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Using the Hyers-Ulam-Rassias stability method of functional equations, we investigate
homomorphisms in C∗-algebras, Lie C∗-algebras, and JC∗-algebras, and derivations on
C∗-algebras, Lie C∗-algebras, and JC∗-algebras associated with the following Apollo-
nius-type additive functional equation f (z− x) + f (z− y) + (1/2) f (x+ y)= 2 f (z− (x+
y)/4).
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1. Introduction and preliminaries

Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in which
he discussed a number of unsolved problems. Among these was the following question
concerning the stability of homomorphisms.

We are given a group G and a metric group G′ with metric ρ(·,·). Given ε > 0, does there
exist a δ > 0 such that if f : G→G′ satisfies ρ( f (xy), f (x) f (y)) < δ for all x, y ∈G, then a
homomorphism h : G→G′ exists with ρ( f (x),h(x)) < ε for all x ∈G?

Hyers [2] considered the case of approximately additive mappings f : E→ E′, where E
and E′ are Banach spaces and f satisfies Hyers inequality

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ ε (1.1)

for all x, y ∈ E. It was shown that the limit

L(x)= lim
n→∞

f
(

2nx
)

2n
(1.2)
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exists for all x ∈ E and that L : E→ E′ is the unique additive mapping satisfying

∥
∥ f (x)−L(x)

∥
∥≤ ε. (1.3)

The famous Hyers stability result that appeared in [2] was generalized in the stability
involving a sum of powers of norms by Aoki [3]. Th. M. Rassias [4] and J. M. Rassias
[5] provided generalizations of Hyers’ theorem which allow the Cauchy difference to be
unbounded.

Theorem 1.1 (Th. M. Rassias). Let f : E→ E′ be a mapping from a normed vector space E
into a Banach space E′ subject to the inequality

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ ε(‖x‖p +‖y‖p) (1.4)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x)= lim
n→∞

f
(

2nx
)

2n
(1.5)

exists for all x ∈ E and L : E→ E′ is the unique additive mapping which satisfies

∥
∥ f (x)−L(x)

∥
∥≤ 2ε

2− 2p ‖x‖p (1.6)

for all x ∈ E. If p < 0, then inequality (1.4) holds for x, y 	= 0 and (1.6) for x 	= 0. Also, if for
each x ∈ E the function f (tx) is continuous in t ∈R, then L is linear.

Theorem 1.2 (J. M. Rassias). Let X be a real normed linear space and Y a real complete
normed linear space. Assume that f : X → Y is an approximately additive mapping for which
there exist constants θ ≥ 0 and p,q ∈R such that r = p+ q 	= 1 and f satisfies inequality

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ θ · ||x||p · ||y||q (1.7)

for all x, y ∈ X .Then there exists a unique additive mapping L : X → Y satisfying

∥
∥ f (x)−L(x)

∥
∥≤ θ

∣
∣2r − 2

∣
∣
||x||r (1.8)

for all x ∈ X . If, in addition, f : X → Y is a mapping such that the transformation t→ f (tx)
is continuous in t ∈R for each fixed x ∈ X , then L is an R-linear mapping.

Th. M. Rassias [6] during the 27th International Symposium on Functional Equations
asked the question whether such a theorem can also be proved for p ≥ 1. Gajda [7], fol-
lowing the same approach as in Th. M. Rassias [4], gave an affirmative solution to this
question for p > 1. It was shown by Gajda [7], as well as by Th. M. Rassias and Šemrl
[8], that one cannot prove Th. M. Rassias’ theorem when p = 1. The counterexamples of
Gajda [7], as well as of Th. M. Rassias and Šemrl [8] have stimulated several mathemati-
cians to invent new definitions of approximately additive or approximately linear map-
pings (cf. Găvruta [9], Jung [10]) who among others studied the stability of functional
equations.
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In 1982–1994, a generalization of this result was established by J. M. Rassias with a
weaker (unbounded) condition controlled by (or involving) a product of different powers
of norms. However, there was a singular case. Then for this singularity, a counterxample
was given by Găvruta [11]. The above-mentioned stability involving a product of dif-
ferent powers of norms is called Ulam-Găvruta-Rassias stability by Sibaha et al. [12] and
Ravi and Arunkumar [13]. This stability is called Hyers-Ulam-Rassias stability involving a
product of different powers of norms by Park [14]. Note that both Ulam stabilities specifi-
cally called: “Ulam-Găvruta-Rassias stability of mappings” and “Hyers-Ulam-Rassias sta-
bility of mappings involving a product of powers of norms” are identical in meaning
stability notions. Besides Euler-Lagrange quadratic mappings were introduced by J. M.
Rassias [15], motivated from the pertinent algebraic quadratic equation. Thus, he intro-
duced and investigated the relative quadratic functional equation [16, 17]. In addition,
he generalized and investigated the general pertinent Euler-Lagrange quadratic mappings
[18]. Analogous quadratic mappings were introduced and investigated by the same au-
thor [19, 20]. Therefore, these Euler-Lagrange quadratic mappings were named Euler-
Lagrange-Rassias mappings and the corresponding Euler-Lagrange quadratic equations
were called Euler-Lagrange-Rassias equations by Jun and Kim [21] and Park [22]. Be-
fore 1992, these mappings and equations were not known at all in functional equations
and inequalities. However, a completely different kind of Euler-Lagrange partial differen-
tial equations was known in calculus of variations. Therefore, this introduction of Euler-
Lagrange mappings and equations in functional equations and inequalities provided an
interesting cornerstone in analysis, because this kind of Euler-Lagrange-Rassias mappings
(resp., Euler-Lagrange-Rassias equations) is of particular interest in probability theory
and stochastic analysis by marrying these fields of research results to functional equations
and inequalities via the introduction of new Euler-Lagrange-Rassias quadratic weighted
means and Euler-Lagrange-Rassias fundamental mean equations [17, 18, 23]. For further
research developments in stability of functional equations, the readers are referred to the
works of Park [14, 22, 24–29], J. M. Rassias [30, 31, 5, 15–20, 32–40], J. M. Rassias and M.
J. Rassias [23, 41–43], Th. M. Rassias [44–47], Skof [48] and the references cited therein.

In an inner product space, the equality

‖z− x‖2 +‖z− y‖2 = 1
2
‖x− y‖2 + 2

∥
∥
∥
∥z−

x+ y

2

∥
∥
∥
∥

2

(1.9)

holds and is called the Apollonius’ identity. The following functional equation, which was
motivated by this equation,

Q(z− x) +Q(z− y)= 1
2
Q(x− y) + 2Q

(

z− x+ y

2

)

, (1.10)

is quadratic. For this reason, the function equation (1.10) is called a quadratic functional
equation of Apollonius type, and each solution of the functional equation (1.10) is said to
be a quadratic mapping of Apollonius type. Jun and Kim [49] investigated the quadratic
functional equation of Apollonius type.
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In this paper, modifying the above equality (1.10), we introduce a new functional
equation, which is called the Apollonius-type additive functional equation and whose so-
lution of the functional equation is said to be the Apollonius-type additive mapping

L(z− x) +L(z− y)=−1
2
L(x+ y) + 2L

(

z− x+ y

4

)

. (1.11)

Gilányi [50] showed that if f has its values in an inner product space and satisfies the
functional inequality

∥
∥2 f (x) + 2 f (y)− f

(

xy−1)
∥
∥≤ ∥∥ f (xy)

∥
∥, (1.12)

then f satisfies the Jordan-von Neumann functional inequality

2 f (x) + 2 f (y)= f (xy) + f
(

xy−1). (1.13)

See also [51]. Fechner [52] and Gilányi [53] proved the stability of the functional inequal-
ity (1.12). Park et al. [27] proved the stability of functional inequalities associated with
Jordan-von-Neumann-type additive functional equations.

In 1932, Jordan observed that �(�) is a (nonassociative) algebra via the anticommu-
tator product x ◦ y := (xy + yx)/2. A commutative algebra X with product x ◦ y is called
a Jordan algebra. A Jordan C∗-subalgebra of a C∗-algebra, endowed with the anticom-
mutator product, is called a JC∗-algebra. A C∗-algebra �, endowed with the Lie product
[x, y]= (xy− yx)/2 on �, is called a Lie C∗-algebra (see [24, 25, 29]).

In Section 2, we investigate homomorphisms and derivations in C∗-algebras associ-
ated with the Apollonius-type additive functional equation.

In Section 3, we investigate homomorphisms and derivations in Lie C∗-algebras asso-
ciated with the Apollonius-type additive functional equation.

In Section 4, we investigate homomorphisms and derivations in JC∗-algebras associ-
ated with the Apollonius-type additive functional equation.

2. Homomorphisms and derivations in C∗-algebras

Theorem 2.1. Let A be a uniquely 2-divisible abelian group and B a normed linear space.
A mapping f : A→ B satisfies

∥
∥
∥ f (z− x) + f (z− y) +

1
2
f (x+ y)

∥
∥
∥
B
≤
∥
∥
∥
∥2 f

(

z− x+ y

4

)∥
∥
∥
∥
B

(2.1)

for all x, y,z ∈A if and only if f : A→ B is additive.

Proof. Letting x = y = z = 0 in (2.1), we get

5
2

∥
∥ f (0)

∥
∥
B ≤ 2

∥
∥ f (0)

∥
∥
B. (2.2)

So f (0)= 0.
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Letting z = 0 and y =−x in (2.1), we get

∥
∥ f (−x) + f (x)

∥
∥
B ≤ 2

∥
∥ f (0)

∥
∥
B = 0 (2.3)

for all x ∈ A. Hence, f (−x)=− f (x) for all x ∈ A.
Letting x = y = 2z in (2.1), we get

∥
∥
∥
∥2 f (−z) +

1
2
f (4z)

∥
∥
∥
∥
B
≤ ∥∥2 f (0)

∥
∥
B = 0 (2.4)

for all z ∈ A. Hence,

f (4z)=−4 f (−z)= 4 f (z) (2.5)

for all z ∈A.
Letting z = (x+ y)/4 in (2.1), we get

∥
∥
∥
∥ f
(−3x+ y

4

)

+ f
(
x− 3y

4

)

+
1
2
f (x+ y)

∥
∥
∥
∥
B
≤ ∥∥2 f (0)

∥
∥
B = 0 (2.6)

for all x, y ∈A. So

f
(−3x+ y

4

)

+ f
(
x− 3y

4

)

+
1
2
f (x+ y)= 0 (2.7)

for all x, y ∈ A. Let w1 = (−3x+ y)/4 and w2 = (x− 3y)/4 in (2.7). Then

f
(

w1
)

+ f
(

w2
)=−1

2
f
(− 2w1− 2w2

)= 1
2
f
(

2w1 + 2w2
)= 2 f

(
w1 +w2

2

)

(2.8)

for all w1,w2 ∈A and so f is additive.
It is clear that each additive mapping satisfies the inequality (2.1). �

In this section, we investigate C∗-algebra homomorphisms between C∗-algebras and
linear derivations on C∗-algebras associated with the Apollonius-type additive functional
equation. From now on, assume that A is a C∗-algebra with norm ‖ · ‖A, and that B is a
C∗-algebra with norm ‖ · ‖B.

Lemma 2.2 [26]. Let f : A→ B be an additive mapping such that f (μx) = μ f (x) for all
x ∈ A and all μ∈ T1 := {λ∈ C : |λ| = 1}. Then the mapping f is C-linear.

Theorem 2.3. Let r > 1 and θ be nonnegative real numbers, and let f : A→ B be a mapping
such that

∥
∥
∥
∥ f (z−μx) +μ f (z− y) +

1
2
f (x+ y)

∥
∥
∥
∥
B
≤
∥
∥
∥
∥2 f

(

z− x+ y

4

)∥
∥
∥
∥
B

, (2.9)
∥
∥ f (xy)− f (x) f (y)

∥
∥
B ≤ θ · ‖x‖rA · ‖y‖rA, (2.10)

∥
∥ f
(

x∗
)− f (x)∗

∥
∥
B ≤ 2θ‖x‖rA (2.11)

for all μ ∈ T1 := {λ ∈ C : |λ| = 1} and all x, y,z ∈ A. Then the mapping f : A→ B is a
C∗-algebra homomorphism.
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Proof. Let μ= 1 in (2.9). By Theorem 2.1, the mapping f : A→ B is additive.
Letting y =−x and z = 0 in (2.9), we get

∥
∥ f (−μx) +μ f (x)

∥
∥
B ≤

∥
∥2 f (0)

∥
∥
B = 0 (2.12)

for all x ∈ A and all μ∈ T1. So

− f (μx) +μ f (x)= f (−μx) +μ f (x)= 0 (2.13)

for all x ∈ A and all μ ∈ T1. Hence, f (μx) = μ f (x) for all x ∈ A and all μ ∈ T1. So by
Lemma 2.2, the mapping f : A→ B is C-linear.

It follows from (2.10) that

∥
∥ f (xy)− f (x) f (y)

∥
∥
B = lim

n→∞4n
∥
∥
∥
∥ f
(

xy

2n · 2n

)

− f
(
x

2n

)

f
(
y

2n

)∥
∥
∥
∥
B

≤ lim
n→∞

4nθ
4nr

· ‖x‖rA · ‖y‖rA = 0

(2.14)

for all x, y ∈A. Thus,

f (xy)= f (x) f (y) (2.15)

for all x, y ∈ A.
It follows from (2.11) that

∥
∥ f
(

x∗
)− f (x)∗

∥
∥
B = lim

n→∞2n
∥
∥
∥
∥ f
(
x∗

2n

)

− f
(
x

2n

)∗∥
∥
∥
∥
B
≤ lim

n→∞
2n+1θ

2nr
‖x‖rA = 0 (2.16)

for all x ∈ A. Thus,

f
(

x∗
)= f (x)∗ (2.17)

for all x ∈ A. Hence, the mapping f : A→ B is a C∗-algebra homomorphism. �

Theorem 2.4. Let r < 1 and θ be positive real numbers, and let f : A→ B be a mapping
satisfying (2.9), (2.10), and (2.11). Then the mapping f : A→ B is a C∗-algebra homomor-
phism.

Proof. The proof is similar to the proof of Theorem 2.3. �

Theorem 2.5. Let r > 1 and θ be nonnegative real numbers, and let f : A→ A be a mapping
satisfying (2.9) such that

∥
∥ f (xy)− f (x)y− x f (y)

∥
∥
A ≤ θ · ‖x‖rA · ‖y‖rA (2.18)

for all x, y ∈A. Then the mapping f : A→ A is a linear derivation.

Proof. By the same reasoning as in the proof of Theorem 2.3 and applying Lemma 2.2,
the mapping f : A→ A is C-linear.
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It follows from (2.18) that

∥
∥ f (xy)− f (x)y− x f (y)

∥
∥
A = lim

n→∞4n
∥
∥
∥
∥ f
(
xy

4n

)

− f
(
x

2n

)
y

2n
− x

2n
f
(
y

2n

)∥
∥
∥
∥
A

≤ lim
n→∞

4nθ
4nr

· ‖x‖rA · ‖y‖rA = 0

(2.19)

for all x, y ∈A. So

f (xy)= f (x)y + x f (y) (2.20)

for all x, y ∈A. Thus, the mapping f : A→ A is a linear derivation. �

Theorem 2.6. Let r < 1 and θ be positive real numbers, and let f : A→ A be a mapping
satisfying (2.9) and (2.18). Then the mapping f : A→ A is a linear derivation.

Proof. The proof is similar to the proofs of Theorems 2.3 and 2.5. �

3. Homomorphisms and derivations in Lie C∗-algebras

Throughout this section, assume that A is a Lie C∗-algebra with norm ‖ · ‖A, and that B
is a Lie C∗-algebra with norm ‖ · ‖B.

Defintion 3.1 [24, 25, 29]. A C-linear mapping H : A→ B is called a Lie C∗-algebra ho-
momorphism if H : A→ B satisfies

H
(

[x, y]
)= [H(x),H(y)

]

(3.1)

for all x, y ∈A.

Defintion 3.2 [24, 25, 29]. A C-linear mapping D : A→ A is called a Lie derivation if
D : A→ A satisfies

D
(

[x, y]
)= [D(x), y

]

+
[

x,D(y)
]

(3.2)

for all x, y ∈A.

In this section, we investigate Lie C∗-algebra homomorphisms between Lie C∗-
algebras and Lie derivations on Lie C∗-algebras associated with the Apollonius-type ad-
ditive functional equation.

Theorem 3.3. Let r > 1 and θ be nonnegative real numbers, and let f : A→ B be a mapping
satisfying (2.9) such that

∥
∥ f
(

[x, y]
)− [ f (x), f (y)

]∥
∥
B ≤ θ · ‖x‖rA · ‖y‖rA (3.3)

for all x, y ∈ A. Then the mapping f : A→ B is a Lie C∗-algebra homomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.3, the mapping f : A→ B is
C-linear.
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It follows from (3.3) that

∥
∥ f
(

[x, y]
)− [ f (x), f (y)

]∥
∥
B = lim

n→∞4n
∥
∥
∥
∥ f
(

[x, y]
2n · 2n

)

−
[

f
(
x

2n

)

, f
(
y

2n

)]∥
∥
∥
∥
B

≤ lim
n→∞

4nθ
4nr

· ‖x‖rA · ‖y‖rA = 0

(3.4)

for all x, y ∈A. Thus,

f
(

[x, y]
)= [ f (x), f (y)

]

(3.5)

for all x, y ∈A. Hence, the mapping f : A→ B is a Lie C∗-algebra homomorphism. �

Theorem 3.4. Let r < 1 and θ be positive real numbers, and let f : A→ B be a mapping
satisfying (2.9) and (3.3). Then the mapping f : A→ B is a Lie C∗-algebra homomorphism.

Proof. The proof is similar to the proofs of Theorems 2.3 and 3.3. �

Theorem 3.5. Let r > 1 and θ be nonnegative real numbers, and let f : A→ A be a mapping
satisfying (2.9) such that

∥
∥ f
(

[x, y]
)− [ f (x), y

]− [x, f (y)
]∥
∥
A ≤ θ · ‖x‖rA · ‖y‖rA (3.6)

for all x, y ∈A. Then the mapping f : A→ A is a Lie derivation.

Proof. By the same reasoning as in the proof of Theorem 2.3, the mapping f : A→ A is
C-linear.

It follows from (3.6) that

∥
∥ f
(

[x, y]
)−[ f (x), y

]−[x, f (y)
]∥
∥
A = lim

n→∞4n
∥
∥
∥
∥ f
(

[x, y]
4n

)

−
[

f
(
x

2n

)

,
y

2n

]

−
[
x

2n
, f
(
y

2n

)]∥
∥
∥
∥
A

≤ lim
n→∞

4nθ
4nr

· ‖x‖rA · ‖y‖rA = 0

(3.7)

for all x, y ∈A. So

f
(

[x, y]
)= [ f (x), y

]

+
[

x, f (y)
]

(3.8)

for all x, y ∈A. Thus, the mapping f : A→ A is a Lie derivation. �

Theorem 3.6. Let r < 1 and θ be positive real numbers, and let f : A→ A be a mapping
satisfying (2.9) and (3.6). Then the mapping f : A→ A is a Lie derivation.

Proof. The proof is similar to the proofs of Theorems 2.3 and 3.5. �

4. Homomorphisms and derivations in JC∗-algebras

Throughout this section, assume that A is a JC∗-algebra with norm ‖ · ‖A, and that B is
a JC∗-algebra with norm ‖ · ‖B.
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Defintion 4.1 [25, 29]. A C-linear mapping H : A→ B is called a JC∗-algebra homomor-
phism if H : A→ B satisfies

H(x ◦ y)=H(x)◦H(y) (4.1)

for all x, y ∈A.

Defintion 4.2 [25, 29]. A C-linear mapping D : A→ A is called a Jordan derivation if D :
A→ A satisfies

D(x ◦ y)=D(x)◦ y + x ◦D(y) (4.2)

for all x, y ∈A.

In this section, we investigate JC∗-algebra homomorphisms between JC∗-algebras
and Jordan derivations on JC∗-algebras associated with the Apollonius type additive
functional equation.

The proofs of the following theorems are similar to the proofs given in Sections 2 and
3.

Theorem 4.3. Let r > 1 and θ be nonnegative real numbers, and let f : A→ B be a mapping
satisfying (2.9) such that

∥
∥ f (x ◦ y)− f (x)◦ f (y)

∥
∥
B ≤ θ · ‖x‖rA · ‖y‖rA (4.3)

for all x, y ∈A. Then the mapping f : A→ B is a JC∗-algebra homomorphism.

Theorem 4.4. Let r < 1 and θ be positive real numbers, and let f : A→ B be a mapping
satisfying (2.9) and (4.3). Then the mapping f : A→ B is a JC∗-algebra homomorphism.

Theorem 4.5. Let r > 1 and θ be nonnegative real numbers, and let f : A→ A be a mapping
satisfying (2.9) such that

∥
∥ f (x ◦ y)− f (x)◦ y− x ◦ f (y)

∥
∥
A ≤ θ · ‖x‖rA · ‖y‖rA (4.4)

for all x, y ∈A. Then the mapping f : A→ A is a Jordan derivation.

Theorem 4.6. Let r < 1 and θ be positive real numbers, and let f : A→ A be a mapping
satisfying (2.9) and (4.4). Then the mapping f : A→ A is a Jordan derivation.
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