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We will study a new q-analogue of Bernoulli polynomials associated with p-adic q-integrals.
Furthermore, we examine the Hurwitz-type q-zeta functions, replacing p-adic rational integers
x with a q-analogue [x]q for a p-adic number q with |q − 1|p < 1, which interpolate q-analogue of
Bernoulli polynomials.
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1. Introduction

Let p be a fixed odd prime number. Throughout this paper Zp,Qp,C, and Cp will, respectively,
represent the ring of p-adic rational integers, the field of p-adic rational numbers, the complex
number field, and the p-adic completion of the algebraic closure of Qp. The p-adic absolute
value in Cp is normalized so that |p|p = 1/p and q is a p-adic number in Cp with |q − 1|p < 1.
We use the notation

[x]q =
1 − qx

1 − q (1.1)

(cf. [1–13]) for all x ∈ Zp. Hence, limq→1|x|q = x. For a fixed odd positive integer d with
(p, d) = 1, let

X = Xd = lim
←
n

Z

dpnZ
, X1 = Zp,

X∗ = −→
0<a<dp
(a,p)=1

∪ (a + dpZp

)
,

a + dpnZp =
{
x ∈ X | x ≡ a

(
moddpn

)}
,

(1.2)
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where a ∈ Z lies in 0 ≤ a < dpn. For any n ∈ N,

μq

(
a + dpnZp

)
=

qa

[
dpn

]
q

(1.3)

is known to be a distribution on X (cf. [1–13]).
We say that f is uniformly differentiable function at a point a ∈ Zp and denote this

property by f ∈ UD(Zp), if the difference quotients

Ff(x, y) =
f(x) − f(y)

x − y (1.4)

have a limit l = f ′(a) as (x, y)→ (a, a) (cf. [2, 6, 7]). The p-adic q-integral of a function f ∈
UD(Zp) was defined as

Iq(f) =
∫

Zp

f(x)dμq(x) = lim
N→∞

1
[
pN

]
q

pN−1∑

x=0

f(x)qx. (1.5)

By using p-adic q-integrals on Zp, it is well known that

t

et − 1e
xt =

∞∑

n=0

∫

Zp

(x + s)ndμ1(s)
tn

n!
, (1.6)

where μ1(x + pnZp) = 1/pn. Then we note that the Bernoulli polynomials Bn(x)were defined
as

t

et − 1e
xt =

∞∑

n=0

Bn(x)
tn

n!
. (1.7)

From (1.6) and (1.7), we have

Bn(x) =
∫

Zp

(x + s)ndμ1(s) (1.8)

for all n ∈ N ∪ {0}. We note that [0]q = (1 − q0)/(1 − q) = 0.
In Section 2, we study a q-analogue of Bernoulli polynomials associated with p-adic q-

integrals—simply, we say q-Bernoulli polynomials. In Section 3, we examine Hurwitz-type q-
zeta functions, replacing p-adic rational integers xwith a q-analogue [x]q for a p-adic number
q with |q − 1|p < 1, which interpolate q-analogue of Bernoulli polynomials.
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2. A new q-analogue of Bernoulli polynomials

In this section, from the view of (1.8), we can define a new q-analogue of Bernoulli
polynomials as follows:

β
q
n(x) =

∫

Zp

(
[x]q + [s]q

)n
dμq(s). (2.1)

We note that βqn = β
q
n(0) are called the q-Bernoulli numbers. Then we find some properties of

q-Bernoulli numbers and polynomials as follows.

Theorem 2.1. For n ∈ N ∪ {0}, one has

β
q
n =

1
(1 − q)n

n∑

l=0

(
n
l

)
(−1)l 1

[l + 1]q
. (2.2)

Proof. From (1.5)with x = 0, we can find the following:

β
q
n =

∫

Zp

[s]nqdμq(s)

= lim
N→∞

pN−1∑

j=0

[j]nq
qj

[
pN

]
q

=
n∑

l=0

(
n
l

)
(−1)l 1

(1 − q)n−1
lim
N→∞

pN−1∑

j=0

qj(l+1)
1

1 − qpN

=
1

(1 − q)n
n∑

l=0

(
n
l

)
(−1)l 1

[l + 1]q
.

(2.3)

Theorem 2.2. For n ∈ N ∪ {0} and d being an odd positive integer with (p, d) = 1, one has

β
q
n(x) = [d]n−1q

n∑

l=0

(
n
l

)
β
qd

l

d−1∑

i=0

qi(l+1)
([

x

d

]

qd
+
[
i

d

]

qd

)n−l
. (2.4)

Proof. From (1.5), we can derive (2.4) as follows:

β
q
n(x) =

∫

Zp

(
[x]q + [s]q

)n
dμq(s)

= lim
N→∞

1
[
dpN

]
q

dpN−1∑

a=0

(
[x]q + [a]q

)n
qa

= lim
N→∞

1 − q
1 − qdpN

d−1∑

i=0

pN−1∑

k=0

(
[x]q + [i + dk]q

)n
qi+dk
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= lim
N→∞

1
[d]q

1
[
pN

]
qd

d−1∑

i=0

qi
pN−1∑

k=0

[d]nq

([
x

d

]

qd
+
[
i

d

]

qd
+ qi[k]qd

)n(
qd
)k

= lim
N→∞

1
[d]q

1
[
pN

]
qd

d−1∑

i=0

qi
pN−1∑

k=0

n∑

l=0

(
n
l

)([
x

d

]

qd
+
[
i

d

]

qd

)n−l(
qi[k]qd

)l(
qd
)k

= [d]n−1q

d−1∑

i=0

n∑

l=0

(
n
l

)
qi(l+1)

([
x

d

]

qd
+
[
i

d

]

qd

)n−l
lim
N→∞

1
[pN]qd

pN−1∑

k=0

[k]lqd
(
qd
)k

= [d]n−1q

d−1∑

i=0

n∑

l=0

(
n
l

)
qi(l+1)

([
x

d

]

qd
+
[
i

d

]

qd

)n−l∫

Zp

[s]lqddμqd(s)

= [d]n−1q

n∑

l=0

(
n
l

)
β
qd

l

d−1∑

i=0

qi(l+1)
([

x

d

]

qd
+
[
i

d

]

qd

)n−l
,

(2.5)

since a = i + dk and

(
[x]q + [i + dk]q

)n = [d]nq

([
x

d

]

qd
+
[
i

d

]

qd
+ qi[k]qd

)n

(2.6)

for a = 0, 1, . . . , dpN − 1, i = 0, 1, . . . , d − 1, and k = 0, 1, . . . , pN − 1.
Let Gq(x, t) be the generating function of q-Bernoulli polynomials as follows:

Gq(x, t) =
∞∑

n=0

β
q
n(x)

tn

n!
. (2.7)

From (2.2) and (2.7), we can obtain the following theorem.

Theorem 2.3. Let Gq(x, t) be as in the above generating function. Then, one has

Gq(x, t) = (1 − q)
∞∑

m=0

qme([x]q+[m]q)t. (2.8)

Proof. By using (2.2) and (2.7), we can derive (2.8) as follows:

Gq(x, t) = e([x]q+β
q)t = e[x]qteβ

qt = e[x]qt
∞∑

n=0

β
q
n
tn

n!

= e[x]qt
∞∑

n=0

1
(1 − q)n

n∑

l=0

(
n
l

)
(−1)l 1

[l + 1]q

tn

n!

= e[x]qt
∞∑

n=0

1

(1 − q)n−1
n∑

l=0

(
n
l

)
(−1)l 1

1 − ql+1
tn

n!

= e[x]qt
∞∑

n=0

1

(1 − q)n−1
n∑

l=0

(
n
l

)
(−1)l

∞∑

m=0

q(l+1)m
tn

n!
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= e[x]qt(1 − q)
∞∑

m=0

qm
∞∑

n=0

1
(1 − q)n

n∑

l=0

(
n
l

)
(−1)lqlm tn

n!

= e[x]qt(1 − q)
∞∑

m=0

qm
∞∑

n=0

[m]nq
tn

n!

= (1 − q)
∞∑

m=0

qme([x]q+[m]q)t.

(2.9)

3. A new formula for Hurwitz-type q-zeta functions

In this section, we consider the generating functions F(t, x)which interpolate the q-Bernoulli
polynomials β∗qn (x) as follows:

F(t, x) =
∞∑

m=0

qme([x]q+[m]q)t =
∞∑

m=0

β
∗q
n (x)

tm

m!
. (3.1)

From (3.1), we directly obtain the following theorem.

Theorem 3.1. For each k ∈ N ∪ {0}, one has

β
∗q
k (x) =

∞∑

m=0

qm
(
[x]q + [m]q

)k
. (3.2)

Proof. By the kth differentiation on both sides of (3.1), we can derive (3.2) as follows:

β
∗q
k (x) =

dk

dtk
F(x, t)|t=0 =

∞∑

m=0

qm
(
[x]q + [m]q

)k
. (3.3)

We remark that

−β
∗q
k (x)
k

=
1
k

∞∑

m=0

qm
(
[x]q + [m]q

)k (3.4)

for k ∈ N. From (3.2), we derive a q-extension of Hurwitz-type zeta function as follows: for
s ∈ C with R(s) > 1 and R(x) > 0, we define

ζq(s, x) =
1

1 − s
∞∑

m=0

qm
(
[x]q + [m]q

)s . (3.5)

Note that the functions ζq(s, x) are analytic on R(s) > 1 and they have simple pole at s = 1.
From (3.2), (3.4), and (3.5), we can see that Hurwitz-type q-zeta functions interpolate q-
Bernoulli polynomials as follows.
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Theorem 3.2. For each k ∈ N, one has

ζq(1 − k, x) = −β
∗q
k
(x)
k

. (3.6)
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