖ = ‖f‖. For each g ∈ BV, define
Ψg : AC → C0(R) byΨg[f] = f∗g. ThenΨg is a bounded linear operator and ‖Ψg‖ ≤ ‖g‖BV. There
exists a nonzero function g ∈ BV such that ‖Ψg‖ = ‖g‖BV. (h) supp(f ∗g) ⊂ supp(f) + supp(g).

Proof. (a) Existence is given via the integration by parts formula (A.1) in the appendix. (b)
See [4, Theorem 11] for a change of variables theorem that can be used with y �→ x − y. (c)
This inequality follows from the Hölder inequality (A.5). (d) Let x, t ∈ R. From (c), we have

∣∣f ∗ g(t) − f ∗ g(x)∣∣ ≤ ∥∥f(t − ·) − f(x − ·)∥∥∥∥g∥∥BV

=
∥∥f(t − x − ·) − f(·)∥∥∥∥g∥∥BV

−→ 0 as t −→ x.

(2.1)

The last line follows from continuity in the Alexiewicz norm [4, Theorem 22]. Hence,
f ∗ g is uniformly continuous on R. Also, it follows that limx→∞

∫∞
−∞f(y)g(x − y)dy =∫∞

−∞f(y)limx→∞g(x − y)dy = g(∞)
∫∞
−∞f. The limit x → ∞ can be taken under the integral

sign since g(x − y) is of uniform bounded variation, that is, Vy∈Rg(x − y) = Vg. Theorem 22
in [4] then applies. Similarly, as x → −∞. (e) First show g ∗ h ∈ BV. Let {(si, ti)} be disjoint
intervals in R. Then

∑∣∣g ∗ h(si) − g ∗ h(ti)
∣∣ ≤

∑∫∞

−∞

∣∣g
(
si − y

) − g(ti − y
)∣∣∣∣h

(
y
)∣∣dy

=
∫∞

−∞

∑∣∣g
(
si − y

) − g(ti − y
)∣∣∣∣h

(
y
)∣∣dy.

(2.2)
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Hence, V (g ∗ h) ≤ Vg ‖h‖1. The interchange of sum and integral follows from the Fubini-
Tonelli theorem. Now (d) shows f ∗ (g ∗ h) ∈ C0(R). Write

f ∗ (g ∗ h)(x) =
∫∞

−∞
f
(
y
)
∫∞

−∞
g
(
x − y − z)h(z)dzdy

=
∫∞

−∞
h(z)

∫∞

−∞
f
(
y
)
g
(
x − y − z)dy dz

=
(
f ∗ g) ∗ h(x).

(2.3)

We can interchange orders of integration using Proposition A.3. For (ii) in Proposition A.3,
the function z �→ Vy∈Rg(x − y − z)h(z) = Vg h(z) is in L1 for each fixed x ∈ R. Since g is
of bounded variation, it is bounded so |g(x − y − z)h(z)| ≤ ‖g‖∞|h(z)| and condition (iii)
is satisfied. (f) This follows from a linear change of variables as in (a). (g) From (c), we
have ‖Φf‖ = sup‖g‖BV=1‖f ∗ g‖∞ ≤ sup‖g‖BV=1‖f‖‖g‖BV = ‖f‖. Let f > 0 be in L1. If g = 1,
then ‖g‖BV = 1 and f ∗ g(x) =

∫∞
−∞f so ‖Φf‖ = ‖f‖ = ‖f‖1. To prove ‖Ψg‖ ≤ ‖g‖BV, note

that ‖Ψg‖ = sup‖f‖=1‖f ∗ g‖∞ ≤ sup‖f‖=1‖f‖‖g‖BV = ‖g‖BV. Let g = χ(0,∞). Then ‖Ψg‖ =
sup‖f‖=1‖f ∗ g‖∞ = sup‖f‖=1supx∈R

|∫x−∞f | = 1 = ‖g‖BV. (h) Suppose x /∈ supp(f) + supp(g).
Note that we can write f ∗ g(x) = ∫∞

−∞g(x − y)dF(y) in terms of a Henstock-Stieltjes integral,
see [4] for details. This integral is approximated by Riemann sums

∑N
n=1 g(x − zn)[F(tn) −

F(tn−1)] where zn ∈ [tn−1, tn], −∞ = t0 < t1 < · · · < tN = ∞ and there is a gauge function γ
mapping R to the open intervals in R such that [tn−1, tn] ⊂ γ(zn). If zn /∈ supp(f), then since
R \ supp(f) is open, there is an open interval zn ⊂ I ⊂ R \ supp(f). We can take γ such that
[tn−1, tn] ⊂ I for all 1 ≤ n ≤ N. Also, F is constant on each interval in R \ supp(f). Therefore,
g(x − zn)[F(tn)−F(tn−1)] = 0 and only tags zn ∈ supp(f) can contribute to the Riemann sum.
However, for all zn ∈ supp(f), we have x − zn /∈ supp(g) so g(x − zn)[F(tn) − F(tn−1)] = 0. It
follows that f ∗ g(x) = 0.

Similar results are proven for f ∈ Lp in [1, Section 8.2].
If we use the equivalent norm ‖f‖′ = supx∈R

|∫x−∞f |, then ‖Φf‖ = ‖f‖′. Also, integration
by parts gives ‖Φf‖ ≤ ‖f‖′. Now, given f ∈ AC, let g = χ(0,∞). Then ‖g‖BV = 1, and f ∗ g(x) =∫x
−∞f . Hence, ‖f ∗ g‖∞ = ‖f‖′ and ‖Φf‖ = ‖f‖′. We can have strict inequality in ‖Ψg‖ ≤ ‖g‖BV.
For example, let g = χ{0}, then ‖g‖BV = 2 but integration by parts shows f ∗ g = 0 for each
f ∈ AC.

Remark 2.2. If f ∈ AC and g ∈ EBV, one can use Definition A.2 to define f ∗ g(x) = f ∗ gγ(x)
where gγ = g almost everywhere and gγ ∈ NBVγ . All of the results in Theorem 2.1 and the
rest of this paper have analogues. Note that f ∗ g(x) = F(∞)gγ(−∞) + F ∗ μg .

Proposition 2.3. The three definitions of convolution for distributions in Definition 1.1 are
compatible with f ∗ g for f ∈ AC and g ∈ BV.

Proof. Let f ∈ AC, g ∈ BV, and φ, ψ ∈ D. Definition 1.1(i) gives

〈
f, ψ̃ ∗ φ〉 =

∫∞

−∞
f(x)

∫∞

−∞
ψ
(
y − x)φ(y)dy dx =

∫∞

−∞

∫∞

−∞
f(x)ψ

(
y − x)φ(y)dx dy = 〈f ∗ ψ, φ〉.

(2.4)
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Since ψ ∈ BV and φ ∈ L1, Proposition A.3 justifies the interchange of integrals.
Definition 1.1(ii) gives

〈
f, τxψ̃

〉
=
∫∞

−∞
f
(
y
)
ψ
(
x − y)dy = f ∗ ψ(x). (2.5)

Definition 1.1(iii) gives

〈
f
(
y
)
,
〈
g(x), φ

(
x + y

)〉〉
=
∫∞

−∞
f
(
y
)
∫∞

−∞
g(x)φ

(
x + y

)
dx dy

=
∫∞

−∞
f
(
y
)
∫∞

−∞
g
(
x − y)φ(x)dx dy

=
∫∞

−∞
φ(x)

∫∞

−∞
f
(
y
)
g
(
x − y)dx dx

= 〈f ∗ g, φ〉.

(2.6)

The interchange of integrals is accomplished using Proposition A.3 since g ∈ BV and φ ∈
L1.

The locally integrable distributions are defined as AC(loc) = {f ∈ D′ | f = F ′

for someF ∈ C0(R)}. Let f ∈ AC(loc) and let g ∈ BV with support in the compact interval
[a, b]. By the Hake theorem [4, Theorem 25], f ∗ g(x) exists if and only if the limits of
∫β
αf(x − y)g(y)dy exist as α → −∞ and β → ∞. This gives

f ∗ g(x) =
∫b

a

f
(
x − y)g(y)dy =

∫x−a

x−b
f
(
y
)
g
(
x − y)dy. (2.7)

There are analogues of the results in Theorem 2.1. For example, |f ∗ g(x)| ≤ |∫x−ax−bf |inf[a,b]|g| +
‖fχ[x−b,x−a]‖V[a,b]g. There are also versions where the supports are taken to be semi-infinite
intervals.

We can also define the distributions with bounded primitive as AC(bd) = {f ∈ D′ |
f = F ′ for some bounded F ∈ C0(R) with F(0) = 0}. Let f ∈ AC(bd) and let F be its unique
primitive. If g ∈ BV such that g(±∞) = 0, then

f ∗ g(x) = lim
α→−∞
β→∞

∫β

α

f
(
x − y)g(y)dy

= lim
α→−∞
β→∞

[

F(x − α)g(α) − F(x − β)g(β) +
∫β

α

F
(
x − y)dg(y)

]

=
∫∞

−∞
F
(
x − y)dg(y) =

∫∞

−∞
F
(
y
)
dg

(
x − y).

(2.8)

It follows that ‖f ∗ g‖∞ ≤ ‖F‖∞Vg.



Abstract and Applied Analysis 7

It is possible to formulate other existence criteria. For example, if f(x) = log |x| sin(x)
and g(x) = |x|−α for some 0 < α < 1, then f and g are not in AC, BV or Lp for any 1 ≤ p ≤ ∞
but f ∗ g exists on R because f, g ∈ L1

loc and if F(x) =
∫x
0f, then lim|x|→∞F(x)g(x) = 0.

The following example shows that f ∗ g needs not to be of bounded variation and
hence not absolutely continuous. Let g = χ(0,∞). For f ∈ AC,we have f ∗ g(x) = ∫x

−∞f = F(x),
where F ∈ BC is the primitive of f . However, F needs not to be of bounded variation or even
of local bounded variation. For example, let f(x) = sin(x−2) − 2x−2 cos(x−2) and let F be its
primitive in BC. Finally, although f ∗g is continuous, it needs not to be integrable over R. For
example, let g = 1, then f ∗ g(x) = ∫∞

−∞f and
∫∞
−∞f ∗ g only exists if

∫∞
−∞f = 0.

3. Convolution in AC × L1

We now extend the convolution f ∗ g to f ∈ AC and g ∈ L1. Since there are functions in L1

that are not of bounded variation, there are distributions f ∈ AC and functions g ∈ L1 such
that the integral

∫∞
−∞f(x − y)g(y)dy does not exist. The convolution is then defined as the

limit in ‖ · ‖ of a sequence f ∗ gn for gn ∈ BV ∩ L1 such that gn → g in the L1 norm. This is
possible since BV ∩L1 is dense in L1. We also give an equivalent definition using the fact that
L1 is dense inAC. Take a sequence {fn} ⊂ L1 such that ‖fn − f‖ → 0. Then f ∗g is the limit in
‖ · ‖ of fn ∗ g. In this more general setting of convolution defined inAC × L1,we now have an
Alexiewicz norm estimate for f ∗ g in terms of estimates of f in the Alexiewicz norm and g
in the L1 norm. There is associativity with L1 functions and commutativity with translations.

Definition 3.1. Let f ∈ AC and let g ∈ L1. Let {gn} ⊂ BV ∩ L1 such that ‖gn − g‖1 → 0. Define
f ∗ g as the unique element in AC such that ‖f ∗ gn − f ∗ g‖ → 0.

To see that the definitionmakes sense, first note that BV∩L1 is dense in L1 since step functions
are dense in L1. Hence, the required sequence {gn} exists. Let [α, β] ⊂ R be a compact interval.
Let F ∈ BC be the primitive of f . Then

∫β

α

f ∗ gn(x)dx =
∫β

α

∫∞

−∞
f
(
y
)
gn

(
x − y)dy dx

=
∫∞

−∞
f
(
y
)
∫β

α

gn
(
x − y)dx dy

(3.1)

=
∫∞

−∞
f
(
y
)
∫β−y

α−y
gn(x)dx dy

= −
∫∞

−∞
F
(
y
)
d

[∫β−y

α−y
gn

] (3.2)

=
∫∞

−∞
F
(
y
)[
gn

(
β − y) − gn

(
α − y)]dy

=
∫∞

−∞

(∫β−y

α−y
f

)

gn
(
y
)
dy.

(3.3)
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The interchange of orders of integration in (3.1) is accomplished with Proposition A.3 using
g(x, y) = gn(x − y)χ[α,β](x). Integration by parts gives (3.2) since limy→∞

∫β−y
α−ygn = 0. As F

is continuous and the function y �→ ∫β−y
α−ygn is absolutely continuous, we get (3.3). Taking the

supremum over α, β ∈ R gives

∥
∥f ∗ gn

∥
∥ ≤ ∥

∥f
∥
∥
∥
∥gn

∥
∥
1. (3.4)

We now have

∥
∥f ∗ gm − f ∗ gn

∥
∥ =

∥
∥f ∗ (gm − gn

)∥∥ ≤ ∥
∥f

∥
∥
∥
∥gm − gn

∥
∥
1 (3.5)

and {f ∗gn} is a Cauchy sequence inAC. SinceAC is complete, this sequence has a limit inAC

which we denote f ∗g. The definition does not depend on the choice of sequence {gn}, thus if
{hn} ⊂ BV∩L1 such that ‖hn − g‖1 → 0, then ‖f ∗gn−f ∗hn‖ ≤ ‖f‖(‖gn − g‖1+‖hn − g‖1) → 0
as n → ∞. The previous calculation also shows that if g ∈ BV∩L1, then the integral definition
f ∗ g(x) = ∫∞

−∞f(x − y)g(y)dy and the limit definition agree.

Definition 3.2. Let f ∈ AC and let g ∈ L1. Let {fn} ⊂ L1 such that ‖fn − f‖ → 0. Define f ∗ g
as the unique element in AC such that ‖fn ∗ g − f ∗ g‖ → 0.

To show this definition makes sense, first show L1 is dense inAC.

Proposition 3.3. L1 is dense inAC.

Proof. Let AC(R) be the functions that are absolutely continuous on each compact interval
and which are of bounded variation on the real line. Then, f ∈ L1 if and only if there exists
F ∈ AC(R) such that F ′(x) = f(x) for almost all x ∈ R. Let f ∈ AC be given. Let F ∈ BC be
its primitive. For ε > 0, take M > 0 such that |F(x)| < ε for x < −M and |F(x) − F(∞)| < ε
for x > M. Due to the Weierstrass approximation theorem, there is a continuous function
P : R → R such that P(x) = F(−M) for x ≤ −M, P(x) = F(M) for x ≥ M, |P(x) − F(x)| < ε
for |x| ≤M and P is a polynomial on [−M,M]. Hence, P ∈ AC(R) and ‖P ′ − f‖ < 3ε.

In Definition 3.2, the required sequence {fn} ⊂ L1 exists. Let [α, β] ⊂ R be a compact
interval. Then, by the usual Fubini-Tonelli theorem in L1,

∫β

α

fn ∗ g(x)dx =
∫β

α

∫∞

−∞
fn
(
x − y)g(y)dy dx

=
∫∞

−∞
g
(
y
)
∫β

α

fn
(
x − y)dx dy.

(3.6)

Take the supremum over α, β ∈ R and use the L1 − L∞ Hölder inequality to get

∥∥fn ∗ g
∥∥ ≤ ∥∥fn

∥∥∥∥g
∥∥
1. (3.7)

It now follows that {fn ∗ g} is a Cauchy sequence. It then converges to an element of AC.
However, (3.7) also shows that this limit is independent of the choice of {fn}. To see that
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Definitions 3.1 and 3.2 agree, take {fn} ⊂ L1 with ‖fn − f‖ → 0 and {gn} ⊂ BV ∩ L1 with
‖gn − g‖1 → 0. Then

∥
∥fn ∗ g − f ∗ gn

∥
∥ =

∥
∥(fn − f

) ∗ g − f ∗ (gn − g
)∥∥

≤ ∥∥(fn − f
) ∗ g∥∥ +

∥∥f ∗ (gn − g
)∥∥

≤ ∥
∥fn − f

∥
∥
∥
∥g

∥
∥
1 +

∥
∥f

∥
∥
∥
∥gn − g

∥
∥
1

(3.8)

Letting n → ∞ shows that the limits of fn ∗ g in Definition 3.2 and f ∗ gn in Definition 3.1 are
the same.

Theorem 3.4. Let f ∈ AC and g ∈ L1. Define f ∗g as in Definition 3.1. Then (a)‖f ∗g‖ ≤ ‖f‖‖g‖1.
(b) Let h ∈ L1. Then (f ∗ g) ∗ h = f ∗ (g ∗ h) ∈ AC. (c) For each z ∈ R, τz(f ∗ g) = (τzf) ∗ g =
(f ∗ τzg). (d) For each f ∈ AC, define Φf : L1 → AC by Φf[g] = f ∗ g. Then Φf is a bounded
linear operator and ‖Φf‖ ≤ ‖f‖. There exists a nonzero distribution f ∈ AC such that ‖Φf‖ = ‖f‖.
For each g ∈ L1, define Ψg : AC → AC by Ψg[f] = f ∗ g. Then Ψg is a bounded linear operator
and ‖Ψg‖ ≤ ‖g‖1. There exists a nonzero function g ∈ L1 such that ‖Ψg‖ = ‖g‖BV. (e) Define
gt(x) = g(x/t)/t for t > 0. We have a =

∫∞
−∞gt(x)dx =

∫∞
−∞g. Then ‖f ∗ gt − af‖ → 0 as t → 0.

(f) Let supp(f ∗ g) ⊂ supp(f) + supp(g).

Proof. Let {gn} be as in Definition 3.1. (a) Since ‖f ∗ gn‖ → ‖f ∗ g‖, (3.4) shows ‖f ∗ g‖ ≤
‖f‖‖g‖1. (b) Let {hn} ⊂ BV ∩ L1 such that ‖hn − h‖1 → 0. Then (f ∗ g) ∗ h := ξ ∈ AC such that
‖(f ∗ g) ∗ hn − ξ‖ → 0. Since g ∗ h ∈ L1, there is {pn} ⊂ BV ∩ L1 such that ‖pn − g ∗ h‖1 → 0.
Then f ∗ (g ∗ h) := η ∈ AC such that ‖f ∗ pn − η‖ → 0. Now,

∥∥ξ − η∥∥ ≤ ∥∥(f ∗ g) ∗ hn − ξ
∥∥ +

∥∥f ∗ pn − η
∥∥

+
∥∥(f ∗ g) ∗ hn −

(
f ∗ gn

) ∗ hn
∥∥ +

∥∥(f ∗ gn
) ∗ hn − f ∗ pn

∥∥.
(3.9)

Using (3.4),

∥∥(f ∗ g) ∗ hn −
(
f ∗ gn

) ∗ hn
∥∥

=
∥∥[f ∗ (g − gn

)] ∗ hn
∥∥ ≤ ∥∥f

∥∥∥∥gn − g
∥∥
1‖hn‖1 −→ 0 as n −→ ∞.

(3.10)

Finally, use Theorem 2.1(e) and (3.4) to write

∥∥(f ∗ gn
) ∗ hn − f ∗ pn

∥∥

=
∥∥f ∗ (gn ∗ hn − pn

)∥∥

≤ ∥∥f
∥∥(∥∥gn − g

∥∥
1‖hn‖1 +

∥∥g
∥∥
1‖hn − h‖1 +

∥∥pn − g ∗ h∥∥1

) −→ 0 as n −→ ∞.

(3.11)

(c) The Alexiewicz norm is invariant under translation [4, Theorem 28] so τz(f ∗ g) ∈ AC.
Use Theorem 2.1(f) to write ‖τz(f ∗g)−τz(f ∗gn)‖ = ‖f ∗g−f ∗gn‖ = ‖τz(f ∗g)−(τzf)∗gn)‖ =
‖τz(f∗g)−f∗(τzgn)‖. Translation invariance of the L1 norm completes the proof. (d) From (a),
we have ‖Φf‖ = sup‖g‖1=1‖f ∗ g‖ ≤ sup‖g‖1=1‖f‖‖g‖1 = ‖f‖. We get equality by considering f
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and g to be positive functions in L1. To prove ‖Ψg‖ ≤ ‖g‖1, note that ‖Ψg‖ = sup‖f‖=1‖f ∗g‖ ≤
sup‖f‖=1‖f‖‖g‖1 = ‖g‖1. We get equality by considering f and g to be positive functions in
L1. (e) First consider g ∈ BV ∩ L1. We have

f ∗ gt(x) =
∫∞

−∞
f
(
x − y)g

(y
t

)dy
t

=
∫∞

−∞
f
(
x − ty)g(y)dy. (3.12)

For −∞ < α < β <∞,

∣
∣
∣
∣
∣

∫β

α

[
f ∗ gt(x) − a f(x)

]
dx

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫β

α

∫∞

−∞

[
f
(
x − ty) − f(x)]g(y)dy dx

∣
∣
∣
∣
∣

=

∣
∣∣∣∣

∫∞

−∞

∫β

α

[
f
(
x − ty) − f(x)]g(y)dx dy

∣
∣∣∣∣

(3.13)

≤
∫∞

−∞

∥∥τtyf − f∥∥∣∣g(y)∣∣dy

≤ 2
∥∥f

∥∥∥∥g
∥∥
1.

(3.14)

By dominated convergence, we can take the limit t → 0 inside the integral (3.14). Continuity
of f in the Alexiewicz norm then shows ‖f ∗ gt − af‖ → 0 as t → 0.

Now take a sequence {g(n)} ⊂ BV ∩ L1 such that ‖g(n) − g‖1 → 0. Define g(n)
t (x) =

g(n)(x/t)/t and a(n) =
∫∞
−∞g

(n)(x)dx. We have

∥∥f ∗ gt − af
∥∥ ≤

∥∥∥f ∗ g(n)
t − a(n)f

∥∥∥ +
∥∥∥f ∗ g(n)

t − f ∗ gt
∥∥∥ +

∥∥∥a(n)f − af
∥∥∥. (3.15)

By the inequality in (a), ‖f ∗ g(n)
t − f ∗ gt‖ ≤ ‖f‖‖g(n)

t − gt‖1. Whereas,

∥∥∥g(n)
t − gt

∥∥∥
1
=
∫∞

−∞

∣∣∣g(n)
(x
t

)
− g

(x
t

)∣∣∣
dx

t
=
∥∥∥g(n) − g

∥∥∥
1
−→ 0 as n −→ ∞, (3.16)

and ‖a(n)f − af‖ = |a(n) − a|‖f‖ = ‖g(n) − g‖1‖f‖. Given ε > 0 fix n large enough so that
‖f ∗ g(n)

t − f ∗ gt‖ + ‖a(n)f − af‖ < ε. Now let t → 0 in (3.15).
The interchange of order of integration in (3.13) is justified as follows. A change of

variables and Proposition A.3 give

∫β

α

∫∞

−∞
f
(
x − ty)g(y)dy dx =

∫β

α

∫∞

−∞
f
(
y
)
g

(
x − y
t

)
dy

t
dx

=
∫∞

−∞

∫β

α

f
(
y
)
g

(
x − y
t

)
dx

dy

t
,
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∫∞

−∞

∫β

α

f
(
x − ty)g(y)dx dy =

∫∫∞

−∞
f(x) g

(y
t

)
χ(α−y,β−y)(x)dx

dy

t

=
∫∫∞

−∞
f(x) g

(y
t

)
χ(α−y,β−y)(x)

dy

t
dx

=
∫∞

−∞

∫β

α

f(x) g
(
y − x
t

)
dy

t
dx.

(3.17)

Note that
∫β
α

∫∞
−∞f(x)g(y)dy dx =

∫∞
−∞

∫β
αf(x)g(y)dx dy by Corollary A.4. (f) This follows from

the equivalence of Definitions 1.1 and 3.1, proved in Proposition 3.5, see [6, Theorems 5.4-2
and 5.3-1].

Young’s inequality states that ‖f ∗ g‖p ≤ ‖f‖p‖g‖1 when f ∈ Lp for some 1 ≤ p ≤ ∞
and g ∈ L1. Part (a) of Theorem 3.4 extends this to f ∈ AC. see [1] for other results when
f ∈ Lp.

The fact that convolution is linear in both arguments, together with (b), shows thatAC

is an L1-module over the L1 convolution algebra, see [8] for the definition. It does not appear
that AC is a Banach algebra under convolution.

We now show that Definition 1.1(iii) and the aforementioned definitions agree.

Proposition 3.5. Let f ∈ AC, g ∈ L1, and φ ∈ D. Define F(y) =
∫y
−∞f and G(x) =

∫x
−∞g.

Definitions 1.1 and 3.1 both give

〈
f ∗ g, φ〉 =

∫∞

−∞
f
(
y
)
∫∞

−∞
g(x)φ

(
x + y

)
dx dy

=
∫∫∞

−∞
F
(
y
)
G(x)φ′(x + y

)
dx dy.

(3.18)

Proof. Let Φ(y) =
∫∞
−∞g(x)φ(x + y)dx. Then Φ ∈ C∞(R) and Φ′(y) =

∫∞
−∞g(x)φ

′(x + y)dx.
Also,

∫∞
−∞|Φ′(y)|dy ≤ ∫∞

−∞|g(x)|
∫∞
−∞|φ′(x + y)|dy dx ≤ ‖g‖1‖φ′‖1, so Φ ∈ AC(R). Dominated

convergence then shows lim|y|→∞Φ(y) = 0. Integration by parts now gives (3.18).
Let {gn} ⊂ BV ∩ L1 such that ‖gn − g‖1 → 0. Since convergence in ‖ · ‖ implies

convergence in D′, we have

〈
f ∗ g, φ〉 = lim

n→∞
〈
f ∗ gn, φ

〉

= lim
n→∞

∫∫∞

−∞
f
(
y
)
gn

(
x − y)φ(x)dy dx

= lim
n→∞

∫∞

−∞
f
(
y
)
∫∞

−∞
gn

(
x − y)φ(x)dx dy.

(3.19)

Proposition A.3 allows interchange of the iterated integrals. Define Φn(y) =
∫∞
−∞gn(x)φ(x +

y)dx. Then, VΦn ≤ ‖gn‖1‖φ′‖1 ≤ (‖g‖1 + 1)‖φ′‖1 for large enough n. Hence, Φn is of uniform
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bounded variation. Theorem 22 in [4], then gives 〈f ∗ g, φ〉 =
∫∞
−∞f(y)limn→∞Φn(y) dy =∫∞

−∞f(y)
∫∞
−∞g(x − y)φ(x)dx dy. The last step follows since ‖gn − g‖1 → 0.

If g ∈ L1 \ BV, then f ∗ g needs not to be continuous or bounded. For example, take
1/2 ≤ α < 1 and let f(x) = g(x) = x−αχ(0,1)(x). Then, f ∈ L1 ⊂ AC and g ∈ L1 \ BV.
We have f ∗ g(x) = 0 for x ≤ 0. For 0 < x ≤ 1, we have f ∗ g(x) =

∫x
0y

−α(x − y)−αdy =
x1−2α∫1

0y
−α(1 − y)−αdy = x1−2αΓ2(1 − α)/Γ(2 − 2α). Hence, f ∗ g is not continuous at 0. If

1/2 < α < 1, then f ∗ g is unbounded at 0.
As another example, consider f(x) = sin(πx)/ log |x| and g(x) = χ(0,1)(x). Then f ∈

AC and for each 1 ≤ p ≤ ∞,we have g ∈ BV ∩ Lp. And,

f ∗ g(x) =
∫x

x−1

sin
(
πy

)

log
(
y
) dy for x ≥ 2

=
cos(π(x − 1))
π log(x − 1)

− cos(πx)
π log(x)

− 1
π

∫x

x−1

cos
(
πy

)

ylog2
(
y
)dy ∼ −2 cos(πx)

π log(x)
as x −→ ∞.

(3.20)

Therefore, by Theorem 2.1(d), f ∗g ∈ C0(R), and lim|x|→∞f ∗g(x) = 0 but for each 1 ≤ p <∞,
we have f ∗ g /∈Lp.

4. Differentiation and Integration

If g is sufficiently smooth, then the pointwise derivative is (f ∗ g)′(x) = f ∗ g ′(x). Recall the
definition AC(R) of primitives of L1 functions given in the proof of Proposition 3.3. In the
following theorem, we require pointwise derivatives of g to exist at each point in R.

Theorem 4.1. Let f ∈ AC, n ∈ N, and g(k) ∈ AC(R) for each 0 ≤ k ≤ n. Then f ∗ g ∈ Cn(R) and
(f ∗ g)(n)(x) = f ∗ g(n)(x) for each x ∈ R.

Proof. First consider n = 1. Let x ∈ R. Then

(
f ∗ g)′(x) = lim

h→ 0

∫∞

−∞
f
(
y
)
[
g
(
x + h − y) − g(x − y)

h

]

dy. (4.1)

To take the limit inside the integral we can show that the bracketed term in the integrand is
of uniform bounded variation for 0 < |h| ≤ 1. Let h/= 0. Since g ∈ AC(R) it follows that the
variation is given by the Lebesgue integrals

Vy∈R

[
g
(
x + h − y) − g(x − y)

h

]

=
∫∞

−∞

∣∣∣∣∣
g ′(x + h − y) − g ′(x − y)

h

∣∣∣∣∣
dy

≤
∫∞

−∞

∣∣g ′′(y
)∣∣dy +

∫∞

−∞

∣∣∣∣∣
g ′(x + h − y) − g ′(x − y)

h
− g ′′(x − y)

∣∣∣∣∣
dy.

(4.2)
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Since g ′ ∈ AC(R), we have g ′′ ∈ L1. The second integral on the right of (4.2) gives the
L1 derivative of g ′ in the limit h → 0; see [1, page 246]. Hence, in (4.1), we can use [4,
Theorem 22] to take the limit under the integral sign. This then gives (f ∗ g)′(x) = f ∗ g ′(x).
Theorem 2.1(d) now shows (f ∗ g)′ ∈ C0(R). Induction on n completes the proof.

For similar results when f ∈ L1, see [1, Proposition 8.10].
Note that g ′ ∈ AC(R) does not imply g ∈ AC(R). For example, g(x) = x. The

conditions g(k) ∈ BV for 0 ≤ k ≤ n + 1 imply those in Theorem 4.1. To see this, it suffices
to consider n = 1. If g ′, g ′′ ∈ BV, then g ′′ exists at each point and is bounded. Hence, the
Lebesgue integral g ′(x) = g ′(0) +

∫x
0g

′′(y)dy exists for each x ∈ R and g ′ is absolutely
continuous. Since g ′ ∈ BV, we then have g ′ ∈ AC(R). Similarly, for n > 1. The example
g(x) = |x|1.5 sin(1/[1+x2]) shows that theAC(R) condition in the theorem is weaker than the
aforementioned BV condition since g, g ′ ∈ AC(R) but g ′′(0) does not exist so g ′′ /∈BV.

We found that when g ∈ BV ∩ L1, then f ∗ g ∈ AC. We can compute the distributional
derivative (F ∗ g)′ = f ∗ g, where F is a primitive of f .

Proposition 4.2. Let F ∈ C0(R) and write f = F ′ ∈ AC. Let g ∈ BV ∩ L1. Then F ∗ g ∈ C0(R) and
(F ∗ g)′ = f ∗ g ∈ AC.

Proof. Let x, t ∈ R. Then by the usual Hölder inequality,

∣∣F ∗ g(x) − F ∗ g(t)∣∣

=
∣∣∣∣

∫∞

−∞

[
F
(
x − y) − F(t − y)]g(y)dy

∣∣∣∣

≤ ‖F(x − ·) − F(t − ·)‖∞
∥∥g

∥∥
1 −→ 0 as t −→ x since F is uniformly continuous on R.

(4.3)

Hence, F ∗ g is continuous on R. Dominated convergence shows that limx→±∞F ∗ g(x) =
F(±∞)

∫∞
−∞g. Therefore, F ∗ g ∈ C0(R).
Let φ ∈ D. Then

〈(
F ∗ g)′, φ

〉
= −〈F ∗ g, φ′〉

= −
∫∫∞

−∞
F
(
x − y)g(y)φ′(x)dy dx

= −
∫∞

−∞
g
(
y
)
∫∞

−∞
F
(
x − y)φ′(x)dx dy (Fubini-Tonelli theorem).

(4.4)

Integrate by parts and use the change of variables x �→ x + y to get

〈(
F ∗ g)′, φ

〉
=
∫∞

−∞
g
(
y
)
∫∞

−∞
f(x)φ

(
x + y

)
dx dy

=
∫∞

−∞
f(x)

∫∞

−∞
g
(
y
)
φ
(
x + y

)
dy dx

(
by Proposition A.3

)
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=
∫∞

−∞
f(x)

∫∞

−∞
g
(
y − x)φ(y)dy dx

=
∫∞

−∞
φ
(
y
)
∫∞

−∞
f(x)g

(
y − x)dx dy (

by Proposition A.3
)

=
〈
f ∗ g, φ〉.

(4.5)

This gives an alternate definition of f ∗ g for f ∈ AC and g ∈ L1.

Theorem 4.3. Let f ∈ AC, let F ∈ BC be the primitive of f and let g ∈ L1. Define f ∗ g as in
Definition 3.1. Then (F ∗ g)′ = f ∗ g ∈ AC.

Proof. Let −∞ < α < β < ∞. Let {gn} ⊂ BV ∩ L1 such that ‖gn − g‖1 → 0. By Proposition 4.2,
we have

∫β

α

(
F ∗ g)′ = F ∗ g(β) − F ∗ g(α) =

∫∞

−∞
F
(
y
)[
g
(
β − y) − g(α − y)]dy. (4.6)

As in (3.3),
∫β
αf ∗ gn =

∫∞
−∞F(y)[gn(β − y) − gn(α − y)]dy. Hence,

∣∣∣∣∣

∫β

α

[(
F ∗ g)′ − f ∗ gn

]
∣∣∣∣∣

=
∣∣∣∣

∫∞

−∞
F
(
y
)[(

g
(
β − y) − gn

(
β − y)) − (

g
(
α − y) − gn

(
α − y))]dy

∣∣∣∣

≤ ‖F‖∞
(∥∥g

(
β − ·) − gn

(
β − ·)∥∥1 +

∥∥g(α − ·) − gn(α − ·)∥∥1

)

= 2
∥∥f

∥∥∥∥gn − g
∥∥
1.

(4.7)

Therefore, ‖(F ∗ g)′ − f ∗ gn‖ ≤ 2‖f‖‖gn − g‖1 → 0 as n → ∞.

The following theorem and its corollary give results on integrating convolutions.

Theorem 4.4. Let f ∈ AC and let g ∈ L1. Define F(x) =
∫x
−∞f and G(x) =

∫x
−∞g. Then, f ∗ G ∈

C0(R) and f ∗G(x) = F ∗ g(x) for all x ∈ R.

Proof. Since G ∈ AC(R), Theorem 2.1(d) shows f ∗G ∈ C0(R). We have

f ∗G(x) =
∫∞

−∞
f
(
y
)
∫x−y

−∞
g(z)dzdy

=
∫∫∞

−∞
f
(
y
)
χ(−∞,x−y)(z)g(z)dzdy
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=
∫∫∞

−∞
f
(
y
)
χ(−∞,x−y)(z)g(z)dy dz

=
∫∞

−∞
g(z)

∫x−z

−∞
f
(
y
)
dy dz

= F ∗ g(x).
(4.8)

Proposition A.3 justifies the interchange of orders of integration.

Corollary 4.5. Note that the following hold: (a)f ∗ g = (F ∗ g)′ = (f ∗G)′,(b) for all −∞ ≤ α < β ≤
∞, one has

∫β
αf ∗ g = F ∗ g(β) − F ∗ g(α) = f ∗G(β) − f ∗G(β).

Hence, the convolution f ∗ g can be evaluated by taking the distributional derivative
of the Lebesgue integral F ∗ g. Since f ∗ G ∈ C0(R), when f ∈ AC and G ∈ BV, we can use
the equation f ∗ g = (f ∗G)′ to define f ∗ g for f ∈ AC and g = G′ for G ∈ BV. In this case,
g will be a signed Radon measure. As G(x) =

∫x
−∞g and this integral is a regulated primitive

integral [5], we will save this case for discussion elsewhere.

Appendix

The integration by parts formula is as follows. If f ∈ AC and g ∈ BV, it gives the integral of
fg in terms of a Henstock-Stieltjes integral:

∫∞

−∞
fg = F(∞)g(∞) −

∫∞

−∞
F dg, (A.1)

see [4] and [9, page 199].
We have the following corollary for functions of essential bounded variation.

Corollary A.1. Let F ∈ C0(R). Let g ∈ EBV. Fix 0 ≤ γ ≤ 1. Take gγ ∈ NBVγ such that gγ = g
almost everywhere. Let μg be the signed Radon measure given by g ′. Then

∫∞
−∞F dgγ =

∫∞
−∞F dμg .

Proof. The distributional derivative of g is 〈g ′, φ〉 = −〈g, φ′〉 = −∫∞−∞gφ′ =
∫∞
−∞φ dμg for all

φ ∈ D. Note that gγ is unique and μg = μgγ . Suppose φ ∈ D with supp(φ) ⊂ [A,B] ⊂ R. Then,
using integration by parts for the Henstock-Stieltjes integral:

〈
gγ , φ

′〉 =
∫B

A

gγφ
′ = gγ(B)φ(B) − gγ(A)φ(A) −

∫B

A

φ dgγ = −
∫∞

−∞
φ dgγ

= −〈g ′
γ , φ〉 = −

∫∞

−∞
φ dμgγ = −

∫∞

−∞
φ dμg.

(A.2)
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Let F ∈ C0(R). There is a uniformly bounded sequence {φn} ⊂ D such that φn → F
pointwise on R. By dominated convergence,

lim
n→∞

∫∞

−∞
φn dgγ =

∫∞

−∞
F dgγ = lim

n→∞

∫∞

−∞
φn dμg =

∫∞

−∞
F dμg. (A.3)

Corollary A.1 now justifies the following definition.

Definition A.2. Let f ∈ AC and let F ∈ BC be its primitive. Let g ∈ EBV. Fix 0 ≤ γ ≤ 1 and take
gγ ∈ NBVγ such that gγ = g almost everywhere. Define

∫∞

−∞
fg = gγ(∞)F(∞) −

∫∞

−∞
F dμg =

∫∞

−∞
fgγ . (A.4)

Since limits at infinity are not affected by the choice of γ , the definition is independent of γ .
The Hölder inequality is

∣∣∣∣

∫∞

−∞
fg

∣∣∣∣ ≤
∣∣∣∣

∫∞

−∞
f

∣∣∣∣inf
R

∣∣g
∣∣ +

∥∥f
∥∥Vg ≤ ∥∥f

∥∥∥∥g
∥∥
BV, (A.5)

and is valid for all f ∈ AC and g ∈ BV. For g ∈ EBV,we replace g with gγ . This gives

∣∣∣∣

∫∞

−∞
fg

∣∣∣∣ ≤
∣∣∣∣

∫∞

−∞
f

∣∣∣∣inf
R

∣∣gγ
∣∣ +

∥∥f
∥∥Vgγ ≤

∥∥f
∥∥∥∥g

∥∥
EBV, (A.6)

see [2, Lemma 24] for a proof using the Henstock-Kurzweil integral. The same proof works
for the continuous primitive integral.

Fubini theorem has been established in [10] for the continuous primitive integral on
compact intervals. This says that if a double integral exists in the plane, then the two iterated
integrals exist and are equal. Of more utility for the case at hand is to show directly that
iterated integrals are equal without resorting to the double integral. The following theorem
extends a type of Fubini theorem proved in [11, page 58] for the wide Denjoy integral on
compact intervals.

Proposition A.3. Let f ∈ AC. Let g : R × R → R be measurable. Assume (i) for each x ∈ R the
function y �→ g(x, y) is in BV; (ii) the function x �→ Vy∈R g(x, y) is in L1; (iii) there is M ∈ L1

such that for each y ∈ R, one has |g(x, y)| ≤ M(x). Then the iterated integrals exist and are equal,∫∞
−∞

∫∞
−∞f(y)g(x, y)dy dx =

∫∞
−∞

∫∞
−∞f(y)g(x, y)dx dy.

Proof. Let F ∈ BC be the primitive of f . For each x ∈ R, we have

∫∞

−∞
f
(
y
)
g
(
x, y

)
dy = F(∞)g(x,∞) −

∫∞

−∞
F
(
y
)
d2g

(
x, y

)
, (A.7)
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where d2(x, y) indicates a Henstock-Stieltjes integral with respect to y. Then,

∫∫∞

−∞
f
(
y
)
g
(
x, y

)
dy dx = F(∞)

∫∞

−∞
g(x,∞)dx −

∫∫∞

−∞
F
(
y
)
d2g

(
x, y

)
dx. (A.8)

The integral
∫∞
−∞g(x,∞) dx exists due to condition (iii). The iterated integral in (A.8)

converges absolutely since

∣
∣
∣
∣

∫∫∞

−∞
F
(
y
)
d2g

(
x, y

)
dx

∣
∣
∣
∣ ≤

∫∞

−∞

∣
∣
∣
∣

∫∞

−∞
F
(
y
)
d2g

(
x, y

)
∣
∣
∣
∣dx ≤ ‖F‖∞

∫∞

−∞
Vy∈Rg

(
x, y

)
dx.

(A.9)

Now, show the function y �→ ∫∞
−∞g(x, y)dx is in BV. Let {(si, ti)}ni=1 be disjoint intervals

in R. Then

n∑

i=1

∣∣∣∣

∫∞

−∞
g(x, si)dx −

∫∞

−∞
g(x, ti)dx

∣∣∣∣ ≤
n∑

i=1

∫∞

−∞

∣∣g(x, si) − g(x, ti)
∣∣dx

=
∫∞

−∞

n∑

i=1

∣∣g(x, si) − g(x, ti)
∣∣dx

≤
∫∞

−∞
Vy∈R g

(
x, y

)
dx.

(A.10)

The interchange of summation and integration follows from condition (ii) and the usual
Fubini-Tonelli theorem. Hence, the function y �→ ∫∞

−∞g(x, y)dx is in BV and the iterated
integral

∫∞
−∞f(y)

∫∞
−∞g(x, y)dx dy exists.

Integrate by parts

∫∞

−∞
f
(
y
)
∫∞

−∞
g
(
x, y

)
dx dy (A.11)

= F(∞)
∫∞

−∞
g(x,∞)dx −

∫∞

−∞
F
(
y
)
d

[∫∞

−∞
g
(
x, y

)
dx

]
. (A.12)

In (A.11), we have limy→∞
∫∞
−∞g(x, y)dx =

∫∞
−∞g(x,∞)dx due to dominated convergence

and condition (iii). To complete the proof, we need to show that the integrals in (A.8)
and (A.12) are equal. First, consider the case when F = χ(a,b) for an interval (a, b) ⊂ R.
Then (A.8) becomes

∫∞
−∞

∫b
ad2g(x, y)dx =

∫∞
−∞[g(x, b) − g(x, a)]dx. Moreover, now (A.12)

becomes
∫b
ad[

∫∞
−∞g(x, y)dx] =

∫∞
−∞g(x, b)dx−

∫∞
−∞g(x, a)dx. Hence, when F is a step function,

F(y) =
∑n

i=1 ciχIi(y) for some n ∈ N, disjoint intervals {Ii}ni=1 and real numbers {ci}ni=1, we
have the desired equality of (A.8) and (A.12). However, F ∈ BC is uniformly continuous on
R, that is, for each ε > 0, there is δ > 0 such that for all 0 ≤ |x−y| < δ,we have |F(x)−F(y)| < ε,
for all x < −1/δ, we have |F(x)| < ε and for all x > 1/δ, we have |F(x) − F(∞)| < ε. It then
follows from the compactness of R that the step functions are dense in BC. Hence, there is
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a sequence of step functions {σN} such that ‖F − σN‖∞ → 0. In (A.8), we have

lim
N→∞

∫∫∞

−∞
σN

(
y
)
d2g

(
x, y

)
dx =

∫∫∞

−∞
F
(
y
)
d2g

(
x, y

)
dx. (A.13)

TheN limit can be brought inside the x integral using dominated convergence and (ii) since
|∫∞−∞σN(y)d2g(x, y)| ≤ (‖F‖∞+1)Vy∈R g(x, y) for large enoughN. TheN limit can be brought
inside the y integral using dominated convergence since |σN(y)| ≤ (‖F‖∞+1) for large enough
N. In (A.12), we have

lim
N→∞

∫∞

−∞
σN

(
y
)
d

[∫∞

−∞
g
(
x, y

)
dx

]
=
∫∞

−∞
F
(
y
)
d

[∫∞

−∞
g
(
x, y

)
dx

]
. (A.14)

The N limit can be brought inside the y integral since {σN} converges to F uniformly on R

and d[
∫∞
−∞g(x, y)dx] is a finite-signed measure.

Corollary A.4. If f has compact support, one can replace (iii) with (iv): for each y ∈ supp(f) the
function x �→ g(x, y) is in L1.
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