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1. Introduction

Computer Aided Geometric Design (CAGD) is a branch of applied mathematics concerned
with algorithms for the design of smooth curves/surfaces. One common approach to the
design of curves/surfaces related to CAGD is the subdivision scheme. It is an algorithm to
generate smooth curves and surfaces as a sequence of successively refined control polygons.
At each refinement level, new points are added into the existing polygon and the original
points remain existed or discarded in all subsequent sequences of control polygons. The
number of points inserted at level k + 1 between two consecutive points from level k is
called arity of the scheme. In the case when a number of points inserted are 2, 3, . . . , n the
subdivision schemes are called binary, ternary, . . . , n-ary, respectively. An important review
of the different subdivision schemes, which range from binary to any arity, can be found
in [1–3]. Due to good properties of the 4-point binary and ternary subdivision schemes [4–
9], much attention has been given to extend their ability in modelling curves and surfaces.
For example, the 4-point ternary interpolating subdivision scheme [8] can generate higher
smoothness than the 4-point binary one [6] by using the same number of control points.

Now a days, the variety of subdivision schemes investigated; our interest is in the
direction of quaternary schemes. The goal of this paper is to construct 4-point quaternary
subdivision scheme having the higher smoothness and approximation order but smaller
support than existing 4-point binary and ternary schemes.

Here we present a 4-point quaternary approximating subdivision scheme. A polygon
fk = {fki }i∈Z is mapped to a refined polygon fk+1 = {fk+1

i }i∈Z by applying the following four
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subdivision rules:

fk+1
4i = α1f

k
i−1 + α2f

k
i + α3f

k
i+1 + α4f

k
i+2,

fk+1
4i+1 = α5f

k
i−1 + α6f

k
i + α7f

k
i+1 + α8f

k
i+2,

fk+1
4i+2 = α8f

k
i−1 + α7f

k
i + α6f

k
i+1 + α5f

k
i+2,

fk+1
4i+3 = α4f

k
i−1 + α3f

k
i + α2f

k
i+1 + α1f

k
i+2,

(1.1)

where the weights {αj} are given by

α1 =
7

32
− 7

64
ω, α2 =

29
64

+
13
64
ω, α3 =

5
16
− 5

64
ω, α4 =

1
64
− 1

64
ω,

α5 =
15
128
− 5

64
ω, α6 =

57
128

+
7
64
ω, α7 =

49
128

+
1

64
ω, α8 =

7
128
− 3

64
ω.

(1.2)

The paper is organized as follows. In Section 2 we list all the basic facts about quaternary
subdivision schemes needed in the paper. Sections 3 and 4 are devoted for analysis of
proposed scheme and its properties, respectively. Finally, in Section 5, comparison of our
scheme with other existing 4-point schemes is presented. Some examples reflecting the
performance of our scheme by setting the shape parameter to various values are also offered.

2. Preliminaries

A general compact form of univariate quaternary subdivision scheme S which maps a
polygon fk = {fki }i∈Z to a refined polygon fk+1 = {fk+1

i }i∈Z is defined by

fk+1
i =

∑

j∈Z
αi−4jf

k
j , i ∈ Z, (2.1)

where the set α = {αi : i ∈ Z} of coefficients is called mask of the scheme. A necessary
condition for the uniform convergence of the subdivision scheme (2.1) is that

∑

j∈Z
α4j+p = 1, p = 0, 1, 2, 3. (2.2)

A subdivision scheme is uniformly convergent if for any initial data f0 = {f0
i : i ∈ Z}, there

exists a continuous function f , such that for any closed interval I ⊂ R, that satisfies

lim
k→∞

sup
i∈4kI

∣∣∣fki − f
(

4−ki
)∣∣∣ = 0. (2.3)

Obviously f = S∞f0.
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For the analysis of subdivision scheme with mask α, it is very practical to consider the
z-transform of the mask,

α(z) =
∑

i∈Z
αiz

i, (2.4)

which is usually called the symbol of the scheme. Since the scheme has mask of finite
support, the corresponding symbol is Laurent polynomial, namely, polynomial in positive
and negative powers of the variables. From (2.2) and (2.4) the Laurent polynomial of a
convergent subdivision scheme satisfies

α(1) = 4, α
(
e2ipπ/4

)
= 0, p = 1, 2, 3. (2.5)

This condition guarantees existence of a related subdivision scheme for the divided
differences of the original control points and the existence of associated Laurent polynomial:

α(1)(z) =
4z3

1 + z + z2 + z3
α(z). (2.6)

The subdivision scheme S1 with symbol α(1)(z) is related to scheme S with symbol α(z) by
the following theorem.

Theorem 2.1 (see [1]). Let S denote a subdivision scheme with symbol α(z) satisfying (2.2). Then
there exists a subdivision scheme S1 with the property

Δfk = S1Δfk−1, (2.7)

where fk = Skf0 and Δfk = {(Δfk)i = 4k(fki+1 − f
k
i ) : i ∈ Z}. Furthermore, S is a uniformly

convergent if and only if (1/4)S1 converges uniformly to the zero function for all initial data f0, in
the sense that

lim
k→∞

(
1
4
S1

)k
f0 = 0. (2.8)

Theorem 2.1 indicates that for any given subdivision scheme S, with a mask α
satisfying (2.2), we can prove the uniform convergence of S by first deriving the mask of
(1/4)S1 and then computing ‖((1/4)S1)

i‖∞ for i = 1, 2, 3, . . . , L, where L is the first integer
for which ‖((1/4)S1)

L‖∞ < 1. If such an L exists, S converges uniformly. Since there are four
rules for computing the values at next refinement level, we define the norm

‖S‖∞ = max

⎧
⎨

⎩
∑

j∈Z

∣∣α4j+p
∣∣, p = 0, 1, 2, 3

⎫
⎬

⎭,

∥∥∥∥∥

(
1
4
Sn

)L∥∥∥∥∥
∞
= max

⎧
⎨

⎩
∑

j∈Z

∣∣∣b[n,L]
i+4Lj

∣∣∣ : i = 0, 1, . . . , 4L − 1

⎫
⎬

⎭,

(2.9)
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where

b[n,L](z) =
1
4L

L−1∏

j=0

α(n)
(
z4j
)
, (2.10)

α(n)(z) =

(
4z3

1 + z + z2 + z3

)
α(n−1)(z) =

(
4z3

1 + z + z2 + z3

)n

α(z), n ≥ 1. (2.11)

Theorem 2.2 (see [1]). Let S be subdivision scheme with a characteristic �-polynomial α(z) =
((1 + z + z2 + z3)/4z3)n q(z) , q ∈ �. If the subdivision scheme Sn, corresponding to the �-
polynomial q(z), converges uniformly then S∞f0 ∈ Cn(R) for any initial control polygon f0.

Corollary 2.3. If S is a subdivision scheme of the form above and (1/4)Sn+1 converges uniformly to
the zero function for all initial data f0 then S∞f0 ∈ Cn(R) for any initial control polygon f0.

Proof. Apply Theorem 2.1 (2nd part) to Theorem 2.2.

Corollary 2.3 indicates that for any given quaternary subdivision scheme S, we can
prove S∞f0 ∈ Cn by first deriving the mask of (1/4)Sn+1 and then computing ‖((1/4)Sn+1)

i‖∞
for i = 1, 2, 3, . . . , L, where L is the first integer for which ‖((1/4)Sn+1)

L‖∞ < 1. If such an L
exists, then S∞f0 ∈ Cn.

Theorem 2.4 (see [10]). The approximation order of a convergent subdivision scheme S which is
exact for Pn (set of polynomials at most degree n) is n + 1.

3. Smoothness Analysis of Proposed Scheme

This section is devoted for analysis of 4-point quaternary approximating subdivision scheme
by using Laurent polynomial method. The following result shows that scheme is C3

continuous.

Theorem 3.1. The 4-point quaternary approximating subdivision scheme (1.1) is C3 for any ω in
(0, 1.5).

Proof. For the given mask of proposed scheme S

a =
{
αj
}

=
{
. . . , 0, 0,

1
64
− 1

64
ω,

7
128
− 3

64
ω,

15
128
− 5

64
ω,

7
32
− 7

64
ω,

5
16
− 5

64
ω,

49
128

+
1

64
ω,

57
128

+
7

64
ω,

29
64

+
13
64
ω,

29
64

+
13
64
ω,

57
128

+
7

64
ω,

49
128

+
1
64
ω,

5
16
− 5

64
ω,

7
32
− 7

64
ω,

15
128
− 5

64
ω,

7
128
− 3

64
ω,

1
64
− 1

64
ω, 0, 0, . . .

}
,

(3.1)
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the Laurent polynomial is

α(z) = z−3
(

1 + z + z2 + z3
)
ξ1(z), (3.2)

where

ξ1(z) =
(

1
64
− 1

64
ω

)
z−5 +

(
5

128
− 1

32
ω

)
z−4 +

(
1

16
− 1

32
ω

)
z−3 +

(
13

128
− 1

32
ω

)
z−2

+
(

7
64

+
1

64
ω

)
z−1 +

(
7

64
+

1
16
ω

)
+
(

1
8
+

1
16
ω

)
z +
(

7
64

+
1
16
ω

)
z2 +

(
7

64
+

1
64
ω

)
z3

+
(

13
128
− 1

32
ω

)
z4 +

(
1

16
− 1

32
ω

)
z5 +

(
5

128
− 1

32
ω

)
z6 +

(
1

64
− 1

64
ω

)
z7.

(3.3)

From Laurent polynomial (2.10) for L = n = 1 and (3.2), we have

b[1,1](z) =
1
4
α(1)(z) =

z3

1 + z + z2 + z3
α(z) = ξ1(z). (3.4)

For C0 continuity of S we require that the Laurent polynomial α(z) satisfy (2.5), which it
does, and ‖(1/4)S1‖∞ < 1. The norm of scheme (1/4)S1 is

∥∥∥∥
1
4
S1

∥∥∥∥
∞
= max

⎧
⎨

⎩
∑

j∈Z

∣∣∣b[1,1]i+4j

∣∣∣ : i = 0, 1, 2, 3

⎫
⎬

⎭. (3.5)

This implies for −7.75 < ω < 8.0

∥∥∥∥
1
4
S1

∥∥∥∥
∞
= max{ℵ1,ℵ2,ℵ3} < 1, (3.6)

where

ℵ1 = 2
∣∣∣∣

1
64
− 1

64
ω

∣∣∣∣ + 2
∣∣∣∣

7
64

+
1

64
ω

∣∣∣∣,

ℵ2 =
∣∣∣∣

5
128
− 1

32
ω

∣∣∣∣ +
∣∣∣∣

7
64

+
1
16
ω

∣∣∣∣ +
∣∣∣∣

13
128
− 1

32
ω

∣∣∣∣,

ℵ3 = 2
∣∣∣∣

1
16
− 1

32
ω

∣∣∣∣ +
∣∣∣∣

1
8
+

1
16
ω

∣∣∣∣.

(3.7)

Therefore (1/4)S1 converges uniformly. Hence, by Corollary 2.3, S∞f0 ∈ C0. By (3.4) the
Laurent polynomial of scheme S1 can be written as

α(1)(z) = z−3
(

1 + z + z2 + z3
)
ξ2(z), (3.8)
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where

ξ2(z) =
(

1
16
− 1

16
ω

)
z−2 +

(
3

32
− 1

16
ω

)
z−1 +

3
32

+
5
32
z +
(

3
32

+
1
8
ω

)
z2

+
(

3
32

+
1
8
ω

)
z3 +

5
32
z4 +

3
32
z5 +

(
3

32
− 1

16
ω

)
z6 +

(
1

16
− 1

16
ω

)
z7.

(3.9)

Utilizing (2.10) for n = 2 and L = 1 and (3.8) we get

b[2,1](z) =
1
4
α(2)(z) =

z3

1 + z + z2 + z3
α(1)(z) = ξ2(z). (3.10)

For C1 continuity of S it needs that α(1)(z) satisfy (2.5), which it does, and ‖(1/4)S2‖∞ < 1.
The norm of scheme (1/4)S2 is

∥∥∥∥
1
4
S2

∥∥∥∥
∞
= max

⎧
⎨

⎩
∑

j∈Z

∣∣∣b[2,1]i+4j

∣∣∣ : i = 0, 1, 2, 3

⎫
⎬

⎭. (3.11)

This implies for −3.75 < ω < 4.25

∥∥∥∥
1
4
S2

∥∥∥∥
∞
= max{ℵ4,ℵ5} < 1, (3.12)

where

ℵ4 =
∣∣∣∣

1
16
− 1

16
ω

∣∣∣∣ +
∣∣∣∣

3
32

+
1
8
ω

∣∣∣∣ +
∣∣∣∣

3
32
− 1

16
ω

∣∣∣∣, ℵ5 =
1
4
. (3.13)

Therefore (1/4)S2 is uniformly convergent. Hence, by Corollary 2.3, S∞f0 ∈ C1. Now from
(3.10) Laurent polynomial of scheme S2 is

α(2)(z) = z−3
(

1 + z + z2 + z3
)
ξ3(z), (3.14)

where

ξ3(z) =
(

1
4
− 1

4
ω

)
z +

1
8
z2 +

1
4
ωz3 +

1
4
z4 +

1
4
ωz5 +

1
8
z6 +

(
1
4
− 1

4
ω

)
z7. (3.15)

With the choice of n = 3 and L = 1, and by (3.14)

b[3,1](z) =
1
4
α(3)(z) =

z3

1 + z + z2 + z3
α(2)(z) = ξ3(z). (3.16)
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For C2 continuity, it is necessary that Laurent polynomial α(2)(z) satisfy (2.5), which is
incidentally true, and also for first integer value of L > 0 for which ‖((1/4)S3)

L‖∞ < 1.

∥∥∥∥
1
4
S3

∥∥∥∥
∞
= max

⎧
⎨

⎩
∑

j∈Z

∣∣∣b[3,1]i+4j

∣∣∣ : i = 0, 1, 2, 3

⎫
⎬

⎭. (3.17)

This implies for −1.5 < ω < 2.5

∥∥∥∥
1
4
S3

∥∥∥∥
∞
= max{ℵ6,ℵ7} < 1, (3.18)

where

ℵ6 =
∣∣∣∣

1
4
− 1

4
ω

∣∣∣∣ +
∣∣∣∣

1
4
ω

∣∣∣∣, ℵ7 =
1
4
. (3.19)

Therefore (1/4)S3 converges uniformly. Hence, by Corollary 2.3, S∞f0 ∈ C2. Now from (3.16)
Laurent polynomial of scheme S3 can be written as

α(3)(z) = z−3
(

1 + z + z2 + z3
)
ξ4(z), (3.20)

where

ξ4(z) = (1 −ω)z4 +
(
−1

2
+ω
)
z5 +

(
−1

2
+ω
)
z6 + (1 −ω)z7. (3.21)

With the choice of n = 4 and L = 1, we have following by (3.20)

b[4,1](z) =
1
4
α(4)(z) =

z3

1 + z + z2 + z3
α(3)(z) = ξ4(z). (3.22)

For C3 continuity, it is necessary that Laurent polynomial α(3)(z) satisfy (2.5), which is
incidentally true, and also for first integer value of L > 0 for which ‖((1/4)S4)

L‖∞ < 1:

∥∥∥∥
1
4
S4

∥∥∥∥
∞
= max

⎧
⎨

⎩
∑

j∈Z

∣∣∣b[4,1]i+4j

∣∣∣ : i = 0, 1, 2, 3

⎫
⎬

⎭. (3.23)

This implies for 0 < ω < 1.5

∥∥∥∥
1
4
S4

∥∥∥∥
∞
= max{ℵ8,ℵ9} < 1, (3.24)
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where

ℵ8 = |1 −ω|, ℵ9 =
∣∣∣∣−

1
2
+ω
∣∣∣∣. (3.25)

Therefore (1/4)S4 converges uniformly. Hence, by Corollary 2.3, S∞f0 ∈ C3.

3.1. Hölder Exponent

From the above discussion, we conclude that our scheme isC3. In the following paragraph we
generalize its smoothness based on Rioul’s method [11] and Hassan et al. [8] (in generalize
sense). We conclude that scheme has Hölder regularity RH = 3 + ϑη for all η ≥ 1, where ϑη is
defined by

4−ηϑ
η

=
∥∥∥∥
(

1
4
S4

)η∥∥∥∥
∞
. (3.26)

For the convenience of computation, we set η = 1. Since by (3.24)

∥∥∥∥
1
4
S4

∥∥∥∥
∞
=

⎧
⎪⎨

⎪⎩

1 −ω, 0 < ω ≤ 0.75,

ω − 1
2
, 0.75 ≤ ω < 1.5,

(3.27)

we obtain that Hölder regularity against ω of the 4-point quaternary scheme is

R(ω) =

⎧
⎪⎨

⎪⎩

3 − log4(1 −ω), 0 < ω ≤ 0.75,

3 − log4

(
ω − 1

2

)
, 0.75 ≤ ω < 1.5.

(3.28)

Figure 1(a) shows a graph of the Hölder exponent against ω. Notice that the highest
smoothness of the 4-point quaternary scheme is achieved atω = 0.75, and its Hölder exponent
is RH = R(0.75) = 4. Figure 1(b) shows the result of proposed scheme (1.1) after four
subdivision levels. In this figure the control polygon is drawn by dotted lines. The thin solid
line is produced by setting ω = 0.75, and the bold solid line is produced by setting ω = 0.02.

3.2. Subdivision Rule for Open Polygon

When dealing with open initial polygon f0 = {f0
i : i = 0, . . . ,N}, it is not possible to refine the

first and last edges by rule (1.1). However, the extension of this strategy to deal with open
polygon requires a well-defined neighborhood of end points. Since the first and last edges
can be treated analogously, it will be sufficient to derive the rules only for one side of the
open polygon. To this aim, we see that if we define just one auxiliary point f0

−1 = 2f0
0 − f

0
1
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3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4

H
öl

d
er

ex
po

ne
nt

0 0.5 1 1.5

ω

(a) (b)

Figure 1: (a) Graph against Höder exponent and parameter 0 < ω < 1.5 for a 4-point quaternary scheme.
(b) The dotted lines are control polygon; whereas the bold and thin solid lines are produced by setting
ω = 0.02, 0.75, respectively.

as extrapolatory rule in the initial polygon f0. Then the first edge fk0 f
k
1 of the nonrefined

polygon {fki : i = 0, . . . , 4kN} can be refined by the following rules:

fk+1
0 = (2α1 + α2)fk0 + (α3 − α1)fk1 + α4f

k
2 ,

fk+1
1 = (2α5 + α6)fk0 + (α7 − α5)fk1 + α8f

k
2 ,

fk+1
2 = (2α8 + α7)fk0 + (α6 − α8)fk1 + α5f

k
2 ,

fk+1
3 = (2α4 + α3)fk0 + (α2 − α4)fk1 + α1f

k
2 .

(3.29)

Remark 3.2. Subdivision rule (3.29) for last edges does not affect the convergence of the
proposed scheme to a continuously differentiable limit. It is sufficient to show that, taken
f0
−2 = 2f0

0 − f
0
2 and f0

−1 = 2f0
0 − f

0
1 , and refining the polygon f0 by (1.1), after k steps of

subdivision the expression of the point fk−1 turns out to coincide with fk−1 = 2fk0 − f
k
1 .

4. Basic Properties of the Scheme

In this section, we discuss approximation order and support of basic limit function of 4-point
quaternary approximating scheme.

4.1. Approximation Order

Here we show that the approximation order of proposed scheme is five. The following lemma
based on the technique of Sabin [12] is needed to follow up the claim.

Lemma 4.1. The proposed 4-point quaternary subdivision scheme reproduces all the cubic
polynomials for ω ∈ (0, 1.5) and quartic at ω = 0.75.
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Proof. We carry out this result by taking our origin the middle of an original span with
ordinate . . . , (−5)n, (−3)n, (−1)n, 1n, 3n, 5n, . . .. If y = xn, then we have,

[
y
]
= . . . , α1(−5)n + α2(−3)n + α3(−1)n + α4(1)n,

α5(−5)n + α6(−3)n + α7(−1)n + α8(1)n,

α8(−5)n + α7(−3)n + α6(−1)n + α5(1)n,

α4(−5)n + α3(−3)n + α2(−1)n + α1(1)n,

α1(−3)n + α2(−1)n + α3(1)n + α4(3)n,

...

α8(−1)n + α7(1)n + α6(3)n + α5(5)n,

α4(−1)n + α3(1)n + α2(3)n + α1(5)n, . . . ,

(4.1)

where α1, α2, . . . , α8 are defined by (1.1).
If y = x1, then

[
y
]
= . . . , − 2.75,−2.25,−1.75,−1.25,−0.75,

− 0.25, 0.25, 0.75, 1.25, 1.75, 2.25, 2.75, . . .
[
δy
]
= . . . , 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, . . .

[
δ2y
]
= 0,

(4.2)

where δ represents the differences of the vertices.
If y = x2, then

[
y
]
= . . . , 9.875 −ω, 7.375 −ω, 5.375 −ω, 3.875 −ω, 2.875 −ω, 2.375 −ω,

2.375 −ω, 2.875 −ω, 3.875 −ω, 5.375 −ω, 7.375 −ω, 9.875 −ω, . . . .
(4.3)

Taking further differences, we get [δ3y] = 0.
If y = x3, then

[
y
]
= . . . , − 39.875 + 8.25ω,−27 + 6.75ω,−17.5 + 5.25ω,−10.625 + 3.75ω,

− 5.625 + 2.25ω,−1.75 + 0.75ω, 1.75 − 0.75ω, 5.625 − 2.25ω,

10.625 − 3.75ω, 17.5 − 5.25ω, 27 − 6.75ω, 39.875 − 8.25ω, . . . .

(4.4)

This implies that [δ4y] = 0.



Abstract and Applied Analysis 11

If y = x4, then

[
y
]
= . . . , 173.75 − 52ω, 109.75 − 40ω, 65.75 − 28ω, 35.75 − 16ω,

19.75 − 10ω, 14.75 − 10ω, 14.75 − 10ω, 19.75 − 10ω,

35.75 − 16ω, 65.75 − 28ω, 109.75 − 40ω, 173.75 − 52ω, . . . .

(4.5)

By taking differences, we have

[
δ4y
]
= . . . , 6 − 6ω,−3 + 6ω,−3 + 6ω, 6 − 6ω, 6 − 6ω,

− 3 + 6ω,−3 + 6ω, 6 − 6ω, . . .
[
δ5y
]
= 0, at ω = 0.75.

(4.6)

Thus the proposed scheme has cubic in all ω ∈ (0, 1.5) and quartic precision at ω = 0.75 ∈
(0, 1.5).

The theorem is an easy consequences of Lemma 4.1 and Theorem 2.4.

Theorem 4.2. A 4-point quaternary approximating subdivision scheme has approximation order 5.

4.2. Support of Basic Limit Function

The basic function of a subdivision scheme is the limit function of proposed scheme for the
following data:

f0
i =

⎧
⎨

⎩
1, i = 0,

0, i /= 0.
(4.7)

Figure 2(a) shows the basic limit function ψ = S∞f0
i of proposed scheme. The following

theorem is related to the support of limit function.

Theorem 4.3. The basic limit function ψ of proposed 4-point scheme has support width s = 5, which
implies that it vanishes outside the interval [−5/2, 5/2].

Proof. Since the basic function is the limit function of the scheme for the data (4.7), its support
width s can be determine by computing how for the effect of the nonzero vertex f0

0 will
propagate along by. As the mask of the scheme is a 16-long sequence by centering it on that
vertex, the distances to the last of its left and right nonzero coefficients are equal to 8 and 7,
respectively. At the first subdivision step we see that the vertices on the left and right sides
of f1

0 at 8/4 & 7/4 are the furthest nonzero new vertices. At each refinement, the distance on
both sides is reduced by the factor 1/4. At the next step of the scheme this will propagate
along by 8/4 × 1/4 on the left and 7/4 × 1/4 on the right. Hence after k subdivision steps the
furthest nonzero vertex on the left will be at 8(1/4+ 1/42 + · · ·+ 1/4k) = (8/4)(

∑k−1
j=0 1/4j) and
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−0.4
−0.2

0
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0.4
0.6
0.8

1
1.2
1.4

−5 −4 −3 −2 −1 0 1 2 3 4 5

(a) Basic limit functions (b) Close curves (c) Open curves

Figure 2: The effect of parameter on the shape of the basic limit function/limit curve of the proposed
scheme. Doted lines show control polygons; whereas solid lines indicate basic limit functions/curves. (a)
Here, ω = 0.75, 2.40, and 3.75 from origin to the top. (b) and (c) ω = 1.45, 1.25, 1.00, 0.75, 0.50, 0.25, and 0.05
from left to right.
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(a) Binary 4-point [7]
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(b) Ternary 4-point [9]
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(c) Proposed

Figure 3: Support width of for binary, ternary, and proposed 4-point approximating schemes has been
shown in (a), (b), and (c), respectively.

on the right will be at 7(1/4+1/42 + · · ·+1/4k) = (7/4)(
∑k−1

j=0 1/4j). So the total support width
is (8/4)(

∑∞
j=01/4j) + (7/4)(

∑∞
j=01/4j) = (15/4)(1/(1 − 1/4)) = 5.

5. Comparison and Application

In Table 1, we compare some properties of proposed 4-point subdivision scheme with those
of other 4-point schemes having smaller arity.
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(a) Level 1 (b) Level 2 (c) Level 3

Figure 4: It shows the comparison at 1st, 2nd, and 3rd level of binary, ternary, and quaternary 4-point
approximating schemes. Dotted lines indicate initial control polygons, whereas dashed, thin solid, and
bold solid continuous curves are generated by binary, ternary, and quaternary schemes, respectively.

Table 1: Comparison of proposed 4-point scheme with other 4-point schemes.

Scheme Type Approximation order Support Cn

Binary 4-point [5] Interpolating 4 6 1
Binary 4-point [6] Interpolating 4 6 1
Binary 4-point [7] Approximating 4 7 2
Ternary 4-point [4] Interpolating 3 5 2
Ternary 4-point [8] Interpolating 3 5 2
Ternary 4-point [9] Approximating 4 5.5 2
Proposed scheme Approximating 5 5 3

In Figures 2(b) and 2(c), we illustrate performance of our scheme by setting the shape
parameter to various values, which illustrate how this parameter affect the shape of limit
curve. Moreover, Figures 3 and 4 show the comparison of support width and approximation
order of proposed scheme with other existing 4-point approximating schemes.
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