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Let Dn be the unit polydisc of Cn, ϕ(z)= (ϕ1(z), . . . ,ϕn(z)) be a holomorphic self-map of
Dn, and ψ(z) a holomorphic function on Dn. Let H(Dn) denote the space of all holo-
morphic functions with domain Dn, H∞(Dn) the space of all bounded holomorphic
functions on Dn, and B(Dn) the Bloch space, that is, B(Dn) = { f ∈ H(Dn)|‖ f ‖B =
| f (0)|+ sup z∈Dn

n∑

k=1
|(∂ f /∂zk)(z)|(1−|zk|2) < +∞}. We give necessary and sufficient con-

ditions for the weighted composition operator ψCϕ induced by ϕ(z) and ψ(z) to be
bounded and compact from H∞(Dn) to the Bloch space B(Dn).

Copyright © 2007 S. Li and S. Stević. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let Dn be the unit polydisc of Cn. The class of all holomorphic functions with domain
Dn will be denoted by H(Dn). Let ϕ be a holomorphic self-map of Dn, the composition
operator Cϕ induced by ϕ is defined by (Cϕ f )(z) = f (ϕ(z)) for z ∈Dn and f ∈H(Dn).
If, in addition, ψ is a holomorphic function defined on Dn, the weighted composition
operator ψCϕ induced by ψ and ϕ is defined by ψCϕ(z) = ψ(z) f (ϕ(z)) for z in Dn and
f ∈H(Dn).

A function f holomorphic in Dn is said to belong to the Bloch space �(Dn) if

‖ f ‖� =
∣
∣ f (0)

∣
∣+ sup

z∈Dn

n∑

k=1

∣
∣
∣
∣
∂ f

∂zk
(z)
∣
∣
∣
∣
(
1−∣∣zk

∣
∣2)

< +∞. (1.1)

It is easy to show that �(Dn) is a Banach space with the norm ‖ · ‖� (see, e.g., [1]).
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As usual,H∞(Dn) denotes the space of all bounded holomorphic functions onDn with
the norm ‖ f ‖∞ = supz∈Dn | f (z)|, that is,

H∞(Dn
)=

{

f ∈H(Dn
) | ‖ f ‖∞ = sup

z∈Dn

∣
∣ f (z)

∣
∣ <∞

}

. (1.2)

Weighted composition operators between H∞(D) and the Bloch space �(D) were in-
vestigated in [2] which was the starting point for our investigations for the case of n-
dimensional settings. The corresponding results for the unit ball were obtained in [3].
Composition operators between Bloch type spaces on the unit ball are investigated by Shi
and Luo in [4]. In [5] the second author investigated the composition operators from
H∞(Dn) to the Bloch space �(Dn). Composition operators between Bloch spaces on the
unit polydisc are investigated in [6, 7] where some sufficient and necessary conditions are
given so that Cϕ be compact on the Bloch space. The following statement was formulated
in [7]: let ϕ= (ϕ1, . . . ,ϕn) be a holomorphic self-map ofDn, thenCϕ is compact on �(Dn)
if and only if for every ε > 0, there is a δ ∈ (0,1) such that

n∑

k,l=1

∣
∣
∣
∣
∂ϕl
∂zk

(z)
∣
∣
∣
∣

1−∣∣zk
∣
∣2

1−∣∣ϕl(z)
∣
∣2 < ε, (1.3)

whenever dist(ϕ(z),∂Dn) < δ. However, the proof of necessity contains a gap. More specif-
ically, if (z j) j∈N is a sequence in Dn such that ϕ(z j) → ∂Dn as j →∞, and if inequal-
ity (3.13) in [7, page 289] holds, then one cannot omit consideration of the case when
|ϕ1(z j)| �→ 1 as j →∞.

The method in [5] can be used to correct the proof of the results. For some basics
on composition operators, see, for example, [9]. Closely related results devoted to some
operators on the polydisc can be found, for example, in [8, 10–12].

In this paper, we study the weighted composition operator from H∞(Dn) to the Bloch
space on the polydisc. The main results in the paper extend in [2, Theorems 2 and 3]
(where one-dimensional case was considered) and those ones in [5]. The proofs are mod-
ifications of the corresponding ones in [2, 5].

Theorem 1.1. Let ϕ = (ϕ1, . . . ,ϕn) be a holomorphic self-map of Dn and ψ(z) a holomor-
phic function on Dn. Then ψCϕ : H∞(Dn)→�(Dn) is bounded if and only if the following
conditions are satisfied:

(i) ψ ∈�(Dn);
(ii)

sup
z∈Dn

∣
∣ψ(z)

∣
∣

n∑

k,l=1

∣
∣
∣
∣
∂ϕl
∂zk

(z)
∣
∣
∣
∣

1−∣∣zk
∣
∣2

1−∣∣ϕl(z)
∣
∣2 <∞. (1.4)

Theorem 1.2. Let ϕ = (ϕ1, . . . ,ϕn) be a holomorphic self-map of Dn and ψ(z) a holomor-
phic function of Dn. Then ψCϕ : H∞(Dn)→�(Dn) is compact if and only if the following
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conditions are satisfied:
(i) ψCϕ :H∞(Dn)→�(Dn) is bounded;

(ii)

n∑

k=1

(
1−∣∣zk

∣
∣2)
∣
∣
∣
∣
∂ψ

∂zk
(z)
∣
∣
∣
∣= o(1)

(
as ϕ(z)−→ ∂Dn

)
; (1.5)

(iii)

∣
∣ψ(z)

∣
∣

n∑

k,l=1

∣
∣
∣
∣
∂ϕl
∂zk

(z)
∣
∣
∣
∣

1−∣∣zk
∣
∣2

1−∣∣ϕl(z)
∣
∣2 = o(1)

(
as ϕ(z)−→ ∂Dn

)
. (1.6)

Throughout the remainder of this paper C will denote a positive constant, the exact
value of which may vary from one appearance to the next.

2. Auxiliary results

In this section we prove some auxiliary results which we use in the proof of the main
results. The first two lemmas could be folklore. For a proof of the first lemma see, for
example, [5].

Lemma 2.1. Let f ∈�(Dn). Then

∣
∣ f (z)

∣
∣≤ ∣∣ f (0)

∣
∣+‖ f ‖�

n∑

j=1

ln
1

1−∣∣zj
∣
∣ . (2.1)

A proof of the following lemma can be also found in [5]. We present here another
proof for the benefit of the reader.

Lemma 2.2. If f ∈H∞(Dn), then

∣
∣
∣
∣
∂ f

∂zk
(z)
∣
∣
∣
∣=O

(
1

1−∣∣zk
∣
∣2

)

, (2.2)

that is, the inclusion H∞(Dn)⊂�(Dn) holds. Moreover, there is a positive constant C inde-
pendent of f such that

‖ f ‖� ≤ C‖ f ‖∞. (2.3)

Proof. For k ∈ {1, . . . ,n}, let u = (z1, . . . ,zk−1,uk,zk+1, . . . ,zn). Assume that f ∈ H∞(Dn),
then by a well-known result, we have

f (z)=
∫

|uk|<1

f (u)
(
1− zkuk

)2 dm
(
uk
)
, (2.4)

where dm(·) is the normalized Lebesgue area measure on the unit disk.



4 Abstract and Applied Analysis

Hence,

∂ f

∂zk
(z)=

∫

|uk|<1

2uk f (u)
(
1− zkuk

)3 dm
(
uk
)
. (2.5)

By [13, Theorem 1.4.10], we have

∣
∣
∣
∣
∂ f

∂zk
(z)
∣
∣
∣
∣≤ 2

∫

|uk|<1

∣
∣ f (u)

∣
∣

∣
∣1− zkuk

∣
∣3 dm

(
uk
)≤ C‖ f ‖∞

1−∣∣zk
∣
∣2 , (2.6)

which implies that

sup
z∈Dn

(
1−∣∣zk

∣
∣2)
∣
∣
∣
∣
∂ f

∂zk
(z)
∣
∣
∣
∣≤ C‖ f ‖∞. (2.7)

Therefore, we have

‖ f ‖� ≤
∣
∣ f (0)

∣
∣+Cn‖ f ‖∞ ≤

(
1 +Cn

)‖ f ‖∞ (2.8)

as desired. �

Lemma 2.3. Suppose that ψCϕ : H∞(Dn)→�(Dn) is bounded. Then the operator ψCϕ :
H∞(Dn)→�(Dn) is compact if and only if for any bounded sequence ( fk)k∈N in H∞(Dn)
converging to zero uniformly on compact subsets of Dn, one has limk→∞‖ψCϕ fk‖� = 0.

Proof. Assume that ψCϕ is compact and assume that ( fk)k∈N is a sequence in H∞(Dn)
with supk∈N‖ fk‖∞ <∞ and fk → 0 uniformly on compact subsets of Dn, as k →∞. By
the compactness of ψCϕ we have that the sequence (ψCϕ( fk))k∈N has a subsequence
(ψCϕ( fkm))m∈N which converges in �(Dn), say, to f . By Lemma 2.1 and | f (0)| ≤ ‖ f ‖�

we have that for any compact K ⊂Dn there is a positive constant CK independent of f
such that

∣
∣ψCϕ

(
fkm
)
(z)− f (z)

∣
∣≤ CK

∥
∥ψCϕ

(
fkm
)− f

∥
∥

�, (2.9)

for all z ∈ K . This implies that ψCϕ( fkm)(z)− f (z)→ 0 uniformly on compact subsets of
Dn, as m→∞. Since fkm → 0 on compacts, by the definition of the operator ψCϕ it is easy
to see that for each z ∈Dn, limm→∞ψCϕ( fkm)(z)= 0. Hence the limit function f is equal
to 0. Since this is true for arbitrary subsequence of ( fk)k∈N, we obtain that ψCϕ( fk)→ 0
in �(Dn), as k→∞.

Conversely, let (hk)k∈N be any sequence in the ball �M = BH∞(0,M) of the space
H∞(Dn). Since supk∈N‖hk‖∞ ≤M <∞, the sequence (hk)k∈N is uniformly bounded on
compact subsets of Dn and hence normal by Montel’s theorem. Hence we may extract
a subsequence (hkj ) j∈N which converges uniformly on compact subsets of Dn to some
h ∈ H(Dn), moreover h ∈ H∞(Dn) and ‖h‖∞ ≤M, hence the sequence (hkj − h) j∈N is
such that ‖hkj − h‖∞ ≤ 2M <∞, and converges to 0 on compact subsets of Dn. By the
hypothesis we have that

ψhkj ◦ϕ−→ ψh◦ϕ (2.10)

in �(Dn). Thus the set ψCϕ(�M) is relatively compact, as desired. �
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3. Proof of the main results

Let w = ϕ(z) in this section. Now we prove the main results of this paper.

Proof of Theorem 1.1. Suppose that (i) and (ii) hold. For a function f ∈H∞(Dn), we have

n∑

k=1

∣
∣
∣
∣
∂
(
ψCϕ f

)

∂zk

∣
∣
∣
∣
(
1−∣∣zk

∣
∣2)

≤
n∑

k=1

(
1−∣∣zk

∣
∣2)
∣
∣
∣
∣
∂ψ

∂zk
(z)
∣
∣
∣
∣
∣
∣ f
(
ϕ(z)

)∣
∣

+
n∑

k=1

n∑

l=1

∣
∣ψ(z)

∣
∣
∣
∣
∣
∣
∂ f

∂wl

(
ϕ(z)

)
∣
∣
∣
∣

∣
∣
∣
∣
∂ϕl
∂zk

(z)
∣
∣
∣
∣
(
1−∣∣zk

∣
∣2)

≤ ‖ψ‖�‖ f ‖∞ +
n∑

k=1

n∑

l=1

∣
∣ψ(z)

∣
∣
∣
∣
∣
∣
∂ f

∂wl

(
ϕ(z)

)
∣
∣
∣
∣

∣
∣
∣
∣
∂ϕl
∂zk

(z)
∣
∣
∣
∣

1−∣∣zk
∣
∣2

1−∣∣ϕl(z)
∣
∣2

(
1−∣∣ϕl(z)

∣
∣2)

≤ ‖ψ‖�‖ f ‖∞ +‖ f ‖�

n∑

k=1

n∑

l=1

∣
∣ψ(z)

∣
∣
∣
∣
∣
∣
∂ϕl
∂zk

(z)
∣
∣
∣
∣

1−∣∣zk
∣
∣2

1−∣∣ϕl(z)
∣
∣2 .

(3.1)

Since by Lemma 2.2 ‖ f ‖� ≤ C‖ f ‖∞ for every f ∈ H∞(Dn) and by conditions (i) and
(ii), it follows that the last quantity above is bounded by some constant multiplied by
‖ f ‖∞. Hence, the operator ψCϕ :H∞(Dn)→�(Dn) is bounded.

Conversely, suppose that ψCϕ : H∞(Dn)→�(Dn) is bounded, that is, there is a con-
stant C (e.g., C = ‖ψCϕ‖H∞→�) such that

∥
∥ψCϕ f

∥
∥

� ≤ C‖ f ‖∞ (3.2)

for all f ∈ H∞(Dn). Taking f (z) ≡ 1 and f (z) = zl, l ∈ {1, . . . ,n}, it follows that ψ ∈
�(Dn) and

sup
z∈Dn

n∑

k=1

∣
∣ψ(z)

∣
∣
(
1−∣∣zk

∣
∣2)
∣
∣
∣
∣
∂ϕl
∂zk

(z)
∣
∣
∣
∣ <∞, (3.3)

for every l ∈ {1, . . . ,n}.
For fixed l (1 ≤ l ≤ n) and λ ∈Dn, if ϕl(λ) �= 0, we define the following family of test

functions

f (z)= 1−∣∣ϕl(λ)
∣
∣2

1−ϕl(λ)zl
. (3.4)

It is easy to see that f ∈H∞(Dn) and ‖ f ‖∞ ≤ 2. Therefore we have

2
∥
∥ψCϕ

∥
∥
H∞→� ≥

∥
∥ψCϕ f

∥
∥

� ≥
n∑

k=1

∣
∣ψ(λ)

∣
∣

1−∣∣ϕl(λ)
∣
∣2

∣
∣
∣
∣
∂ϕl
∂λk

(λ)
∣
∣
∣
∣
∣
∣ϕl(λ)

∣
∣
(
1−∣∣λk

∣
∣2)

−
n∑

k=1

∣
∣
∣
∣
∂ψ

∂λk
(λ)
∣
∣
∣
∣
(
1−∣∣λk

∣
∣2)

.

(3.5)
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From this and since ψ ∈�(Dn), we obtain

sup
λ∈Dn

n∑

k=1

∣
∣ψ(λ)

∣
∣

1−∣∣ϕl(λ)
∣
∣2

∣
∣
∣
∣
∂ϕl
∂λk

(λ)
∣
∣
∣
∣
∣
∣ϕl(λ)

∣
∣
(
1−∣∣λk

∣
∣2)

<∞. (3.6)

Thus, for a fixed δ ∈ (0,1), by (3.6) we have that for each l ∈ {1, . . . ,n}

sup
λ∈Dn

{ n∑

k=1

∣
∣ψ(λ)

∣
∣

1−∣∣ϕl(λ)
∣
∣2

∣
∣
∣
∣
∂ϕl
∂λk

(λ)
∣
∣
∣
∣
(
1−∣∣λk

∣
∣2)

:
∣
∣ϕl(λ)

∣
∣ > δ

}

<∞. (3.7)

For λ∈Dn such that |ϕl(λ)| ≤ δ, we have

n∑

k=1

∣
∣ψ(λ)

∣
∣

1−∣∣ϕl(λ)
∣
∣2

∣
∣
∣
∣
∂ϕl
∂λk

(λ)
∣
∣
∣
∣
(
1−∣∣λk

∣
∣2)≤ 1

1− δ2

n∑

k=1

∣
∣ψ(λ)

∣
∣
∣
∣
∣
∣
∂ϕl
∂λk

(λ)
∣
∣
∣
∣
(
1−∣∣λk

∣
∣2)

.

(3.8)

Hence, by (3.3) we have

sup
λ∈Dn

{ n∑

k=1

∣
∣ψ(λ)

∣
∣

1−∣∣ϕl(λ)
∣
∣2

∣
∣
∣
∣
∣

∂ϕl
∂λk

(λ)

∣
∣
∣
∣
∣

(
1−∣∣λk

∣
∣2)

:
∣
∣ϕl(λ)

∣
∣≤ δ

}

<∞. (3.9)

Consequently, by (3.7) and (3.9), for each l ∈ {1, . . . ,n}

sup
λ∈Dn,ϕl(λ) �=0

n∑

k=1

∣
∣ψ(λ)

∣
∣ 1−∣∣λk

∣
∣2

1−∣∣ϕl(λ)
∣
∣2

∣
∣
∣
∣
∂ϕl
∂λk

(λ)
∣
∣
∣
∣ <∞. (3.10)

If ϕl(λ)= 0 for some l ∈ {1, . . . ,n}, set f (z)= zl. From (3.2) it follows that

∣
∣ψ(λ)

∣
∣
∣
∣
∣
∣
∂ϕl
∂zk

(λ)
∣
∣
∣
∣

1−∣∣λk
∣
∣2

1−∣∣ϕl(λ)
∣
∣2 =

∣
∣
∣
∣
∂ψ

∂zk
(λ)ϕl(λ) +ψ(λ)

∂ϕl
∂zk

(λ)
∣
∣
∣
∣
(
1−∣∣λk

∣
∣2)≤ C. (3.11)

Hence for any z ∈Dn, we have

sup
z∈Dn

∣
∣ψ(z)

∣
∣

n∑

k,l=1

∣
∣
∣
∣
∂ϕl
∂zk

(z)
∣
∣
∣
∣

1−∣∣zk
∣
∣2

1−∣∣ϕl(z)
∣
∣2 ≤ C, (3.12)

which completes the proof of the theorem. �

Proof of Theorem 1.2. Assume that ψCϕ : H∞(Dn)→�(Dn) is bounded, and that (1.5)
and (1.6) hold. Further, assume that a sequence ( f j) j∈N is such that sup j∈N‖ f j‖∞ ≤ C and
f j converges to zero uniformly on compact subsets ofDn. We need to prove ‖ψCϕ f j‖� →
0 as j →∞.



S. Li and S. Stević 7

Since ψCϕ :H∞(Dn)→�(Dn) is bounded, by Theorem 1.1 we have

sup
z∈Dn

n∑

k=1

(
1−∣∣zk

∣
∣2)
∣
∣
∣
∣
∂ψ

∂zk
(z)
∣
∣
∣
∣≤ C, (3.13)

sup
z∈Dn

∣
∣ψ(z)

∣
∣

n∑

k,l=1

∣
∣
∣
∣
∂ϕl
∂zk

(z)
∣
∣
∣
∣

1−∣∣zk
∣
∣2

1−∣∣ϕl(z)
∣
∣2 ≤ C. (3.14)

Conditions (ii) and (iii) imply that for every ε > 0 there exists an r ∈ (0,1) such that

n∑

k=1

(
1−∣∣zk

∣
∣2)
∣
∣
∣
∣
∂ψ

∂zk
(z)
∣
∣
∣
∣ < ε,

∣
∣ψ(z)

∣
∣

n∑

k,l=1

∣
∣
∣
∣
∂ϕl
∂zk

(z)
∣
∣
∣
∣

1−∣∣zk
∣
∣2

1−∣∣ϕl(z)
∣
∣2 < ε

(3.15)

whenever dist(ϕ(z),∂Dn) < r. Hence we have

n∑

k=1

∣
∣
∣
∣
∂
(
ψCϕ f j

)

∂zk

∣
∣
∣
∣
(
1−∣∣zk

∣
∣2)

≤
n∑

k=1

(
1−∣∣zk

∣
∣2)
∣
∣
∣
∣
∂ψ

∂zk
(z)
∣
∣
∣
∣
∣
∣ f j
(
ϕ(z)

)∣
∣

+
n∑

k,l=1

∣
∣ψ(z)

∣
∣
∣
∣
∣
∣
∂ f j
∂wl

(
ϕ(z)

)
∣
∣
∣
∣

∣
∣
∣
∣
∂ϕl
∂zk

(z)
∣
∣
∣
∣
(
1−∣∣zk

∣
∣2)

≤ ∥∥ f j
∥
∥∞

n∑

k=1

(
1−∣∣zk

∣
∣2)
∣
∣
∣
∣
∂ψ

∂zk
(z)
∣
∣
∣
∣+
∥
∥ f j
∥
∥

�

n∑

k,l=1

∣
∣ψ(z)

∣
∣
∣
∣
∣
∣
∂ϕl
∂zk

(z)
∣
∣
∣
∣

(
1−∣∣zk

∣
∣2)

(
1−∣∣ϕl(z)

∣
∣2) ≤Cε,

(3.16)

whenever dist(ϕ(z),∂Dn) < r, where the last inequality comes from (3.15) .
On the other hand, let E = {w ∈Dn : dist(w,∂Dn)≥ r}. Then, E is a compact subset of

Dn. Hence, f j(w)→ 0 uniformly on E as j →∞, and from this and by the Cauchy estimate
we have that (∂ f j/∂zk)(w)→ 0 uniformly on E as j →∞. Hence

n∑

k=1

∣
∣
∣
∣
∂
(
ψCϕ f j

)

∂zk
(z)
∣
∣
∣
∣
(
1−∣∣zk

∣
∣2)

≤
n∑

k,l=1

∣
∣ψ(z)

∣
∣
∣
∣
∣
∣
∂ f j
∂wl

(
ϕ(z)

)
∣
∣
∣
∣

∣
∣
∣
∣
∂ϕl
∂zk

(z)
∣
∣
∣
∣
(
1−∣∣zk

∣
∣2)

+
n∑

k=1

(
1−∣∣zk

∣
∣2)
∣
∣
∣
∣
∂ψ

∂zk
(z)
∣
∣
∣
∣
∣
∣ f j
(
ϕ(z)

)∣
∣

≤ C
(

sup
w∈E

∣
∣ f j(w)

∣
∣+

n∑

l=1

sup
w∈E

∣
∣
∣
∣
∂ f j
∂wl

(w)
∣
∣
∣
∣

)

≤ Cε,

(3.17)
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where we have used inequalities (3.13) and (3.14). Since lim j→∞ψ(0) f j(ϕ(0))= 0, by us-
ing (3.16) and (3.17) and the fact that ε is an arbitrary positive number, we obtain that
lim j→∞‖ψCϕ f j‖� = 0. Hence, by Lemma 2.3 the implication follows.

Suppose that ψCϕ : H∞(Dn)→�(Dn) is compact. Then ψCϕ : H∞(Dn)→�(Dn) is
bounded. We need to prove (1.5) and (1.6).

First we prove (1.5). Assume that (1.5) fails, then there is a sequence (z j) j∈N in Dn

such that wj = ϕ(z j)→ ∂Dn, as j →∞, and ε0 > 0, such that

n∑

k=1

(
1−∣∣z jk

∣
∣2)
∣
∣
∣
∣
∂ψ

∂zk

(
z j
)
∣
∣
∣
∣≥ ε0 (3.18)

for all j ∈N. Since ψCϕ is bounded, by Theorem 1.1, we know that ψ ∈�(Dn). Hence
there is a subsequence of (z j) j∈N (we keep the same notation (z j) j∈N) such that for any
k ∈ {1, . . . ,n},

(
1−∣∣z jk

∣
∣2)
∣
∣
∣
∣
∂ψ

∂zk

(
z j
)
∣
∣
∣
∣ (3.19)

converges to a finite number as j →∞. We may assume that for every l ∈ {1, . . . ,n} there

is finite limit lim j→∞ |wj
l |, where w

j
l denote ϕl(z j), and we may assume that

lim
j→∞

(
1−∣∣z jk0

∣
∣2)
∣
∣
∣
∣
∂ψ

∂zk0

(
z j
)
∣
∣
∣
∣= ε1 > 0 (3.20)

for some k0 ∈ {1, . . . ,n}.
We construct a sequence of functions (gj) j∈N satisfying the following conditions:

(a) (gj) j∈N is a bounded sequence in H∞(Dn);
(b) (gj) j∈N tends to zero uniformly on compact subset of Dn;
(c) ‖ψCϕgj‖� � 0, as j →∞,

and by Lemma 2.3 we will arrive at a contradiction.

Since wj → ∂Dn it follows that there is s∈ {1, . . . ,n} such that |wj
s | → 1 as j →∞. We

use the following test functions:

gwj
s
(z)= 2

1−∣∣wj
s
∣
∣2

1−wj
s zs

−
(
1−∣∣wj

s
∣
∣2)2

(
1−wj

s zs
)2

. (3.21)

It is easy to see that (gwj
s
) j∈N is a bounded sequence in H∞(Dn) and gwj

s
(z)→ 0 uniformly

on compacts of Dn. By Lemma 2.3, it follows that ‖ψCϕgwj
s
‖� → 0 as j →∞.

On the other hand, we see that gwj
s
(ϕ(z j))= 1 and

∂gwj
s

∂zs

(
ϕ
(
z j
))= 0. (3.22)
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Combining (3.18) and (3.20) with these, we have

∥
∥ψCϕgwj

s

∥
∥

� ≥
n∑

k=1

(
1−∣∣z jk

∣
∣2)
∣
∣
∣
∣
∂ψ

∂zk

(
z j
)
gwj

s

(
ϕ
(
z j
))

+ψ
(
z j
) n∑

l=1

∂gwj
s

∂ζl

(
ϕ
(
z j
))∂ϕl
∂zk

(
z j
)
∣
∣
∣
∣

=
n∑

k=1

(
1−∣∣z jk

∣
∣2)
∣
∣
∣
∣
∂ψ

∂zk

(
z j
)
∣
∣
∣
∣

≥ (1−∣∣z jk0

∣
∣2)
∣
∣
∣
∣
∂ψ

∂zk0

(
z j
)
∣
∣
∣
∣−→ ε1 > 0, as j −→∞,

(3.23)

which is a contradiction.
Now assume that (1.6) fails, then there is a sequence (z j) j∈N in Dn such that wj =

ϕ(z j)→ ∂Dn as j →∞, and ε2 > 0 such that

n∑

k,l=1

∣
∣ψ
(
z j
)∣
∣
∣
∣
∣
∣
∂ϕl
∂zk

(
z j
)
∣
∣
∣
∣

1−∣∣z jk
∣
∣2

1−∣∣ϕl
(
z j
)∣
∣2 ≥ ε2 (3.24)

for all j ∈N. On the other hand, by Theorem 1.1, we know that (1.4) holds. Hence, there
is a subsequence of (z j) j∈N (we keep the same notation (z j)) such that

∣
∣ψ
(
z j
)∣
∣
∣
∣
∣
∣
∂ϕl
∂zk

(
z j
)
∣
∣
∣
∣

1−∣∣z jk
∣
∣2

1−∣∣ϕl
(
z j
)∣
∣2 (3.25)

for any k, l ∈ {1, . . . ,n}, converges to a finite number as j →∞. Also we may assume that

for every l ∈ {1, . . . ,n} there is finite limit lim j→∞ |wj
l |. From (3.24) and (3.25), without

loss of generality we may assume that

lim
j→∞

∣
∣ψ
(
z j
)|
∣
∣
∣
∣
∂ϕ1

∂zk0

(
z j
)
∣
∣
∣
∣

1−∣∣z jk0

∣
∣2

1−∣∣ϕ1
(
z j
)∣
∣2 = ε3 > 0, (3.26)

for some k0 ∈ {1, . . . ,n}.
As above we construct a sequence of functions ( f j) j∈N satisfying the following condi-

tions:
(a) ( f j) j∈Nis a bounded sequence in H∞(Dn);
(b) ( f j) j∈N tends to zero uniformly on compact subset of Dn;
(c) ‖ψCϕ f j‖� � 0, as j →∞,

arriving at a contradiction.

Case 1. Assume that |wj
1| → 1 as j →∞ and

fw j
1
(z)= 1−∣∣wj

1

∣
∣2

1−wj
1z1

−
(

1−∣∣wj
1

∣
∣2

1−wj
1z1

)1/2

. (3.27)
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Then fw j
1
(z) is a bounded sequence in H∞(Dn) and fw j

1
(z)→ 0 uniformly on every com-

pact subset of Dn. Moreover, fw j
1
(w

j
1)= 0 and

∂ fwj
1

(
w
j
1

)

∂z1
= w

j
1

2
(
1−∣∣wj

1

∣
∣2) ,

∂ fwj
1

∂zl
(z)= 0, l �= 1. (3.28)

We show that ‖ψCϕ fwj
1
‖� � 0 as j →∞. Let

I f
w
j
1

(
z j
)= ∣∣ψ(z j)∣∣

n∑

k=1

(
1−∣∣z jk

∣
∣2)
∣
∣
∣
∣

∂ fwj
1

∂z1

(
ϕ
(
z j
))
∣
∣
∣
∣

∣
∣
∣
∣
∂ϕ1

(
z j
)

∂zk

∣
∣
∣
∣. (3.29)

Then we have

∥
∥ψCϕ fwj

1

∥
∥

� ≥ I fw j1 (z j)= 1
2

∣
∣ψ
(
z j
)∣
∣

n∑

k=1

1−∣∣z jk
∣
∣2

1−∣∣ϕ1
(
z j
)∣
∣2

∣
∣w

j
1

∣
∣
∣
∣
∣
∣
∂ϕ1

∂zk

(
z j
)
∣
∣
∣
∣

≥ 1
2

∣
∣ψ
(
z j
)∣
∣

1−∣∣z jk0

∣
∣2

1−∣∣ϕ1
(
z j
)∣
∣2

∣
∣w

j
1

∣
∣
∣
∣
∣
∣
∂ϕ1

∂zk0

(
z j
)
∣
∣
∣
∣−→

ε3

2
> 0

(3.30)

as j →∞. From which the result follows in this case.

Case 2. Assume that |wj
1| → ρ < 1 as j →∞. Since wj → ∂Dn there is an l ∈ {2, . . . ,n} such

that |wj
l | → 1 as j →∞. If there is a k1 ∈ {1, . . . ,n} and ε4 > 0 such that

lim
j→∞

∣
∣ψ
(
z j
)|
∣
∣
∣
∣
∂ϕl
∂zk1

(
z j
)
∣
∣
∣
∣

1−∣∣z jk1

∣
∣2

1−∣∣ϕl(z j)
∣
∣2 = ε4 > 0, (3.31)

then we obtain a contradiction using the following test function:

gwj
l
(z)= 1−∣∣wj

l

∣
∣2

1−wj
l zl

−
(

1−∣∣wj
l

∣
∣2

1−wj
l zl

)1/2

(3.32)

similarly as in Case 1.
Hence, we may assume that

lim
j→∞

∣
∣ψ
(
z j
)∣
∣
∣
∣
∣
∣
∂ϕl
∂zk

(
z j
)
∣
∣
∣
∣

1−∣∣z jk
∣
∣2

1−∣∣ϕl
(
z j
)∣
∣2 = 0, (3.33)

for each k ∈ {1, . . . ,n}.
Set

fw j
l
(z)= (z1 + 2

)1−∣∣wj
l

∣
∣2

1−wj
l zl

− (wj
1 + 2

)
(

1−∣∣wj
l

∣
∣2

1−wj
l zl

)1/2

. (3.34)
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It is easy to see that ‖ fw j
l
‖∞ ≤ 12 and that fw j

l
(z)→ 0 uniformly on every compact subsets

of Dn. Moreover, fw j
l
(ϕ(z j))= 0 and

∂ fwj
l

∂z1

(
ϕ
(
z j
))= 1,

∂ fwj
l

∂zl

(
ϕ
(
z j
))= 2 +w

j
1

2

w
j
l

(
1−∣∣wj

l

∣
∣2) ,

∂ fwj
l
(z)

∂zm
= 0, (m �= 1, l).

(3.35)

We show that ‖ψCϕ fwj
l
‖� � 0 as j →∞. Let

I j =
∣
∣ψ
(
z j
)∣
∣

n∑

k=1

(
1−∣∣z jk

∣
∣2)
∣
∣
∣
∣

∂ fwj
l

∂ζ1

(
ϕ
(
z j
))∂ϕ1

∂zk

(
z j
)
∣
∣
∣
∣

= ∣∣ψ(z j)∣∣
n∑

k=1

(
1−∣∣z jk

∣
∣2)
∣
∣
∣
∣
∂ϕ1

∂zk

(
z j
)
∣
∣
∣
∣.

(3.36)

We have

I j ≤
∣
∣ψ
(
z j
)∣
∣

n∑

k=1

(
1−∣∣z jk

∣
∣2)
∣
∣
∣
∣

∂ fwj
l

∂ζl

(
ϕ
(
z j
))∂ϕl

(
z j
)

∂zk

∣
∣
∣
∣

+
∥
∥ψCϕ fwj

l

∥
∥

� +
∣
∣ fw j

l

(
ϕ
(
z j)
)∣
∣

n∑

k=1

∣
∣
∣
∣
∂ψ

∂zk

(
z j
)
∣
∣
∣
∣
(
1−∣∣z jk

∣
∣2)

≤ ∣∣ψ(z j)∣∣
n∑

k=1

(
1−∣∣z jk

∣
∣2)
∣
∣
∣
∣
∂ϕl
(
z j
)

∂zk

∣
∣
∣
∣

∣
∣
∣
∣

2 +w
j
1

2

∣
∣
∣
∣

∣
∣w

j
l

∣
∣

(
1−∣∣wj

l

∣
∣2)

+
∥
∥ψCϕ fwj

l

∥
∥

� +
∣
∣ fw j

l

(
ϕ
(
z j
))∣
∣

n∑

k=1

∣
∣
∣
∣
∂ψ

∂zk

(
z j
)
∣
∣
∣
∣
(
1−∣∣z jk

∣
∣2)

.

≤ 3
2

∣
∣ψ
(
z j
)∣
∣

n∑

k=1

1−∣∣z jk
∣
∣2

1−∣∣wj
l

∣
∣2

∣
∣
∣
∣
∂ϕl
∂zk

(
z j
)
∣
∣
∣
∣

+
∥
∥ψCϕ fwj

l

∥
∥

� +
∥
∥ fw j

l

∥
∥∞

n∑

k=1

∣
∣
∣
∣
∂ψ

∂zk

(
z j
)
∣
∣
∣
∣
(
1−∣∣z jk

∣
∣2)

.

(3.37)

As we have already proved

lim
ϕ(z)→∂Dn

n∑

k=1

∣
∣
∣
∣
∂ψ

∂zk
(z)
∣
∣
∣
∣
(
1−∣∣zk

∣
∣2)= 0. (3.38)

Hence we have that

lim
j→∞

n∑

k=1

∣
∣
∣
∣
∂ψ

∂zk

(
z j
)
∣
∣
∣
∣
(
1−∣∣z jk

∣
∣2)= 0. (3.39)

Letting j →∞ and using (3.33) and (3.39), it follows that

liminf
j→∞

I j ≤ liminf
j→∞

∥
∥ψCϕ fwj

l

∥
∥

�. (3.40)



12 Abstract and Applied Analysis

On the other hand, |wj
1| ≤ ρ < 1 for sufficiently large j. Thus we have that

(
1− ρ2)ε3/2≤

(
1− ρ2)∣∣ψ

(
z j
)∣
∣
∣
∣
∣
∣
∂ϕ1

∂zk0

(
z j
)
∣
∣
∣
∣

1−∣∣z jk0

∣
∣2

1−∣∣ϕ1
(
z j
)∣
∣2

≤ ∣∣ψ(z j)∣∣
n∑

k=1

(
1−∣∣z jk

∣
∣2)
∣
∣
∣
∣
∂ϕ1

∂zk

(
z j
)
∣
∣
∣
∣= I j ,

(3.41)

for sufficiently large j.
Combining (3.40) with (3.41), we obtain that

0 <
(
1− ρ2)ε3/2≤ liminf

j→∞
∥
∥ψCϕ fwj

l

∥
∥

�, (3.42)

and so ‖ψCϕ fwj
l
‖� � 0, as j →∞. From Cases 1 and 2, we obtain

lim
j→∞

∣
∣ψ
(
z j
)∣
∣

n∑

k,l=1

1−∣∣z jk
∣
∣2

1−∣∣wj
l

∣
∣2

∣
∣
∣
∣
∂ϕl
∂zk

(
z j
)
∣
∣
∣
∣= 0. (3.43)

Hence, condition (1.6) holds, finishing the proof of the theorem. �
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[8] S. Stević, “The generalized Libera transform on Hardy, Bergman and Bloch spaces on the unit
polydisc,” Zeitschrift für Analysis und ihre Anwendungen, vol. 22, no. 1, pp. 179–186, 2003.

[9] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies
in Advanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1995.

[10] G. Benke and D.-C. Chang, “A note on weighted Bergman spaces and the Cesàro operator,”
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Stevo Stević: Mathematical Institute of the Serbian Academy of Science, Knez Mihailova 35/I,
11000 Beograd, Serbia
Email addresses: sstevic@ptt.yu; sstevo@matf.bg.ac.yu

mailto:jyulsx@163.com
mailto:lsx@mail.zjxu.edu.cn
mailto:sstevic@ptt.yu
mailto:sstevo@matf.bg.ac.yu

	1. Introduction
	2. Auxiliary results
	3. Proof of the main results
	Acknowledgments
	References

