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1. Introduction

Let us consider the Cauchy problem for a second-order hyperbolic equation:

il — zn:aij(t)uxixj + zn:b]-(t)uxj +c(t)u=0, (t,x)e[0,T]xR", (1.1)
ij=1 j=1
u(0,x) = up(x), u(0,x)=ui(x), x€R", (1.2)

where the matrix (a;;(t)) is real and symmetric for all t € (0, T], it = uy.
Suppose that (1.1) is strictly hyperbolic, that is, there exists Ay > 0 such that

n

a(t,é) = Zai]’(t)% > Mo >0, (1.3)

ij=1

forall (¢,¢) € (0,T] x R" \ {0}.
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It is known that if a(t, {) satisfies the Lipschitz condition and b;(t), c(t) € L (0,T), j =
1,2,...,n, then for any uy € H*(R"), uy € H*}(R") the problem (1.1), (1.2) has a unique
solution

u(-) € C([0,T]; HS(R™)) N C1<[0,T],H5’1(R")>, (1.4)

where s > 1 (see [1, Chapter 5] and [2, Chapter 3]) .

If we reject the Lipschitz condition, this result, generally speaking, stops to be valid
(see [3]).

In the paper [4] it is proved that if a(t,¢) € LL,(0,T), that is, if a(t,¢) satisfies the
logarithmic Lipschitz condition:

la(t +7,8) —a(t,&)| < clr| - |log]|| - w(l7]), (1.5)

where w(|7|) monotonically decreasing tends to zero, and log |7| - w(|7|) tends to infinity, then
there exists § > 0 such that, for all uy € H5(R"), u; € H*'(R") the problem (1.1), (1.2) has
a unique solution u € C([0,T]; H*%(R")) n C'([0,T], H*"'"%(R")) (this behavior goes under
the name of loss of derivatives).

In the paper [5] it is considered the case when a;;(t) = 0, i# j, a part of coefficients
belongs to the class LL,(0,T), and another part of coefficients satisfies the Lipschitz
condition. It is proved that the loss of derivatives occurs in those variables xj for which
appropriate coefficient axx (t) belongs to the class LL,, (0, T).

It is interesting to investigate the Cauchy problem for (1.1), with singular coefficients.
Many interesting results have been obtained in this direction. For example, in the paper [6] it
is supposed that for each ¢ € R" \ {0}a(t,¢) € C1(0,T] and

tha(t, o)l <c, (£§) € (0,T] xR"\ {0}, (1.6)

where g > 1, ¢ > 0. It is proved that if g = 1, the problem (1.1), (1.2) is well-posed in C*(R").
If g>1and

tla(t,d)l <c, (£§) € (0, T] xR"\ {0}, (1.7)

where p € [0,1) N [0,q — 1), then the problem (1.1), (1.2) is well-posed in the Geverey class
YO(RY), s < (q-p)/(q—1) (see [6]). If the coefficients a;j(t) satisfy only Holder conditions of
order a < 1 then in [3] it is established that the problem (1.1), (1.2) is y®) well-posed for all
s <1/(1 - a). In this direction see also the results obtained in the papers [6-13].

In this paper we consider the Cauchy problem for a higher-order hyperbolic equation
with anisotropic elliptic part:

i+ > (-D)*a()DFu+ > ba(hDIu =0, (tx)€[0,T] xR",
k=1 Jec:l|<1 (1.8)

u(0,x) =up(x), u(0,x)=u(x), x€R",

where [ € N,{1,2,...,},ax e NU{0}, k=1,2,...,n, |a:l|=a; /L1 +--- + a,, /L.
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Here the coefficients ay () satisfy different conditions of type (1.6) and (1.7), so that gi
and pi corresponding to different k are different. The smoothness of the solution depending
on smoothness on initial data with respect to each variable x; depends not only on [x but also
on g and pk.

2. Statement of the Problem and Results

We considered the Cauchy problem (1.8). Suppose that ax(t) and b,(t) satisfy the following
conditions:

a()>a>0, te[0,T], k=12,...,n (2.1)
Felac ()| <c, te(0,T], k=1,2,...,n, 2.2)
ba(t) € L, (0,T), |a:l<1. (2.3)

In order to formulate the basic results we introduce some denotation. Let H be some
Hilbert space. By WZ)"L (R™, H) we will denote a functional space with the norm

. 1 1/2
2ell gyt (o ey = U < <1+ZniL"> IIﬁ(n)IIZdﬂ] , (2.4)
" k=1

where L = (Ly,...,Ly), Lj € N,j=1,2,...,m, A >0, and u(n) = Fx[u](n); Fx is a Fourier
transformation with respect to variable x € R".
For s > 1 by y;'L(Rm, H) we will denote a functional space with the norm

1/s 1/2
el en ey = [f exp{ﬂ }IIﬁ(n)llidn] : (25)

Denote W,"* (R, R) = Wy* (R™), Y;’L(R”’, R) = }f;’L(Rm),

>

k=1

C=(R™ H) = Wy (R H), YO (R™; H) = (5} (R"; H). (26)
>0 p>0

If L = (1,...,1) then Wy (R",H) = H'(R™ H), y;’L(Rm,H) = y;(R",H), and
y;’L(Rm, R) = y;;s), where ylgs) is the Geverey space of order s (see [12, 13]). If L € H then

WZ)"L(R”’,H ) is Hilbert-valued anisotropic Sobolev space WZ(AL““’AL’”)(R”’ ; H). For the read
valued functions the anisotropic Sobolev spaces are stated in [14]. The basic results led in
[14] are also valid for abstract-valued functions.



4 Abstract and Applied Analysis

We introduce also the following denotation:

xl = (x1/-~-/xn1)/ x” = (xn1+1/---/xn)/
é’ = (élr---/gnl)r éu = (§n1+1/~-/§n)1
ll = (lll .. 'Iln])/ l” = (ln1+1/- .. rln)/ (27)
ZéZlk |§ |l, Zézlk |§II|1” — Z §21k n=n-n.
k=n+1

The main results are the following theorems.

Theorem 2.1. Let the conditions (2.1)—(2.3) be satisfied, where

g €1[0,1), fork=12,...,n, (2.8)
ge=1, fork=mn+1,...,n (2.9)

Then for any \' > 0, A" > 0 the energy estimates

E(t,\,1") < ME(0,\, 1" + 1), (2.10)

hold, where M and Ay are some constants indepent of t € [0,T],

E(t, X, )" +1) = j e )Y A+ 121 o P + (1 + Rl )P de,

(2.11)
120, o(te) = av(t 23
Theorem 2.2. Let the conditions (2.1)—(2.3) be satisfied, where
g €1[0,1), fork=12,...,n, (2.12)
ge=q>1, fork=m+1,...,n (2.13)
Additionally, let the conditions
tlar(t)| <c, te[0,T], fork=m+1,...,n (2.14)

be satisfied, where p € [0,1) N [0,q —1). Then forany >0, \' >0,and 1 <s < (g-p)/(q—1) the
energy estimates,

E(tB,s,\) < ME(D,B+6,5,)), (2.15)
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hold, where M and 6 are some constants independent of t € [0,T],
£ N o_ ny1/s AN [ 2 2
(t,p,5, V) = fR exp (&'} (1+121)" [l O + A+ Bl P (216)

Remark 2.3. 1t is clear by our notation that

! n .
E(t,./\ ,)L ) S ”u(t, .)”W;”'l” (RZ%;WZ)JH,['(R:})) + ||u(t, -)”Wé\u/]// (RZ,Z,;W;IH’V (RZ}))

It My (e ey (217)
<2E(XN, A1),
and we can write
! = . " 1 1 n . .
EB,s, ) = lu(t, )IIY;J (REWY (K1) (2.18)

Remark 2.4. 1t is possible to replace the conditions a;(t),...,a, (t) € C'(0,T] and (2.8) or
(2.12) by Lipschitz conditions.

The following theorems are obtained from Theorems 2.1 and 2.2.

Theorem 2.5. Let condition (2.1)—(2.9) be satisfied. Then for any s > 0, ug € C*(R; Wzsﬂ’l,(RZ})),
u; € C*(R%; WZS’I (RY))) the problem (1.1), (1.2) admits a unique solution

X"’

we C([0,T];C= (R W5 (RY)) ) n € (10, T]; €= (Riz; Wi (RI)). (2.19)
Theorem 2.6. Let conditions (2.1)—(2.3) and (2.12)—(2.14) be satisfied. Then for any s’ > 0, 1 <
s" < (q-p)/(q-1), up € y* (R W5 (R™)), uy € y' (R2; W5 (R™)) the problem (1.1), (1.2)
admits a unique solution

"

ue c([o, ] ;7" (R;%,; W (RQ}))) nct ([o, ] ;y° (Rgﬁ; W (R;}))). (2.20)

In particular it follows from Theorem 2.1 that if the conditions (2.1)—(2.3) are satisfied,
then the problem (1.1), (1.2) is well-posed in C*(R"), and if the conditions (2.1)-(2.3) and
(2.12)—(2.14) are satisfied then the problem (1.1), (1.2) is well-posed in the Geverey class y*).

3. Proof of Theorems

At first we reduce some auxiliary statements.
We denote v(t,¢) = Fy[u](t,¢) and define the weighted energetic function in the
following way:

D) = 0L, N,V f,r) = [BEOF + 1+ [F], +d(tE)PE O] HES, 6D
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where
H(t,¢) = H(t, &N\, ﬂ,r)

v NS
=(1+18],)" A+ 1[g"],)

t (qfl)/r
x exp —J‘ a(t,&")dr + p|¢"| , >0, 1">0, >0,
0

I

{s(q—l), forg>1,
=

1, forg=1,
( i 21
ar(T)& ", for T"|¢"|,» <1,

k:n1+1 (3.2)

n
d(t,é") ) Z ak(|§”ll_//l/r> ilk’ for TT|&"|, > 1, t7|&"| < 1,

k=ni+1
n
3 ac(t)gr, for t|¢"], > 1,

k:n1+1

( n

dit,e - S ar(t)Et

k=71‘1 +1
n . 2lk
| S a0

2L
(ke k(D&

, for t"]¢", <1,

a(t, &)

for #|¢", > 1.

The following auxiliary lemmas are proved similar to the paper [6]. The proofs of the
lemmas are in appendix.

Lemma3.1. If i =1, k =m +1,...,n, then there exits such ¢c; > 0, ¢, > 0, that
alg"|, <d(t,¢") < [er+cIn(1+[¢"],) ]|§”|l,,. (3.3)
Ifg > 1, k=n1+1,...,n, then there exits such c; >0, c; > 0, that

ag'l, <d(t,8) < e+ cl2l)]12] (3.4)

l//'
Lemma 3.2. If g = 1,k = 1,2,...,ny, then there exits such constant c3 > 0,y > 0, that

[oa(T,8)dr < 3+ caln(1 + |¢"],).
Ifg>1,k=1,2,...,n then there exits such c3 > 0, ¢4 > 0, that

t
[ am o <cale)f". (35)
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By the definition of @(t) = ®(t, ¢, N, A", B, 1) we have

dO(t T ’ " rarey
% = 2Re[6(t,)9(£,8) + (1+ [¢], +d(t,¢")v(t, 0L, H(t,8) .
+d(4,¢") ot EPH(E,E) — alt, D).
On the other hand from (1.8) we have
5(t,8) + D ax(t) &5 ot ) + D, ba(t) (i) v(t,¢) =0, (3.7)
k=1 la:€|<1
v(0,8) =vo(é),  0(0,8) =v1(¢), (3.8)
where vy (¢) = F[uo](¢), v1(¢) = Flu1](8), 9(t, &) = 0°v(t, &)/ 0t
From (3.6) and (3.7) we obtain
40() _ zRe[— St £+ (1418],) + <d(t,§") 3w g>]
dt k=1 k=n;+1
x0(t, 0L H(EE) - 2Re S bu(1)(i8) 0(t, &) (1, H () (3.9)
|a:0|<1
+d(t, "o, PH(EE) - alt, D().
If t|¢"| < 1, then by definition of d(t,¢) and a(t,¢") we have
do(t) = 2Re[—§:ak(t) gi‘}k +(1+|E],)+ a(t,é)]v(t,g)i)(t,g)H(t,zj)
a k=t (3.10)
—2Re > ba(t)(i&) 0 (t, {)0(t, &) H(t &) — a(t, §)D(t).
la:0|<1
By our supposition gk < 1 for k =1,2,...,n;. Therefore we can easily see that
a<ag(t)<ar, k=1,2,..., n (3.11)

with some constant ar > a.



Using the Cauchy inequality, definition of a(t, ¢), H(t,¢), and ¢(t) we have

2Rea(t, §)v(t,§)o(t, ) H(E,§) — alt, §)D(t) <O,

2Re 3 ba(t)(id) v(t, )0t ) H(t,8)

a:0|<1

<2br D &It é)| - [o(t &) - Ht,¢)

le:l|<1

< 2bres [(1 + i|§k|21k> lo(t, &) + I@(tlé)lz]H(tfé),
k=1

where br = supjuc1[1Da ()01, €5 = SUPyep (St 1§17/ (Siy [l + 1),

Abstract and Applied Analysis

(3.12)

(3.13)

From (3.10)-(3.13) we get that when #|¢"[;, < 1, then there exists such a constant

M1 > O, that

420 _ Mo,
Cdt
If t"|¢"|;» > 1 then by definition of d(t, ¢) and a(t,¢") from (3.9) we have that

_dq’(t)_zR Za BF% — 3 balt) (i) 0(t, &)0(1,8) | H(t,2)

|a:€|<1

Zk =n1+1 k(t)éyk
¢ 20 t, 2H t, | 1
+knzl+lak()§ lo(t, &)I"H(t,§) - S an (e

On the other hand

N t 20x
S at) &%t &)PH(E) - | k(O

20,
k=n1+1 pI i+l ar(t)é, £

n S e ak(DEE
= 1w (O)EH ot §)PH () - | :
k=nzl+1ak e 1ol I ax(t)E

()

x [|v<t,§>|2+ <1+ &7 + znj ak<t>g”k>|v(t,§>|2]H<t,g> <0.

k:m +1

From (3.13), (3.15), and (3.16) we again get inequality (3.14).
It follows from (3.14) that

O(t) < M®(0), te[0,T],

where M = M;e”.

().

(3.14)

(3.15)

(3.16)

(3.17)
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Proof of Theorem 2.1. Letgqx =q=1, k=n1 +1,...,n, thenr = 1. From Lemmas 3.1 and 3.2 we
have

[ oweraonds @il qrgl)”
x [|z')(t,§)|2 + (1 &2+ 18", (e + e In(1 + |§”|l,,))>]|v(t,§)|2
x exp(c3 +csln(l+ |¢"],))dE
Scszn<1+|¢w@)”<1-+|§1@»*”“2hv<ng>F-+<1+|§unv<ag>F]d§
= GE( )V, V" + ),

(3.18)
where Ay = ¢4 + 1, cg = max{1,c1e%, coe®}.
Thus,
fan(t' &N, 1",0,1)dé < ceE(t, A, A"+ )). (3.19)
On the other hand from the definition of ® and E we have
JRnQ(t, &N, 1",0,1)dé > crE(E, N, A"). (3.20)
It follows from (3.17)—(3.20) that
E(t,X,1") <csE(0, X, X" +d). (3.21)
O

Proof of Theorem 2.2. Let gx = q > 1, k = n1 +1,...,n, then r = (g — 1)s. Taking into account
Lemmas 3.1 and 3.2 and Theorem 2.5 we have

f O(L,e, N, 0,6, r)de
RY[

<[ el ewor+ (1l salgl sl 62
< [o(t, ) exp<03 +(B+ 04)|§|(q—1)/2>d§.

Further using the inequality 77/%*! < cq exp(cn'/*) we obtain
f D2, 1,0, 5,r)de < croé (b X, s, p+6), (3.23)
R”

where 6 = ¢4 + c.



10 Abstract and Applied Analysis

On the other hand from the definition of ¢ and & we have
f ®(t,¢, 1,0, 6,r)dt > cné(t Vs, f). (3.24)
RVI

From inequalities (3.17), (3.23), and (3.24) it follows that
E(t,N,s,B) <ciné(0,N,s,p+d). (3.25)

O

Proof of Theorem 2.5. For any ¢ € R" the problem (3.7), (3.8) has a unique solution v(t,¢) €
C'[0,T] (see [15, Chapter I]).
Letug € C°°(RZ?,;W2)"+1’I/(RZ})), uy € Cw(R;%;W;,’l’(RZ})), then forany s >0, \' >0,

E(0,\,s+ 1) <csu, (3.26)

where ¢, > 0 is some constant dependent on s > 0 and A’ > 0.
Taking into account Theorem 2.1 it follows from (3.20) that

E(t,X,s) < Mcys, te€[0,T], (3.27)
that is,

”u(tr ) ||Wzs,l” (Rz%;wzﬂ,l’ (RZ’l)> + ”u(t/ ) “Wzsﬂ,l” (RZ'Z"'W;I'V (R:l ))

(3.28)
+||u(t/ ')”WZS,I” (Rn%;wé\ul/l’ (Rn,l)> < MC,V,S, te [0, T]
It follows from (3.28) that
e C([o,T);c= (R W, ™ (RY))),
(3.29)

e C([0,T);c= (R Wy (RE))).

X7

By the expression of u(t, x) it follows that the function u(t, x) is the solution of problem
(1.8).
The uniqueness of the solution is proved by standard method. O

The proof of Theorem 2.6 is carried out in the similar way.
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Appendices

A. Proof of Lemmas

Proof of Lemma 3.1. Let qx =1, k =n1 +1,...,n. Then from (2.2) we have

ax(t) < ar(T) + |ax(t) - ar(T)|

T
< au(T) +f a(s)Ids
t

T (A1)

<ai(T) +cln n

1
< +C21n<1 + ?>.
It follows from (2.1) and (2.14) that

alé"|, <d(t,¢"). (A.2)

By definition of d(t,¢") for T|¢"|;» < 1 we have
d(t,e") = 3 a(D)E" <ci]|,. (A.3)

k=n1

If Tig"|» > 1, and t¢"|, < 1, then from (A.1) we have

7 B -1 1

d(t,g,) = Zak<|é, |1H > ik

k:m
L A4
< [c1+c21n<1+%>]2gi’k (A4)
Ig,,|l” k=n;
= (cr+eaIn(1+[8"],))[¢" -
If £¢"], > 1, then using (A.1) we get
(") = 3 arhi”
k=n1+1

(A.5)

< |C1 + c21n<1 + %)

< [Cl +C ln(l + |§"|z~)] |‘§N|z"'

[

Consequently if g = 1, the statement of the lemma follows from (A.2)—-(A.5).
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Letgi > 1, k =n1 +1,...,n. By definition of d(t,¢") for T"|¢"|;, < 1 we have
a(t,¢") <cilé'|,- (A.6)

IfT7¢E"],, > 1 and #7¢"] < 1 then

n

d(t,é”) _ Z ak<|gu|l—”l/r> ilk

k:m +1

PEEN M (A7)
- Z -1/r\? ék
e (81 )

_ n1+p/r
= M[g"|, "

If t"|¢"] > 1 then

n

d(t,e) = > ac(t)Et

k:n1+1

n
M
< 2 Fh (A8)

k=ni+1
_ M|§”|l” . |§//|p/r

= M|,

Thus if gx > 1,k = n; +1,...,n then the statement of the lemma follows from (A.2),
(A.6), and (A.8).

The lemma is proved. O

Proof of Lemma 3.2. At first we consider the case when g =1, k =n1 +1,..., n. If T|g"[,, < 1,
then

t T
I a(t,¢")dr < I a(t,&")dr
0 0

T| n n
< fo 3 aDES - Y an(r)|dr
k=n; k=ny
n 20, T (A9)
< > &EX| 1ak(T) - ap(r)ldr
k=1’l1 0
T
<T- max ak(T)|§"|€,, + |§Z|guJ‘ ax(r)dr
k=ni+1,..n 0

<ar,

where ar = maXg=n,+1, k(7)) + (1/T) maxk=n1+1,,,,lnf0Tak (T)dt < +00.
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IfT|¢"| > 1, then

J‘;a('r, ¢")ds < J‘lgﬁlﬁlcx(s, &Ndr + JJ

0

&1
S 1[
0

i " i e (T dr
< d(r,&"dr + 2lk-f ar(T)dr + = Mkj —
[ a@ears B[ mmare S X4

k=ny k=m 1" ;flr T

1oc(s, ¢")ds

! ‘;H

d(r, &)~ 3 ag(n)et

k:nl

TS, g
ar + J d

_ 2¢)
Wl X, ak(T)E

1¢" o (A.10)
<[l cen( )] pdr
0

n 1y n (T
+ Zgiek-cfo €n£dT+EZI dr

k=n; A e T

1&" o T
=0+ czén<1 + |§"|;3> +c|é"|, J‘ ‘ énIdT + EJ‘ dr
0

T a |§//|2,1, T

<cs+cln(l+1E",)-

Now let us consider the case g« > 1, k = n; +1,...,n. In this case r = (g — 1)s. If
T7|¢"|pn <1, then

t T
f a(t,¢")dr < I a(r,é")dr
0 0

n T
<y fo lax(T) - ay ()| dr

k=1’l1 +1

(A.11)

T
" -p 1"
< max o (DT [ errariy,

S aT'T17r+C' 1 1 Tliplé’lle//

<arT' "+ S 1P,
I-p



14 Abstract and Applied Analysis

If T"|ény, > 1, then

nlfl/r

a(t,¢")dr < a(t, &)dr + a(T, ¢"dr
fpserers . I,

10"
1&" 0"
: f
0
I -1/t

n & & "
< Sa(e)g " are 3 g amar

n

d(r,8) - > ar(m)&™

k=n1+1

T
dr + j OC(T, &"dr
i

k=n1+1 k=n1+1
. 20,
L D VG Tt
+ " 20 T
" Dem+1 Ak (T)EL (A.12)

=1/t u|—1/r T

1¢" 1€ dr c dr
|‘§"|e"‘ dr +c|¢"|, - —dr + — —
0 TP a |§H|—1/T T4

Y
18",
1
|§//|Z”/r+1 | | 1/r+C|§”|€,,'1_<|§”| 1/r>
E 1 1-q _ n=1/r 1—11)
* al —q(T <|§ | )

< C|§II 1- ((1 P)/r) fp|§"|2;((1_p)/r)

o

(- 1)/1’
a(q- 1ﬂ§|

Asr = (g-1)s,and s < (g —p)/(q - 1), it follows that 1 — (1 - p)/s < 1/s and
(g—1)/r =1/s. Then according to the Young inequality there exists such 6 > 0 that

12717 < o604 6,25 (A.13)
Thus, by (A.9)-(A.13) the following inequality is valid:

t
f a(r,&")dr < 8EY° + cs, (A.14)
0

where 6 = 61a2+p)/(1-p) + (c/a(g—-1))cs = c1sc(2+6)/(1 - p). O
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B. Example

Let us consider the Cauchy problem in [0, T) x R%:

Uy — <1 + t2>uxx - (1 + \S/tz>uyy =0,

u(0,x,y) = p1(x)p1(y),
u(0,x,y) = p2(x) 2 (y),

(B.1)

where g1 (x), p2(x) € C*(R) = Nsxo W3 (R), ¢1(y) € WI(R), ¢2(y) € W,(R), u = u(t,x, y).
It follows from Theorem 2.5 that the problem (B.1) has a unique solution

ue c([o, T];C* (R; WZZ(R)>> ncl ([o, T];C* (R; WQ(R))). (B.2)
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