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1. Introduction

Let T >0 and let QO C R", n = 2,3, be an open and bounded domain, with a smooth
boundary 0Q (of class C?, e.g.). Consider the perturbed Navier-Stokes equations

%_vAy+(yV)y+q)(y)+vp3g, il’lQ:QX(O)T))

divy=0, inQ,
y=0, onX=0Qx(0,T),
y(5,0) = y0, inQ,

(1.1)

where y = (y1,¥2,..., ¥a) is the velocity field, p is the scalar pressure. The density of ex-
ternal forces is ¢ = (g1,£2,...,gn), the constant v > 0 is the kinematic viscosity coefficient,
and the perturbation @ is a maximal monotone operator. Such a nonlinear term @ arises
usually as a feedback nonlinear controller.

In this section, we describe the functional framework and we rewrite the Navier-Stokes
equations in an abstract form. The main existence and uniqueness results for strong so-
lutions are stated in Section 2. The first of these theorems is proved in Section 3 and the
others in Section 4. Section 5 is concerned with weak solutions. The last section is devoted
to examples.
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We will use the standard spaces (see, e.g., [1-3])

H={ye (I*(Q)" divy =0in Q, y - nagq = 0 on 9Q},

(1.2)

V=1{ye (H}(Q)"; divy =0in Q}.
H is a real Hilbert space endowed with L?>-norm | - | and V is a real Hilbert space
endowed with H(} -norm || - || = |V - |. Moreover, denoting by V' the dual space of V

and considering H identified with its own dual, we have V. C H C V’ algebraically and
topologically with compact injections.

Here, (-, -) denotes the scalar product of H and the pairing between V and its dual V".
The norm of V' is denoted by || - || y-.

Let A € L(V, V") (the space of linear continuous operators from V in V'), (Ay,z) =
SiiloVyi-Vzidx, forall y,ze V.

We have (Ay,y) = [lyl|? forall y € V. We set D(A) = {y € V; Ay € H} and denote
again by A the restriction of A to H.

Letb: VX VXV — R the trilinear continuous functional defined by

n a )
b(y,z,w) = Z JQyia—?wjdx, Vy,z,we V. (1.3)

ij=1
The functional b satisfies (see, e.g., [1-3])
b(y,w,w) =0, b(y,z,w)=-b(y,w,z), VyzweV, (1.4)

[b(y,zw) | < Clyl"2liyl"2lIzll?|Az| 2 wl, Vy,weV,zeD(A) (n=2), (15)

|b(y,z,w)| < Clyl2 Iyl 1z Nz wll,  Vy,z,w €V (for n=2), (1.6)
|b(y,z,w)| < Cliyllllzll?|Az|V*|lw], Vy,we V,ze D(A) (forn=3), (1.7)
|b(y,z,w)| < Clyl"2 Iyl NzllIwll, Vy,zweV (forn=3), (1.8)
|b(y,z,w)| < Cliylllizllllwll, Vy,z,we V (for n=2,3). (1.9)

Let B: V — V' be defined by
(By,w) =b(y,y,w), Vy,weV. (1.10)

In this setting, equations (1.1) may be rewritten

dy
o (0 +9Ay (D) +By(1) + O(y(1) 3 f(1), te (0.1) (111)

}’(0) = )’0,

where f = Pg, P: (L*(Q))" — H is the Leray projection.
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Suppose @ satisfies the following hypotheses:

(h;) ® = d¢p, where ¢ : H — R is a lower semicontinuous proper convex function
(hence @ is a maximal monotone operator in H X H);

(hy) 0 € D(®);

(h3) there exist two constants y = 0, & € (0, (1/7)) such that

(Au, @) (1)) = —y(1+ |ul?) — a| Dy (u) |2, VA>0, Vue D(A), (1.12)

where @) = (1/A)(I = (I +A®)~1): H — H is the Yosida approximation of ®.

We consider the classical definition of the maximal monotone operator. We will denote
|®(u)| =inf{|z|; z € ®(u)}, where u € D(D).

In the sequel, the symbol — will be used to denote convergence in the weak topology,
while the strong convergence will be denoted by —.

2. Main results for strong solutions

THEOREM 2.1. Let T >0 and let QO C R", n = 2,3 be an open and bounded domain, with
a smooth boundary. Assume that ® C H X H satisfies the hypotheses (hy)—(hs). Let yo €
D(A) N D(®) and f € WH(0, T;H).

If n = 2, there exists a unique y € WH*(0,T;H) N L*(0,T; D(A)) n C([0,T]; V) such
that

%(t) +vAy(t)+By(t) + @(y(t)) > f(¢), ae te(0,T),

(2.1)
y(0) = yo.
Moreover, y is right differentiable, (d*/dt)y is right continuous, and
dr 0
Ey(t) + (vAy(t)+By(t)+ @ (y(t)) — f(¢)) =0, Vte[0,T). (2.2)
If n = 3, the solution y exists on some interval [0, Ty), where
To = To(Il 225t |[yoll) < T. (2.3)

We have denoted by y — (vAy + By + ®(y) — f(¢))° the minimal section of the multi-
valued mapping y — (vAy + By + ®(y) — f(1)).
If we ask for lower regularity of the initial data, we obtain the following results.

THueOREM 2.2 (case n =2). Let T >0 and let Q C R? be an open and bounded domain,
with a smooth boundary. Assume that ® C H X H satisfies the hypotheses (h;)—(hs). Let
¥0 € VN D(®), f € L*(0,T;H). Then there exists a unique solution y € C([0,T];H) N
L*(0,T;D(A)) N L=(0,T; V) with dy/dt € L*(0, T;H), By € L*(0,T;H) for

dy
p (1) +vAy(t)+By(t)+ @ (y(t)) > f(t), ae te(0,T), (2.4)

y(0) = yo.
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Tueorem 2.3 (case n =3). Let T >0 and let Q C R? be an open and bounded domain,
with a smooth boundary. Assume that ® C H X H satisfies the hypotheses (h,)—(hs). Let
yo € VND(®), f € L*(0,T;H).
Then there exists To = To(Il f 111201300, | ¥oI?) < T such that the problem

dy

— () +vAy(t) +By(t) + O (y(t)) o f(t), a.e t€ (0,Tp)

dt (2.5)

y(0) = yo

has a unique solution

y S C( [0, To],H) N Lz (0, To,D(A)) NL® (0, To; V),
dy (2.6)
5 € L*(0,Tp;H), By € L*(0,To; H).
Remark 2.4. We obtain the same results if @ satisfies the following hypotheses:
(H;) @ is a single-valued maximal monotone operator in H X H;

(H;) there exist three constants y;,y, = 0, and « € (0,7) such that
|®(w) | < alAul +y1llull +y2, Vue D(A). (2.7)
In the sequel, we use the same symbol C for various positive constants.

3. Proof of Theorem 2.1

The proof uses the theory of nonlinear differential equations of accretive type in Ba-
nach spaces. In order to obtain a quasi-m-accretive operator in the left-hand side of the
Navier-Stokes equation (Proposition 3.1), we have to substitute the nonlinearity B with
a truncation By, N € N*. We may then state existence and uniqueness results for the
approximate equations (3.2), (3.34) involving By, @, and By, @), A > 0 instead of B, ®
(Propositions 3.2, 3.3).

We intend to prove that for N large enough, the solution of the truncated problem in-
volving By, @ coincides with the solution of the initial problem. To this aim, we need to
obtain estimates on the solution yy of problem (3.2). In order to do this, we are obliged
to deduce the convenient estimates first on problem (3.34) (the one involving @) be-
cause relation (1.12) does not extend in a suitable way to arbitrary elements of ®(yn(t)).
Passing to the limit with A — 0 in (3.34), we return to the problem in By, ® and conclude
the proof.

3.1. Approximate problems: existence and uniqueness. For N € N*, define the modi-
fied nonlinearity By : V — V7,

By if [yll <N,

Bny=1( N \? .
(”y—”) By ifllyll >N,

(3.1)
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and consider the approximate equation

d
%(t) +vAyn(D) +Byyn () +D(yn () 5 £(£), te(0,T) o)

yn(0) = yo.
Proposition 3.1 is one of the main ingredients of the proof.

ProposiTiON 3.1. Let N € N* be fixed. Let ® C H X H be a maximal monotone operator
with 0 € D(®). Assume that there exist two constants y = 0, « € (0,1/v) such that relation
(1.12) is verified.

Define the operator An : D(AN) — H, AN = VA+ BN +® +an], ay >0, where D(AN) =
{ue H; @+ Ay(u) c H}. Then D(Ay) = D(A) N D(®) and Ay is a maximal monotone
in H X H for an large enough.

Moreover, there exists a constant Cy > 0 such that

[Aw| < Cn (1 + |w|* + | vAw + Byw + @y (w) |2)3/2

, VweD(A), VA >0, (3.3)
|Aw| < Cy(1+ [wl*+ | vAw+Byw+74|")"?,  Vwe D(A) nD(®), Vi € D(w).
(3.4)

Proof. Ithasbeen proved in [4] (see Lemma 5.1, page 292) that A + By applies D(A) into
H and that for ay large enough, the operator 'y = vA + By + anI with D(I'y) = D(A)
is (maximal) monotone in H X H. Then D(A) N D(®) C D(Ay) and Ay = I'y + @ is the
sum of two monotone operators, and by consequence it is a monotone. In order to obtain
the maximal monotony of Ay, it is sufficient to prove that R(I + Ay) = H.

Let f € H and A > 0 a fixed. We approximate the equation

u+vAu+Byu+DO(u) +ayus f (3.5)
by the equation
ur+vAupr +Byup + Oy () +anup = f, A >0, (3.6)
that is
uy+Iyup+ 0y (wy) = f, (3.7)

where @, is the Yosida approximation of ®. By the properties of the Yosida approxima-
tion, @, is demicontinuous monotone and its sum with the maximal monotone operator
I'y is maximal monotone, which implies the existence of a solution uy € D(A) for (3.6).
The uniqueness follows by monotony arguments.

Let uny = an + 1; then (3.6) reads

vAuy + Byuy + @y (uy) +unuy=f, A>0. (3.8)

We first multiply (3.8) by u) and infer that

| |[* + (Byun, ) + (Dx (1), 1) +un || = (f,m). (3.9)
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But b(uy,up,uy) = 0. Also, the operator @, is monotone, with 0 € D(®,) = H, which
implies that (@) (uy),ur) = (P (0),uy), and we have

1
—(@1(0),1) = — [©(0)|*+ EX [y |7 (3.10)
UN 4
Equation (3.9) yields
2 YN 2 1 5 1 2
YWl + = uy| < —|fl"+— |D0O)]|". 3.11
P+ 5 < 1 00 G
Consequently,
lur |5 |lm]|* < C(1+1f12), VA>o0, (3.12)
where the constant C > 0 does not depend on A.
Next, (3.8) is multiplied by Auy, which gives
v| Awy |* + By, Am) + (D1 (1), Awr) + x| [mn]|* = (f, Aw). (3.13)
But
| (Byup, Auy) | < |b(ur,ur,Awy) |
Cluy ||| | Aw | < 2 lAu [P+ Cluy P [lmll’s n=2,
<
Clll[ [4m | = 7| 4w |* + Cllu [, n=3,
s£|AuA|2+C(1+|f|2)3,
(3.14)

where C > 0 denotes several positive constants (not depending on A1). We used estimates
(1.5) in the case n = 2, (1.7) in the case n = 3, then Young inequality and (3.12).
Recalling also hypothesis (1.12), (3.13) implies that

v|Au |~ j;) |Aw |2 = C(1+ 112’ —y(1+1m?) — a| @1 () |* +pnua]

- 1|f|2+3|Am|2 (3.15)
<3 1 .
Ignoring the term py lluy[1? > 0, by (3.12) the above relation reads
lam P <alow) P+ CO+If12), vA>0, (3.16)

where C > 0 denotes several positive constants (not depending on 1).
Finally, we multiply (3.8) by @, (1) and obtain

V(Aup, Dy (1)) + By, @1 (1)) + | ) (112) [P+ (un, @y (112)) = (f, Dy (12)).
(3.17)
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As shown before,
oy (10, @2(10) = =5 (|0(0) |+ 2 |), (3.18)
Also,
| By, @2(w2)) | = [(ur,un, @a(101)) |

C||u/\||3/2 ’Au/\ | 1/2

Clun|[lwl|Awm || @2 ()], n=2,
<
{CD/\(”A)" n:3a

1

< ;W [Oy () |+ C(1+1f17)

| A |.

We used again (1.5) in the case n = 2, (1.7) in the case n = 3, and (3.12). The constants C
do not depend on A. Together with (1.12), (3.17) implies that

—wy (14w A)|2—C(1+|f| )" [ Aw |
Hou(w) = (|0 [+ [m|) = ; 2 ()
(3.20)
and by (3.12),
Dy () | < C+1£1D)*|Am | +C(1+1£1?), VA>0. (3.21)
Substituting (3.21) into (3.16), we obtain
§|Am|zsc(1+|f| )Y Aup | +C(1+]1f12)°, (3.22)
which implies that
|Awy | <Cc(1+1f12)"7,
(3.23)

[Oa () |* < C(L+1 1),

The constants C do not depend on A or | f1.

From the boundedness in H of the sequences (u))1>0, (©a(ur))150, (fi)as0, where
i =f—u— Dy(uy) = Ty, it follows that on a sequence A; — 0, we have the weak
convergences in H:

Ur, —u (D)\j(u)tj) — fi, ﬁj = rNuAj — f. (3.24)

Because (), ) is bounded in V by (3.12), we get that uy, — u.

Passing to the weak limit in the equality f —uy, — @y, (uy,) = f),, we obtain f = u+
fi + fo. If we prove that f, = Iyu, fi € ®(u), it will follow that f € u+I'yu+ O(u), as
claimed.
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We multiply by u) — u, the difference of (3.7) written for A > 0 and the same equation
written for g > 0. We find

(Dr(ur) = Py (uy),un — ) + (T + 1)y — (Tn + 1) uy, up — ) = 0. (3.25)

Since I'y + I is the sum of two monotone operators and by consequence monotone, we
get (D) (ur) — Dy(uy),ur —uy) <0, for all A, > 0. Then (u, fi) € © and

Al,iglo (@ () — Dy (), 0 — 14y) =0 (3.26)

(see [5, Proposition 1.3(iv), page 49]).
Relation (3.25) implies that

Alimo ((Cn+ 1wy — (Tn + 1)y, up — uy,) = 0. (3.27)
S

Using also uy, — u, [yuy, — f2 and the fact that I'y +1 is maximal monotone (I'y max-
imal monotone), it follows that (u,u+ f,) € I'y + 1, and thus I'yu = f, (see [5, Lemma
1.3, page 49]).

From (u, fi) € ® and T'yu = f,, we also get u € D(I'y) N D(®) = D(A) n D(®). Con-
sequently, D(Ay) = D(A) N D(®).

Let us prove now (3.3) and (3.4).

For the first one, we consider A > 0 fixed, w € D(A), and let &y = vAw+Byw + Dy (w) +
pnw. In the same way as we deduced (3.23), we may obtain |[Aw| < C(1+ [g11?)*?, hence

[Aw|?? < C(1+ |g,1|2) = C(|vAw+BNw+CD,1(w)+yNw|2+l)
(3.28)
sC(l+2‘u12\,|w|2+2|vAw+BNw+CDA(w)|2),

where the constant C > 0 does not depend on A. Thus (3.3) is proved.

In order to prove the second relation, we take w € D(A) N D(®) and n € ®(w). Let
g = vAw+Byw+#y+unw. For this g, we may construct as in the first part of the proof a
sequence (wy)yso C H such that

vAw) + Bywy + @) (wy) +unwr=g, VA>0. (3.29)
Moreover, w)y — w, Aw) — Aw because Ay is maximal monotone.
Passing to the limit with A — 0 in (3.23) written for (w;), we obtain |Aw| < C(1 +
Ig12)¥2, hence
|Aw|?? < C(1+Ig|?) = C(1+ [vAw+Byw+n+unw|’)
(3.30)

< C(1+24% w2 +2|vAw+Byw+7]°),

which proves relation (3.4). This concludes the proof of Proposition 3.1. O
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ProrositioN 3.2. Let @ C H X H verifying the hypotheses in Proposition 3.1. Let f €
W10, T;H) and yo € D(A) N D(®). Then there exists a unique strong solution

yx € WE(0, T;H) n L™ (0, T; D(A)) n C([0, T]; V) (3.31)
to problem (3.2). Moreover, yy is right differentiable, (d*/dt) yn is right continuous, and

%yN(t)+ (vAyn(t) +Byyn(t) + P (yn(t)) —f(t))0 =0, Vtel[o,T). (3.32)

Proof. From Proposition 3.1 and [5, Theorems 1.4, 1.6, pages 214-216], it follows that
problem (3.2) has a unique solution yy € W*(0, T; H) verifying relation (3.32). In or-
der to prove that yy € L*(0,T; D(A)) N C([0,T]; V), let {y(t) € ®(yn(t)) such that

dyy
dt

We know f —(dyn/dt) € L*(0,T; H). Consequently, vAyy + By yn + (v € L¥(0, T5H).
Applying (3.4) for yn(t) and {y(t) € ©(yn(2)), we get Ayy € L®(0,T;H), which im-
plies that yy € L*(0,T;D(A)). Together with (dyn/dt) € L*(0,T;H), we infer that yy €
C([0,T]; V). a

(1) +vAyn(t) + Buyn (t) +On (1) = f(2). (3.33)

A similar result takes place if we use the Yosida approximation @, instead of ®.

ProrositioN 3.3. Let ® C H X H verifying the hypotheses in Proposition 3.1. Let f €
WLL(0,T;H) and yo € D(A) N D(®). Then for all A >0, there exists a unique strong so-
lution yl)f, € WL (0,T;H) n L™ (0, T;D(A)) N C([0,T); V) for problem

A
%V(t)+yAyib(t>+BNyi$(t)+<1>A(y?q(t>> = f0), aetc(0T), (3.34)

ya(0) = yo.

Moreover, yj is right differentiable, (d*/dt)y} is right continuous, and

E RO+ AR 0 + By (0 + 0104 0) = f0), Vi€ [0,T) (3.35)

Proof. Ty = vA + By + anI is maximal monotone (for ay large enough), @, is demi-
continuous monotone, which implies that ¥A + By + @) + ay[ is maximal monotone in
H x H. Then, problem (3.34) has a unique solution y% € W (0, T; H) verifying relation
(3.35). Moreover, we infer that vAyl)\L, +BNyf\‘, + (I)A(y{},) =f- (dy}v/dt) e L®(0,T;H).
Applying (3.3) for y{(t) € D(A), we get Ayd € L°(0,T;H), which implies that y{ €
L*(0,T;D(A)). Together with (dyff,/dt) € L*(0,T;H), we obtain yl)\‘, e c(lo,T];v). O

3.2. Estimates for the solution of problem (3.34). By Proposition 3.2, problem (3.2) has
a unique strong solution

yn € WH*(0,T;H) n L (0, T;D(A)) n C([0,T]; V). (3.36)
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However, in order to get better estimates, we will further approximate problem (3.2) by
problem (3.34), which also has a unique strong solution, by Proposition 3.3.
First, we multiply (3.34) by yﬁ](t) and integrate on (0,1),

L%(%l)’?z(sﬂ )ds+vj (Ayi(s), N(S))d5+J (Bnyd(s), y¥ (s))ds

(3.37)

t

t
[ @A) = [ (F@ )
0 0

But (BNy{l,(s),y&,(s)) =0and (Ox(y ( ), yN(s)) > (D,(0), yN(s)) because @, is mono-
tone,

SR+ [ AoIds
J (@2(0), b (s))ds+ - |y0| +J (F(s)y yh(s))ds < %|y0|2 (3.38)

+%L |)’§;(S)|2ds+%,[02(|d>(0)|2+ FOIRLE

In particular, it follows that

A1 < | 0] +2J (00> + | £(5)]| ds+J |y (s) | ds, (3.39)

and by Gronwall’s inequality,

T
Iyh (] < <|y0|2+2jo (|@)]*+ |f(s)|2)ds)ef. (3.40)
Finally, we infer that
SO 1A= (Sl [ (00 + 0 as)e, Gan
and thus

1 t
3 DA v ] I 6)1Pds = F T o], (3.42)

where C; is a positive bounded function depending on | f12(0,7)> | 0|%, but indepen-
dent of N, A.
Next we multiply (3.34) with A y{},(t) and integrate on (0, 1):

td t t
JO s (%Ilyﬁz(s)llz)ds+ vJO |Ayd(s)|*ds+ L (Buyii(s), Ayl (s))ds »

t t
| @GR AR s = | (F0.Ayk)ds.
0 0
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Recalling (1.12), this yields
1 t t t
SR v [ o ds=y [ 0+ e Dds—a |0(A0) %ds

t t
<ol + | (PO Ay ©)ds— [ Bk axk)ds
0

0
(3.44)
Butifn =2,
' A ) ! PRI V- I IINE
. (Bnyn(s),Ayy(s))ds| < . Clyn@ | llyn I Ay (s)| " ds
(3.45)
vV t 2 2 ~ (! 2 4
= [Ayn(s)|“ds+C | [lyn(s)]| ds,
0 0
(Iyﬁf(s)l being bounded from (3.42)) and if n = 3,
t t
‘ [, Buskerank@)ds| = [ iy |axke) | ds
(3.46)
y (! 2 2 ~ (! 2 6
<) Aw@ds+C |lyn ()]l ds.
0 0
In both cases, the constant C is independent of N, A.
We get
1 A 2 ! A 2
SR +7 [ 14y ds
1 2 1 (! 2
< Il +5 | 176 %ds
Lt o g . (3.47)
3] k@ s ] | 1Ak s e ol
4 Jo 4 Jo 0
t | 5 t | .
ey [ A6 1ds) va | 1or0ho) as
where d = 4 for n = 2 and d = 6 for n = 3. Using also (3.42), it follows that
1 2 2 v ¢ 2 2
SIAOIF+3 | 1Ak ds
0
t
czj Al ds+Coy n=2,  (348)

<a| |0k dst
0

t

G JO ly&(s)]|°ds+Cy, n=3,

where C,, C, are positive bounded functions of || f 12,71 1012 lly0ll% but do not
depend on N, A.
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Finally, we multiply (3.34) with @, ( yl)\‘,(t)) and integrate on (0,¢). We recall that ® =
d¢ and that the Yosida approximation @) = V¢,, the Gateaux differential of ¢,, where

lu—v|?
21

oA (1) :inf{ +o(v); vEH}, YueH, (3.49)

is the regularization of ¢. So,

Jot <%y§(5)’(vw)(%(5)))ds

t

o[ ARG | (BukE.o0k@)ds (350

# | 1ok Pds= | (£6. 0108 6))ds
0 0
Using (d/ds) 4 (9, (V2) () = (/) (2 ()] and (1.12), we gt

t
(1-90) | @1k (5) s
<o () —<pa(y§;(t))+vy<t+L !yﬂ‘z(s)lzds) (3.51)

t t
+] @03 ds = | (Buyd (9,02 (54 ))ds.

Any proper lower semicontinuous convex function is bounded from below by an affine
function, consequently there are h € H and p € R such that

o(x) = (x,h)+p, VxeH. (3.52)

Also, Jy = (A®+1)7! is bounded on bounded subsets of H and ¢(Jy(x)) < ¢)(x) <
¢(x), forall A >0, for all x € H. Using again (3.42), we infer that

(D) < —o(h (&) < = (Y1), h) — p

(3.53)
< |h(y;%;(t)) ||kl +1p|l <¢, cconstant not depending of N, A, .
On the other hand, ¢x(y0) < ¢(y0).
If n = 2, using (1.5) and Young’s inequality,
t
[, Bod©.o Ao
t
< | A IO AR 1059 | ds (3.54)
& Jt y 4 C4£4[;4 Jt A 2 L J[ A 5
=5 . [lyn ()] ds + 1 ), | Ay (s)|"ds+ 28 ) | DA (yn(9)) | “ds

(1y#(s)|? being bounded by 2C, from (3.42)).
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If n = 3, using (1.7) and Young’s inequality,

[, k.0 086

< [[CAGIP Ak o1 @A) s 355

t
<o [laeiras s SB[ apho Past ok [ loates s

232

The constants C,¢,5 >0 do not depend on N, A. While C (occurring in (1.5), (1.7),
resp.) is fixed, € and f are at our choice and will be precised later.
Then (3.51) becomes

(1-va) JO | Dy (v (5)) |2d5

— Y0

<o(yo)+c+ryT(1+2Cy) +

o s+ 2% [ @A) s

4 4 4
SB[k ds+zﬁzj0|®a<yms>>|2ds

bkl n=2

2¢t

i [, n=3
(3.56)

In order to absorb f(f ICDA(y (s))|?ds in the left-hand side, we choose 1/282 = (1 — va)/4,
that is, 8% = 2/(1 — va).
Relation (3.56) is then rewritten as

t
jo (@) s

zc4 4
)j AV () [*ds+ Ca (1l f iz msms [ 0] 9(30)

(3.57)
C
%j Aol n=2,

o vt 12 (CT Y
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Case 1 (n = 2: global boundedness results). Now we substitute relation (3.57) into (3.48),

1 t
S IP+ | 1ayko | ds

2 C4 4 t
e [ Nano ase [ bl

voc)3
where C; = C, + 84(?7?1}“), Cs = Cy +aCs.
We would like that
k= % —% >0, thatis,0<e< [7}(14;5?)3]1/4
This yields

AN +k [ 14O ds < ¢ [ IIkoli*ds+cs
0 0

In particular,we have

AW <2(c [ Ibdolasscs).
By Gronwall’s lemma, we infer that
@l < 2C5e2Ct s v ©IPds
and recalling that fot IIyI%,(s) |12ds is bounded by C;/» from (3.42),

&7 <2C5e2 ) = G, ae.t € [0,T].

Substituting (3.63) into (3.60), we get

1 t
SAOIF +k | 1 ayko) | ds

< G (I fllzorms |yl 9(30)),  ae. t€[0,T).

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

Relation (3.64) implies that fot IAyI)\‘,(s)Ist < Cy/k and, together with (3.63), transforms

(3.57) into

t
L |0 (y%(9)) [2ds < Cs (I f 20,5005 |30l 9 (10)),  ace.t € [0,T7.

(3.65)
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Case 2 (n = 3: local boundedness results). Proceeding in the same way, we get

1 t
2RI+ | 14y

2aC*et (!
t
+Cy _[() H)/I/}I(S)||6d5+ Cs, whereCy=C,+ m, Cs = Gy +aCs.
Choosing again 0 < ¢ < [v(1 — va)3/4aC*]"/4, we obtain
1 t t
AN +k | 14y ds < ¢ | Iykllds+cs (3:67)
In particular, we have
t
yb oI < z<c4 J oI+ c5>. (3.68)

Using a comparison result, we infer that

@17 < w),

W' (t) = 2C,W3(t (3.69)
where{ ) W) that is W (¢) = 2G5

W(0) = 2Gs, J1-16C,C2

The solution W exists on a maximal interval [0,T*),T* = 1/16C4C2. Let T* = min
(T, T*}.

We get ||y (£)112 < 2Cs/(1 — 16C4C2t
tain

)1/2, t € [0, T*). Substituting into (3.67), we ob-

%I\yﬁ(t)llz+kj | Ayd(s) | *ds
0
(3.70)

t 3
SC5+C4J 8C5 )3/2dS, te [O,T*)

0 (1-16C4C32s
The term J;(8C2/(1 — 16C4C25)¥2)ds is of the order of [y (1/(T* — s)¥2)ds = 2/\'T* —t —
2/NT*, which explodes in £ = T*, and consequently is bounded on intervals of the type
[0,T* —6],6 € (0, T*).

Finally, for n = 3, we have

t
A+ Ay ds
0 (3.71)

< G (I f leorm ol 9(30),0), ae te[0,T* -]



16  Abstract and Applied Analysis

Using the local boundedness of Hyﬁ,(t) 1?2 and fot IAy{}](s) |2ds, estimate (3.57) becomes

t
JO|(D;t(y{},(s))|2ds§Cg(IIfIILz(O,T;H),||y0||2,q)(y0),6), ae.te[0,T*-8]. (3.72)

IfT" > T, estimates (3.71) and (3.72) take place a.e t € [0, T'].

Estimates (3.42) and (3.64), (3.65) in the case n = 2, respectively, (3.71), (3.72) in the
case n = 3, will allow us to pass to the limit for A — 0 (maintaining N fixed). The positive
bounded functions C;, C;, Cs are independent of A.

3.3. Passing to the limit for A — 0. We recall that Proposition 3.3 implies that
y € W (0, T; H) n L (0, T; D(A)) n C([0, T]; V). (3.73)
Let To = T for n =2 and Ty < T* for n = 3 (we may take T = T T > T). We have

(yx), isboundedin C([0,Ty]; V) N L?(0, To; D(A)), (3.74)

(Ayd) (@1 (yd)),  are bounded in L?(0, To; H). (3.75)

From (1.5), (1.7), (3.42), (3.64), and (3.71) we infer that

|Buyi ()| < Clyd )|yl Ays) | <clayho|? (n=2), (3.76)
respectively,
|Bayd ()| < Cliyd @I Ay ()| * < Clayy)[? (n=3). (3.77)

The constant C does not depend on N, A. Together with (3.75), we get
(Byyd), isbounded in L?(0,To; H). (3.78)

From (3.75), (3.78), and (3.34) we also have

A
<ddL;\]> is bounded in L% (0, To; H). (3.79)
by

From (3.74), (3.79), and [6, Theorem A2.2], we infer that

(yn), is relatively compact in C([0, Ty]; H). (3.80)
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These yield that, on a subsequence again denoted by (y4 )y, we have for A — 0,

y& — yn in C([0,To];H),

% — ddL:] in L2(0, To; H), 80
Ayt — Ayn  in L*(0,To;H),
Byyh — By in L*(0,To;H), (3.82)
@) (y4) — 1~ in L2(0, To; H).
Moreover, by Aubin’s compactness theorem,
vy — yn  in L2(0,To; V). (3.83)

But @) (yf) = O +A0) " (yf) and (I +A®) " (y{) — yn in L2(0, To; H). ® being maxi-
mal monotone, it follows that ny € ©(yy) a.e. t.

We prove now that Sy = By yn a.e. t.
Case 3 (n =2). Using (1.5), we obtain for any v € V that

| (Bnydi(s) = Buyn(s),w) |

< [b(yR () = yn (), yN () ) | + [y (), yi(s) = yn(s), ) |
CU|y4(s) = yn @) Iy ) =y & - A &1 [ Ayk )] 1y
+ v lnOI A ) = pn O - TAGY ) = yn() | 1w)).
(3.84)
Using (3.81) and (3.64), we get
| By y2(s) = By yn(s) |
(3.85)

| 1/2

< Cllyd ) — @2 (AR O |2 + Ak (s) = yn(9)) 7).

that implies

T
JO | Buyii(s) — Buyw(s) | ds

T 1/2 T 1/2
SC(L [IyA(s) —)/N(S)||2d5) . [L (JAYA () P+ A () = yn(s)) |2)d5]
(3.86)
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Recalling that (A(yy L(s)))y is bounded by (3.64), relation (3.83) yields
Byyx — Byyy inL*(0,T;H).
Case4 (n=3).
| (BuyAv(s) = Buyw(s),y) |
< [b(y(s) —yN(s),yfv(s),w) |+ 16N () ya () = yn(s) ) |

|1/2

Cllyd(s) = yn @I A () =y (s) Iy )y

1/2 | 1/2

@I TAGNE) [ lya ) =y GlllyD), vy eV,

hence, using also (3.71),

| By y(s) — Buyn(s) |

172

< Cllyk(s) = &2 A S) =y () [+ [y (s) = v (9)|

Then,

To
JO | By yii(s) — Buyn(s) |Zd$

T 1/2
<o [ 1A - o)
0

T 172
| [ 180860 4 b - el

I

Using (3.71) and (3.83), we get
Byyft — Byyn  inL2(0,Tg;H).

Letting A tend to zero in (3.34), we obtain that yy satisfies problem (3.2).

12
).

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

3.4. The uniqueness of the solution for problem (3.2). We will prove that the solution
obtained by passing to the limit with A — 0 is unique. In order to prove the uniqueness of
the solution, we assume that y\, y4 € C([0, Tol; H) N L*(0, To; D(A)) N L=(0,To; V) are

two solutions for (3.2). Then (y§ — y%)(0) = 0 and

%% |y (D) = Y20 +9]lyk (1) = y3 ()|

+ (Bnyn(8) = By yx (1), yn (8) = % (1))

+ (g () = 3 (B yh () = ¥3 (1) = 0, nk(6) € D(yL(D), j=1,2.

(3.92)
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We use the monotony of @ and the estimate

| (Byyn(t) = Buyn (8, yn(8) — yx (1) |
< |b(yn(8) = y& (0, yh (), Y5 (1) = y% (D)) | (by (1.7))

3.93
= Cllyh () = ORI [Ayn O] [y (0 = ¥4 (1) .
= 2y = RN +Clayk® | 1y - (0]
(the solution y) € L(0,Tp; V)) and we get
d 2 2
— lyn () —yn (D)
dt|)’N R ()] (3.94)

<2C| Ay, | Iy - 2O 1%, (k- y3) () =0.
Then |y} (£) — y¥ ()2 < 2C [y |Ayn ()| yk(s) — % (s)|2ds and by Gronwall’s inequality,
| y& (£) —yf\,(t)|2 <0-e2ChIAGI) — ot e [0,Ty] (3.95)

([0, To] is bounded and Ay} € L?(0, To; H) C L'(0, To; H)).
We infer that y}(t) = y%(t), t € [0, Ty].

3.5. Proof of Theorem 2.1(the final part). We know that problem (3.2)
(i) has a unique solution in C([0, To]; H) N L?(0, To; D(A)) N L®(0, Tp; V), obtained
by letting A — 0 in problem (3.34);
(ii) has a solution in C([0,T]; V) N L™ (0, T; D(A)) n WH*(0,T; H) (unique), given
by Proposition 3.2.
Thus the two solutions must coincide and the resulting function has the regularity prop-
erties given by Proposition 3.2. Moreover, the solution of problem (3.2) satisfies a.e. on
[0, Ty] the estimates

@+ eIl <, (396)
0
1 2 4 2
Sl @l +kJ |Ayn(s)|"ds < C7, (3.97)
0
JO | (s) | ds < Cs, (3.98)

where yn(t) = f(t) = ((dyn/dt)(t) + vAyn(t) + By yn(t)) € O(yn (1)),

To 2
Jo (‘%V(t)’ +|BNyN(f)|2>deC9(||f||L2<o,T;H>,IIyo||,<P(yo))- (3.99)

The positive bounded functions C;, C;, Cg, Cy do not depend on N.
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From (3.97), we infer that
v @I <2C;,  te[0,To]. (3.100)

It yields that for N large enough, [l yn(£)|l < N, t € [0,Ty], and by consequence By yn =
Byy in [0,Ty] and yn = y is a solution (defined on [0, Ty]) of the initial problem (2.1),
conserving on [0, Ty] all regularity properties of yy. The uniqueness comes from the
uniqueness of the solution of problem (3.2). O

Remark 3.4. If @ is single valued, it is no longer necessary to use approximate problem
(3.34) because hypothesis (1.12) implies that

(A, ®(w)) = —y(1+ul?) —a|®w)|*>, VueD(A)N D). (3.101)

4. Proof of Theorems 2.2 and 2.3

The idea of the proof is to approximate the initial data with sequences of functions satis-
fying the hypotheses of Theorem 2.1 and then to pass to the limit.

Let (y9)jen € D(A) N D(®) and (f;)jen € W"'(0, T; H) such that
yé —y inV, fj— f in L*(0,T;H). (4.1)

According to Theorem 2.1, problem

dy—jt(t) +9Ay;(H)+By;() + D (y;(1)  fi(1), ae.te(0,T),

d | (4.2)
7i(0) = y;

has a unique solution y; € Wh*(0, To;H) N L*(0, To; D(A)) N C([0, To]; V), where Ty =
Tifn=2and Ty < T in n = 3. Moreover, y; satisfy the estimates

1 t
i@ v] ylPds<c. teloT)
1 t
Syl +k[ LAy Pds<c, e o, (43)
t
flm(s)lzdssc, t € [0,To],
0

where 7;(t) = f;(t) — ((dy;/dt)(t) + vAy;(t) + By;(t)) € D(y;(t)),

JT0<'c;ytj(t)’2+ |Byj(t)|2)dtsc. (4.4)

0

The constants are independent of j.
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Consequently,

(yj); isbounded in C([0,To];V) N L*(0,To; D(A)),

(Ayj);»(Byj);»(n;); arebounded in L*(0,Tp;H), (4.5)

dv;
(%) is bounded in L% (0, To; H).
j

Equation (4.5) imply that
(yj)j is relatively compact in C([0,To]; H). (4.6)
Then, on a subsequence again denoted by (y;);, we have for j — oo,

yi—y inC([0,To];H),

@ Y in L2(0,To; H),
dt dt

Ay; — Ay inL*(0,To;H), (4.7)
Byj —p  inL*(0,To;H),
Mj—=1 in L*(0,To; H).
Moreover, by Aubin’s compactness theorem,
yi—y inL*(0,To; V). (4.8)

Using (4.7), (4.8), and @ being maximal monotone, we get 7 € ®(y) a.e. t. Proceeding in
the same way as we did in Theorem 2.1 to prove that Sy = By yn a.e. t, we deduce also
that 3 =By a.e.t.

Passing to the limit with j — co, we prove the existence of the strong solution.

In order to prove the uniqueness of the solution, we proceed as in the proof of Theorem
2.1 in Section 3.4. U

5. Weak solutions

Consider the operator @ : V — V' monotone and demicontinuous. From the definition
of demicontinuity, we infer that @ is also single valued and its domain is V. Moreover, ®
is maximal monotone in V X V.

Let D(®) = {v € V;O(v) € H}.

We will denote by the same symbol @ the operator @ : V — V' and its restriction from
D(®) to H. The operator ®: D(®) C V — H is maximal monotone in H X H.

Assume in addition that

(h}) 0 € D(®);
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(h) there exist two constants y = 0, & € (0,1/v) such that
(Au,®@3(u)) = —y(1+ul?) —a| Dy (w)|>, VA>0, Vu e D(A), (5.1)

where @, is the Yosida approximation of ® C H X H;
(h3) there exist p > 2, wy,w, >0, y > 0 constants such that

(O(w),u) = willull? —y, VueV, (5.2)

[[owW)]ly < w2 llull?™t, YueV. (5.3)

The following result on weak solutions takes place.

THEOREM 5.1. Let T >0 and let QO C R", n = 2,3 be an open and bounded domain, with
a smooth boundary. Let yo € H and f € L*(0,T;V"). Assume that ® : V — V' satisfies the
above hypotheses. Then problem

d)t/i(tt) +vAy(H)+By(t)+@(y(1)) = f(1), t€(0,T), (5.4)

(0) = yo

admits at least one weak solution y € LP(0,T; V) n C,, ([0, T]; H). Moreover, denoting by p’
the conjugate of p (i.e., p’ satisfies 1/p+1/p" = 1), one has

% e LP(0,T; V") forn=2,
p 5 (5.5)
d—)t) eL’(0,T;V') forn=3, wherer = min{?p,p'}.
The weak solution is unique if n = 2.
Proof. First we will fix N € N* and we will prove that problem
dyn(t
(D) +vAyN(t) +Byyn () + @ (yn (1) = f(t), ae t€(0,T),
dt (5.6)
yNn(0) = yo
has a unique solution
dyn LF(0,T; V') ifn=2,
e LP(0, T;V)NnC([0,T];H), = (5.7)
w ( b a vy s

Then we will pass to the limit with N — oco.
Let (yé)jeN C D(A) nD(®) and (fj)jen € W"(0,T;H) such that

Y%y inH,  fi—f inL0,T;V). (5.8)
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O satisfies the hypotheses of Proposition 3.2, and supposing N € N* fixed, we infer that

problem:

dyl ()
dt

has a unique solution y]];, € WbH=(0,T;H) nL®(0, T; D(A)) n C([0, T]; V).
Equation (5.9) implies that

[ 2 (31400 st | Ak @)ds+ || (Bt rkio)ds

[ @A) 6)ds = [ (9 )ds
But (BNy{;](s),yI];,(s)) = 0 and from the monotony of @,
(@A (), 74 () = (©(0), 4 (s)),

, t
which yields % |yi;(t)|2 +VJ ||J’1]v(5)||2d5
0

+VAYL (1) + By v () + Dy (D) = fi(t), ae.te (0,T),

(5.9)

(5.10)

<SR+ 3 [ d@IFds+ 3= | 201001 + 156} )ds

Finally, we infer that

AP+ [ IAeIFass c( [ 1561fas nl?)
N 0 N = 0 Ve >

where C is a positive bounded function independent of N, j.
On the other side, from (5.10) and (5.2), we get

A1 +v ] IAIPds+ar | AP ds—pt
0 0

1 . t . 1 t
<D0 3 | Ik @IPds 3 | IO ds

which implies that

(5.11)

(5.12)

(5.13)

X t . t . . 1 T
A+ [ I @IPds+ 20 [ A @I ds < 15817+ [ IO de+ 2ur

(5.14)
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In particular,

TN LT 2
2an [| Al as = c( [ 1501 ol?), 5.15)

where C is a positive bounded function independent of N, j.
For n =2, (1.6), (5.12) and (5.15) give

IByy )y < CLyk |y )]

, T . (5.16)
< Cl|y4(s)||, which yield J By yk(s)| |5 ds < C, if n = 2.
0
If n = 3, from (1.8), (5.12), and (5.15) we get
BuA Oy < CIAE @I
. T )
< CllyL )", which yield J ||BNyIJ\,(s)||%,If/3ds <G, ifn=3,
0
(5.17)
From (5.3) and (5.15), we obtain
T . , T .
J, 0GR ds =@ | Ipkoldr=c, 618

where p” < 2 is the conjugate of p > 2.
From (5.16)-(5.18) and from the continuity of the operator A: V — V', we infer that

j

T P

J dﬂ ds<C forn=2, (5.19)
o Il dt lly
T Jor

J dﬂ ds<C forn=3, (5.20)
0 dat |y

where r = min{2p/3,p’}. '
On a subsequence again denoted by (y4);, we have for j — oo,

yl,—=IN  inLP(0,T;V),
Ayl — Ay inLP(0,T5V),

l P v . _
dyl __d o |POTVY ifn=2,
dt dt L?’(O’T) Vr) lfn _ 3’
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LP(0,T;V))  ifn=2,

Byyl, — By in
N YN 1L2P/3(0,T;V’) ifn=3,
d)(yl{,) — 1N inLP(0,T; V).

(5.21)

In order to prove that By = By yn and yny = @ yy, we use that for py large enough, By
verifies

| (Bvu—Byv,u—v)| < %Hu— viP+unlu—v?, VYuvev, (5.22)

(see [4, relation (5.4), page 292]) and we observe that
Td iy _ ok 2 Vi ak 2
2ds|)’N(5) ya(s)| +2||)’N(5) yn(s)l (523
= v [ = 3RO+ 15 (6) = L)l 1) = 3k Gl

Integrating from 0 to ¢ and applying the Gronwall lemma, it follows that

. t . . T
|y§q<t>—y§<t>|2+§ﬁ)||yfq<s>—y§<s>||2dsscN(lyé—y§|2+jo IIJG(S)—fk(S)IlzvrdS)-
(5.24)

Consequently,

v — yn inL2(0,T;V) N C([0,T];H). (5.25)

But ||By y(s) — Buyn(9) v < Cliyk(s) = yn (9 1y ()1l + Ly (s)1) and (5.25) implies
that

BN)’{V — Byyn  inL'(0,T; V). (5.26)

On the other side, from (5), (5.25), and the properties of ®, we get #n()=D(yn (1)),
te(0,T).
Thus problem (5.6) has a unique solution

g eLPO,T;V)NC([0,TLH), 2Ne

d LF(0,T;V') ifn=2,
dt

L'(0,T;V')  ifn=3,
(5.27)
LP(0,T;V')  ifn=2,

®(yy) € LF' (0, T; V'), Byyn €
LP3(0,T; V') ifn=3.
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Moreover, yy satisfies the estimates (5.12), (5.15)—(5.20). Then, on a subsequence again
denoted by (yn)n, we have for N — oo,

JN —Y inLP(0,T;V), YN — ) weakly % in L*(0,T;H),

(5.28)
Ayn — Ay inLP(0,T5 V'),
LF(0,T; V') ifn=2,
dyy __dy
dt dr L0, T;V') ifn=3,
) L0, T; V') ifn=2, (5.29)
Byyyn — B in
L2P3(0,T; V') ifn=3,
Oyny — 1 inLP(0,T; V).
From (5.28), (5.29), and Aubin’s compactness theorem, it follows that
yN — y inLP(0,T;H). (5.30)

From the properties of ®, we have n = ®y. It remains to prove that 3(¢) = By(t) a.e. t €
0,7).

Let Ex={t€[0,T]; llyn(t)ll <N}. Then Byy = By yn in Ey. We note that the Lebesgue
measure

m([0,T] - Ex) = m({t € [0,T) (0] >N}) = 5. (5.31)

Let v € L*(0,T;V"), where V' = {p € C5’(Q); divp = 0}. We have

T
[ 1By~ By

<, 1@n-Bywldec ]l 1y 1)
’ (5.32)

Hence

T
| 1By =By
(5.33)

T
< JO (16(yn =y yn:9) | + [6(p, 8 = p,9) At + CN 2yl 0,1;v).

Recalling (5.28), (5.30), which imply that yy — y in L?(0, T;H) and yy — yin L%(0,T; V),
we get
T
lim | (Buyx—Byy)dt=0, Vy €L (0,T). (5.34)
- J0

Then # = By, which concludes the existence part of the theorem.
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If n = 2, the solution is unique. Indeed, taking two solutions y;, y,, we obtain

2L 1@ - n @ +9lln @ - O
R AORSHOBAOSAORSHO) (5:35)
+ (Dy1(t) — Dya(t), y1(2) — y2(t)) = 0.

From the monotony of ® and the properties of b, we infer that

2 1@ =0+l -
= Cllyi @ = 2@l D] - 131 (5) = y2(0)] (5.36)
= @ = @I+ Clin @I 6 - 0 |,

and by Gronwall’s lemma, y; = y,. O

6. Examples

Example 6.1 (a time optimal problem in 2D). Consider the controlled Navier-Stokes
equations (n = 2)

dy _
It (t)+vAy(t)+B(y(t)) = u(t), t>0, 6.0)

»(0) = yo.

Given p >0, yo € V, y1 € D(A), one searches a u € L(R;H), |u(t)| <pae.t>0,
which steers y, to y; in minimum time.

In order to prove the existence of admissible controllers, in [7] u(t) € —psgn(y(t) —
¥1), t >0 is chosen. By sgn we mean the multivalued operator:

X .

— if |x| >0,
sgn:H — H, sgnx=1 %l (6.2)

{peH;Ipl<1} ifx=0,

where | - | denotes the norm of H.
So, we need to show that the problem

dy
E(t) +vAy(t)+By(t) +psgn (y(t) — y1) 20, ae. >0, 6.3)

y(0) = yo

has a unique strong solution on (0, T, for all T > 0.
The operator psgn(- — y;) is the subdifferential of p| - —y1 |, hence maximal monotone
in H X H. A standard calculation gives

(Ay,(psgn(-—y1)),(»)) =0, VyeD(A), VA>0. (6.4)
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Thus we may apply the existence and uniqueness theorems for strong solutions in Section
2.
Then (see [7]), problem

dz
E+vAz+B(z+)/1)—B)’l+PSgnZB—(VA)’HrB)’l)) (6.5)

z(0) = yo — y1,

where z(t) = y(t) — y1, has finite time extinction property, that is, z(T) = 0 for p large
enough.

Example 6.2 (invariance preserving (see [4])). Consider the controlled Navier-Stokes
equation

%(t)+vAy(t)+By(t) = f(t)+u(t), te(0,T),

(6.6)
y(0) = yo.
Let K C H be a closed and convex set such that 0 € K and
(I+MA)'KcK, VA>o0. (6.7)
We search a feedback controller u(t) such that
yo € K implies y(t) € K, t € [0,T]. (6.8)
This is done by solving the problem
d—y(t) +vAy(t)+By(t) — f(£) + Nk (y(t)) 20, t<(0,T)
dt (6.9)

}/(0) = )’0:

where Nk (y) = {z € H; (z,y —x) = 0, for all x € K} is the Clarke normal cone to K at y.
The operator ®(y) = Nk(y) coincides with the subdifferential (dIx)(y) of the indica-
tor function

0 forx € K,
Ix(x) = (6.10)
+oo forx €K,

(consequently, @ is maximal monotone). Also, 0 € D(®) = K.

The resolvent (I +AdIx) ' = Pk, where Pk : (L*(Q))" — K is the projection operator
on K. It follows that the Yosida approximation of dlk is

(3Ik),(y) = %(yf ([+A31) () = %(nyK(y)), VyeH. (6.11)

In the mean time, (dIx); is the subdifferential of (Ix)x(y) = (1/(24))|y — Pk (y)|>.
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Using (6.7) and applying [8, Proposition 4.5, page 131] (or [9, Theorem 1.7, page

183]) for the single-valued maximal monotone operator A C H X H, with D(A) = H, we
get

(Ay,(dIx)A(»)) =0, Vy e D(A),VA>0. (6.12)

Then hypotheses (h;)—(h3), Section 1 on @, are verified by dIx = Nx and we may apply
the results in Section 2.

Example 6.3 (stabilizing feedback controllers). Consider the controlled system

dy _
G (D+vAy(D+By(t) = fotu(t), t>0, (6.13)

»(0) = yo.
Let y. € D(A) be a steady-state solution for (6.13), that is, y. verifies
YAy, + By, = fe. (6.14)

Given K C H a closed and convex set, with 0 € K, we look for a feedback controller u
such that y(¢) — y. € K, forall = 0 and lim;_. | y(¢) — ye| = 0.

We set z = y — y, and take u(t) € —Az(t) — (0Ix)(z(¢)), with A > 0 large enough. Then
(6.13) becomes

%(t) +vAz(t) + Bz(t) + Aoz(t) + (Ix) (z(t)) + Az(t) 20, t>0,

(6.15)
2(0) = Yo = Yes
where
Ay e L(V,V"), (Awz,w) =b(2,ye,w) +b(ye,z,w), Vz,we V. (6.16)
Assume that
(I+€A)'KcK, Ve>O0. (6.17)

Let ®(w) = Aw + (9Ix ) (w) = 9((A/2)| - |> +Ix)(w), for all w € H. Then ® is a maximal
monotone operator in H X H. From 0 € K = D(dIx), we get 0 € D(®) = K. Moreover,
relation (6.17) yields

(De(w),Aw) =0, VweD(A), Ve>0 (6.18)

(see [8, Theorem 4.4, (i)« (iv) page 130]). As a result, ® satisfies hypotheses (h;)—(hs),
Section 1.

In the proofs of Theorems 2.1, 2.2, 2.3, the operator B will be replaced by B + Ay.
This fact does not change the estimates in Section 3. Of course, the positive constants
in the right-hand side of the estimates will depend on || y.|l, |Ay.|. Although, unlike B,
(Aow,w) = b(w, ye,w) # 0 in V, the resulting terms are absorbed by other terms.



30

Abstract and Applied Analysis

By consequence, we have existence and uniqueness results for the solution z of sys-
tem (6.15), with the invariance property z(t) € K, t > 0. Stability will be considered in a
further paper.
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