
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2007, Article ID 34890, 18 pages
doi:10.1155/2007/34890

Research Article
On Local α-Times Integrated C-Semigroups

Yuan-Chuan Li and Sen-Yen Shaw

Received 7 November 2006; Revised 22 April 2007; Accepted 20 July 2007

Recommended by Wolfgang Ruess

This paper presents several characterizations of a local α-times integrated C-semigroup
{T(t); 0 ≤ t < τ} by means of functional equation, subgenerator, and well-posedness of
an associated abstract Cauchy problem. We also discuss properties concerning the nonde-
generacy of T(·), the injectivity of C, the closability of subgenerators, the commutativity
of T(·), and extension of solutions of the associated abstract Cauchy problem.

Copyright © 2007 Y.-C. Li and S.-Y. Shaw. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let X be a complex Banach space and let B(X) be the Banach algebra of all bounded
(linear) operators on X . Let j−1 := δ0, the Dirac measure at 0, and for r > −1, let jr :
[0,∞)→R be defined as jr(t) := tr /(Γ(r + 1)), t ≥ 0, where Γ(·) is the Gamma function.

Let C ∈ B(X) and τ ∈ (0,∞]. A strongly continuous family {T(t); 0 ≤ t < τ} ⊂ B(X)
is called a local α-times (α≥ 0) integrated C-semigroup on X if it satisfies T(t)C = CT(t)
for 0≤ t < τ, T(0)= 0, and

T(s)T(t)x =
(∫ s+t

0
−
∫ s

0
−
∫ t

0

)
jα−1(s+ t− r)CT(r)xdr

=
∫ s

0

[
jα−1(r)CT(s+ t− r)− jα−1(s+ t− r)CT(r)

]
xdr

=
∫ t

0

[
jα−1(r)CT(s+ t− r)− jα−1(s+ t− r)CT(r)

]
xdr

(1.1)

for x ∈ X ,0 ≤ s, t ≤ s + t < τ. In case τ = ∞, a local α-times integrated C-semigroup is
named an α-times integrated C-semigroup (see [1] for general α ∈ [0,∞), and [2] for
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the case α ∈N). When C = I , the identity operator, T(·) is called an α-times integrated
semigroup (cf. [3, 4]).

We say that {T(t); 0≤ t < τ} is a local (0-times integrated) C-semigroup (cf. [5–11]) if
T(0)= C and

T(t)T(s)= T(s+ t)C ∀0≤ t, s≤ s+ t < τ. (1.2)

In case τ =∞, a local C-semigroup is called a C-semigroup (cf. [12–15]).
Local α-times integratedC-semigroups were first studied in [16] for the case α= n∈N

and under the assumption that C is injective and T(·) satisfies the condition

T(t)x = 0 ∀0 < t < τ implies x = 0. (1.3)

Clearly, (1.3) is implied by the following condition:

T(t)x = 0 ∀0 < t <
τ

2
implies x = 0. (1.4)

For the case τ =∞, both conditions (1.3) and (1.4) become the ordinary definition of
nondegeneracy, that is,

T(t)x = 0 ∀t > 0 implies x = 0. (1.5)

When τ <∞ and α = 0, (1.4) is strictly stronger than (1.3) and is equivalent to that C
is injective (cf. [6]). It will be seen that in the case α > 0, (1.4) still implies (1.3) and the
injectivity ofC (Lemma 4.1). These facts suggest that a proper definition of nondegeneracy
for a local α-times integrated C-semigroup seems to be (1.4). In the present paper, we use
this definition.

The aim of this paper is to analyze in detail several characterizations for degenerate and
nondegenerate local α-times integrated C-semigroups, by means of functional equation,
subgenerator, and well-posedness of an associated abstract Cauchy problem.

In Section 2, we give the following general characterization of local α-times integrated
C-semigroups in terms of functional equations:

T(0)= δ0,αC, T(t)C = CT(t),

S(s)
[
T(t)− jα(t)C

]= [T(s)− jα(s)C
]
S(t) ∀0≤ s, t ≤ s+ t < τ,

(1.6)

where δa,b is the Kronecker delta and S(t) := ∫ t0 T(s)ds, 0≤ t < τ (see Theorem 2.3).
In Sections 3 and 4, we will define subgenerator and generator of a nondegenerate lo-

cal α-times integrated C-semigroup T(·). Then, we discuss some properties concerning
the nodegeneracy of T(·), the injectivity of C, the closability of subgenerators, and the
commutativity of the family {T(t); 0≤ t < τ}. For instance, we will see that nondegener-
acy is equivalent to the injectivity of C when T(·) has a subgenerator G (Lemma 4.1), and
nondegeneracy implies that T(·) has the generator and {T(t); 0≤ t < τ} is a commuta-
tive family (Theorem 3.5 and Proposition 4.6). Notice that (1.1) implies that T(t)T(s)=
T(s)T(t) holds for any pair of s, t ≥ 0 which satisfies s+ t < τ, but, when T(·) is degener-
ate, in general, the commutativity does not hold for τ < s+ t < 2τ (see [6] for an example).



Y.-C. Li and S.-Y. Shaw 3

We also prove a characterization (Theorem 4.15) for nondegenerate local α-times inte-
grated C-semigroups, which states that {T(t); 0≤ t < τ} is a nondegenerate local α-times
integrated C-semigroup if and only if C is injective and there is a closed operator G satis-
fying

T(t)x− jα(t)Cx =
⎧⎨
⎩
S(t)Gx, x ∈D(G);

GS(t)x, x ∈ X
(1.7)

for all 0≤ t < τ. In this case, C−1GC is the generator of T(·).
In Section 5, we discuss the relation between a local α-times integrated C-semigroup

with generator A and the associated abstract Cauchy problem:

u′(t)=Au(t) +C f (t), 0 < t < τ;

u(0)= 0.
(ACP(A;C f ,0))

Let C ∈ B(X) be injective and α≥ 0, and let A be a closed linear operator such that CA⊂
AC. It will be shown (see Theorem 5.1) that the abstract Cauchy problem ACP(A; jαCx,0)
has a unique solution ux for every x ∈ X if and only if A is a subgenerator of a local α-
times integrated C-semigroup T(·). Moreover, the solution is given by ux(t)= ∫ t0 T(s)xds.

In Section 6, we apply Theorem 4.15 to show that the generator A of a local
α-times integrated C-semigroup on [0,τ) also generates a local (α+ n)-times integrated
C2-semigroup on [0,2τ) for any integer n which is not less than α (see Theorem 6.1).
This is a generalization to α-times integrated C-semigroups of a result in [17] on n-times
integrated semigroups. This generalization (for the case α = n) has been proved in [16]
by different approach, and the case n= 0 was treated in [10].

As is well known, there is the Hille-Yosida generation theorem for a (C0)-semigroup
in terms of the resolvent of the generator (or equivalently, the Lapalace transform of
the (C0)-semigroup). For an exponentially bounded nondegenerate α-times integrated
C-semigroup, we also have a Hille-Yosida type generation theorem in terms of the C-
resolvent of the generator (or equivalently, the Lapalace transform of the C-semigroup)
(cf. [1, 2]). For nonexponentially bounded C-semigroups and local C-semigroups, the
Lapalace transform does not exist. In this case, there is a Hille-Yosida type generation the-
orem in terms of the asymptotic C-resolvent of the generator (cf. [9, 7]). See also [18] for a
similar Hille-Yosida type generation theorem for nondegenerate local C-cosine functions.
Finally, we remark that it is also possible to establish a similar Hille-Yosida type genera-
tion theorem for a nondegenerate local α-times integrated C-semigroup with α > 0.

2. Degenerate local α-times integrated C-semigroups

Let h : [0,b]→ C be integrable and let f : [0,b]→ X be Bochner integrable, where b >

0. The convolution of h and f is the function h∗ f defined by (h∗ f )(t) := ∫ t0 h(t −
s) f (s)ds, 0 ≤ t ≤ b whenever the integral is well-defined at every point t ∈ [0,b]. When
h = j−1, the Dirac measure, we define ( j−1 ∗ f )(t) := f (t) for t ∈ [0,b]. We will need
the following lemma: (a) can be verified by using the Laplace transform and (b) is a
modification of Titchmarsh’s theorem (cf. [19, Corollary 2.2.5]).
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Lemma 2.1. The following hold for r,s≥−1.
(a) jr ∗ js = jr+s+1.
(b) Let f : [0,b]→ X be Bochner integrable. If jr ∗ f ≡ 0 on [0,b], then f = 0 almost

everywhere.

We will also need the following lemma whose proof we omit.

Lemma 2.2. Let α ≥ 0 and let T(·) : [0,τ)→ B(X) be a strongly continuous function sat-
isfying T(0) = δ0,αC. Let S(t)x := ∫ t0 T(s)xds for all x ∈ X and 0 ≤ t < τ. Then, S(·) is a
local (α+ 1)-times integrated C-semigroup if and only if T(·) is a local α-times integrated
C-semigroup.

Theorem 2.3. Let α ≥ 0 and let T(·) : [0,τ) → B(X) be a strongly continuous function
satisfying T(0) = δ0,αC. Let S(t)x := ∫ t0 T(s)xds for all x ∈ X and 0 ≤ t < τ. Then, T(·) is
a local α-times integrated C-semigroup on X if and only if T(t)C = CT(t) for all 0≤ t < τ
and

S(s)
[
T(t)− jα(t)C

]= [T(s)− jα(s)C
]
S(t) ∀0≤ s, t ≤ s+ t < τ. (2.1)

Proof. Suppose T(·) is an α-times integrated C-semigroup on X . Integrating (1.1) with
respect to t, and using integration by parts, we obtain the following equation:

T(s)S(t)x =
∫ s

0
jα−1(r)C

[
S(s+ t− r)− jα(s+ t− r)CT(r)

]
xdr

=
(∫ s+t

t
−
∫ s

0

)
jα−1(s+ t− r)CS(r)xdr− jα(t)CS(s)x.

(2.2)

Integrating (1.1) with respect to s, we also have

S(s)T(t)x =
∫ t

0

[
jα−1(r)CS(s+ t− r)− jα(s+ t− r)CT(r)]xdr

=
(∫ s+t

s
−
∫ t

0

)
jα−1(s+ t− r)CS(r)xdr− jα(s)CS(t)x

(2.3)

for x ∈ X and 0≤ s, t ≤ s+ t < τ. Comparing (2.2) and (2.3), we obtain

T(s)S(t)x+ jα(t)CS(s)x =
(∫ s+t

0
−
∫ t

0
−
∫ s

0

)
jα−1(s+ t− r)CS(r)xdr

= S(s)T(t)x+ jα(s)CS(t)x.

(2.4)

Since T(·) commutes with C, so does S(·). Therefore, (2.1) holds.
Conversely, we suppose that T(·) satisfies (2.1). By Lemma 2.2, it suffices to show that

S(·) is an (α+ 1)-times integrated C-semigroup. First, we replace s by s+ t− r and t by r
in (2.1). Then, we have for x ∈ X

S(s+ t− r)T(r)x−T(s+ t− r)S(r)x = S(s+ t− r) jα(r)Cx− jα(s+ t− r)CS(r)x. (2.5)
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By integrating the right-hand side with respect to r from 0 to t, we obtain from CT(·)=
T(·)C that

∫ t

0
S(s+ t− r) jα(r)Cxdr−

∫ t

0
jα(s+ t− r)CS(r)xdr

=
∫ s+t

s
S(r) jα(s+ t− r)Cxdr−

∫ t

0
jα(s+ t− r)CS(r)xdr

=
(∫ s+t

0
−
∫ s

0
−
∫ t

0

)
jα(s+ t− r)CS(r)xdr.

(2.6)

On the other hand, from the left-hand side, we have

∫ t

0
S(s+ t− r)T(r)xdr−

∫ t

0
T(s+ t− r)S(r)xdr

= S(s+ t− r)S(r)x|t0 +
∫ t

0
T(s+ t− r)S(r)xdr−

∫ t

0
T(s+ t− r)S(r)xdr

= S(s)S(t)− S(s+ t)S(0)= S(s)S(t)

(2.7)

for 0 ≤ t,s < s + t < τ. Therefore, S(·) is an (α + 1)-times integrated C-semigroup. The
result follows from Lemma 2.2. �

Corollary 2.4. Let α > 0, β ≥−1. If T(·) is a local α-times integrated C-semigroup, then
jβ∗T(·) is an (α+β+ 1)-times integrated C-semigroup.

Proof. Let U(t) := jβ ∗T(t) for all 0 ≤ t < τ. Using Lemma 2.1(a) and Theorem 2.3, we
have for every 0≤ s, t ≤ s+ t < τ and x ∈ X ,

[
U(s)− jα+β+1(s)C

]∫ t

0
U(r)xdr

=
∫ s

0
jβ(s−u)

[
T(u)− jα(u)C

]
j0∗ jβ∗T(t)xdu

=
∫ s

0
jβ(s−u)

[
T(u)− jα(u)C

]∫ t

0
jβ(t− v)

(
j0∗T

)
(v)xdvdu

=
∫ s

0

∫ t

0
jβ(s−u) jβ(t− v)

[
T(u)− jα(u)C

](
j0∗T

)
(v)xdvdu

=
∫ s

0

∫ t

0
jβ(s−u) jβ(t− v)

(
j0∗T

)
(u)
[
T(v)− jα(v)C

]
xdvdu

=
∫ s

0
jβ(s−u)

(
j0∗T

)
(u)du

∫ t

0
jβ(t− v)

[
T(v)− jα(v)C

]
xdv

= jβ∗
(
j0∗T

)
(s)
[
jβ∗T(t)− jβ∗ jα(t)C

]
x

=
∫ s

0
U(r)dr

[
U(t)− jα+β+1(t)C

]
x.

(2.8)
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Therefore, U = jβ ∗ T is an (α + β + 1)-times integrated C-semigroup by Theorem 2.3
again. �

3. (C,α)-subgenerators

Let T(·) : [0,τ) → B(X) be a strongly continuous function. We consider properties of
those linear operatorsGwhich satisfy R(S(t))⊂D(G) and S(t)G⊂GS(t)=T(t)x− jα(t)C,
that is, the following two conditions hold:

T(t)x− jα(t)Cx = S(t)Gx for x ∈D(G), 0≤ t < τ, (3.1)

R
(
S(t)

)⊂D(G), T(t)x− jα(t)Cx =GS(t)x for x ∈ X , 0≤ t < τ. (3.2)

Such an operator G will be called a (C,α)-subgenerator of T(·). There may or may not ex-
ist (C,α)-subgenerators for a given local α-times integrated C-semigroup and there may
be many ones. If there is a (C,α)-subgenerator which contains all (C,α)-subgenerators of
T(·), then we call this maximal (C,α)-subgenerator the (C,α)-generator of T(·).

It will be seen in Theorem 3.5(c) that if C is injective and if there is a closed (C,α)-
subgenerator G of T(·), then T(·) is a local α-times integrated C-semigroup and A :=
C−1GC is its (C,α)-generator. (C,α)-subgenerators and (C,α)-generator of a local α-
times integrated C-semigroup will be called simply subgenerators and generator, respec-
tively.

Lemma 3.1. Let C ∈ B(X) be injective and let T(·) : [0,τ)→ B(X) be strongly continuous.
If an operator G satisfies condition (3.1), then it satisfies the following condition:

u≡ 0 is the only solution of the equation u(t)=G(1∗u)(t), 0≤ t < τ. (3.3)

In particular, (3.3) holds for any (C,α)-subgenerator G of T(·).

Proof. Let u be a solution of u(t)=G
∫ t

0 u(s)ds. By (3.1), we have

S∗u= S∗G(1∗u)= [T − jαC
]∗ (1∗u)

= [S− jα+1C
]∗u= S∗u− jα+1C∗u.

(3.4)

This proves jα+1C ∗ u ≡ 0. It follows from Lemma 2.1(b) and the continuity of u that
Cu≡ 0 and hence u≡ 0. �

Remark 3.2. Whenever C is injective, Lemma 3.1 implies that an operator G can be
a (C,α)-subgenerator of at most one strongly continuous local α-times integrated C-
semigroup T(·).

Lemma 3.3. Let T(·) : [0,τ)→ B(X) be strongly continuous. If CT(t)= T(t)C for 0≤ t < τ,
and if T(·) has a (C,α)-subgenerator G, then T(·) is a local α-times integrated C-semigroup
with G a subgenerator.
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Proof. By (3.1) and (3.2), we have for every 0≤ s, t < τ and x ∈ X

[
T(t)− jα(t)C

]
S(s)x = S(t)GS(s)x = S(t)

[
T(s)− jα(s)C

]
x. (3.5)

Hence it follows from Theorem 2.3 that T(·) is an α-times integrated C-semigroup. �

Proposition 3.4. Let C ∈ B(X) be an injection. Let T(·) : [0,τ) → B(X) be a strongly
continuous function and G be a closed operator satisfying (3.2) and (3.3). Suppose that B
is a closed operator such that BG⊂ GB, that is, D(BG)⊂D(GB) and BG= GB on D(BG),
and such that S(t)D(B)⊂D(B) for all 0≤ t < τ, and BS(·)x ∈ C([0,τ),X) for all x ∈D(B).
Then the following two conditions are equivalent:

(a) CB ⊂ BC;
(b) S(t)B ⊂ BS(t) and G(1∗ S)(t)D(B)⊂D(B) for all 0≤ t < τ.

Proof. (a)⇒(b). Integrating (3.2), we have from the closedness of G that

S(t)x− jα+1(t)Cx = (1∗GS)(t)x =G(1∗ S)(t)x for x ∈ X. (3.6)

Let x ∈ D(B). By assumption, S(t)x ∈ D(B). Also, by (a) we have jα+1(t)Cx ∈ D(B) and
B jα+1(t)Cx = jα+1(t)CBx for 0 ≤ t < τ. Hence it follows from (3.6) that G(1∗ S)(t)x ∈
D(B) for all 0 ≤ t < τ. Then, by the closedness of B and the assumption on B we obtain
that

BG(1∗ S)(t)x =GB(1∗ S)(t)x =G(1∗BS)(t)x ∀0≤ t < τ. (3.7)

Therefore, using (3.6) and (3.7), we have for x ∈D(B) and 0≤ t < τ,

S(t)Bx−G(1∗ S)(t)Bx = jα+1(t)CBx = B jα+1(t)Cx

= B
[
S(t)x−G(1∗ S)(t)x

]

= BS(t)x−G(1∗BS)(t)x.

(3.8)

This implies S(t)Bx−BS(t)x =G1∗[S(·)B−BS(·)](t)x for all 0≤ t<τ. Since u=S(·)Bx−
BS(·)x is a strongly continuous solution of u=G1∗u, it follows from (3.3) that S(·)Bx−
BS(·)x ≡ 0 for all x ∈D(B). Therefore, (b) holds.

(b)⇒(a). Let x ∈D(B). By (b) and (3.6), we have

jα+1(t)Cx = S(t)x−G(1∗ S)(t)x ∈D(B) ∀0≤ t < τ. (3.9)

So, Cx ∈D(B). By the closedness of B and the assumption on B, this implies that BG(1∗
S)(t)x = BS(t)x−B jα+1(t)Cx = S(t)Bx− jα+1(t)BCx is strongly continuous on 0≤ t < τ.
It follows from the assumption on B, the closedness of B, and condition (b) that

BG(1∗ S)(t)x =GB(1∗ S)(t)x =G(1∗BS)(t)x =G(1∗ S)(t)Bx (3.10)
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for all 0≤ t < τ. Therefore, by (3.6) and (b) again, we obtain that

B jα+1(t)Cx = BS(t)x−BG(1∗ S)(t)x

= S(t)Bx−G(1∗ S)(t)Bx = jα+1(t)CBx ∀0≤ t < τ.
(3.11)

This proves (a). �

Note that if B ∈ B(X), the assumption that S(t)D(B) ⊂ D(B) for all 0 ≤ t < τ and
BS(·)x ∈ C([0,τ),X) for x ∈D(B) always holds.

Theorem 3.5. Let C ∈ B(X) be injective, and let T(·) : [0,τ)→ B(X) be a strongly contin-
uous function with a closed (C,α)-subgenerator G. Then, the following hold:

(a) CT(t) = T(t)C for all 0 ≤ t < τ (or equivalently, CS(t) = S(t)C for all 0 ≤ t < τ),
so that T(·) is a local α-times integrated C-semigroup.

(b) T(t)T(s)= T(s)T(t) for all 0≤ s, t < τ.
(c) CG⊂GC, and C−1GC is the generator of T(·).

Proof. By the definition of (C,α)-subgenerator, we have R(S(s))⊂D(G) and S(s)G⊂GS(s)
for all s∈ [0,τ). Also, by Lemma 3.1, (3.3) holds. Hence the hypothesis and Proposition
3.4 (b) hold with B replaced by G, so that Proposition 3.4 (a) also holds with B replaced
by G, that is, the first part of the above condition (c) is true. Then, the hypothesis and
Proposition 3.4 (a) hold with B replaced by C, and consequently Proposition 3.4 (b) also
holds with B replaced by C, that is, S(t)C = CS(t) for all 0 ≤ t < τ. Then Lemma 3.3
implies that T(·) is a local α-times integrated C-semigroup. Finally, applying (a) and
Proposition 3.4 with B replaced by S(s) for any (0≤ s < τ) yields that Proposition 3.4 (b)
also holds with B replaced by S(s), that is, S(t)S(s) = S(s)S(t) for all 0 ≤ t < τ. Then, by
differentiation with respect to s and t, we obtain the above condition (b).

To show the second part of (c), we first show that C−1GC is a subgenerator of T(·).
Since G is a closed (C,α)-subgenerator of T(·) and G⊂ C−1GC, we have T(t)− jα(t)C =
GS(t) = C−1GCS(t) for all 0 ≤ t < τ. Moreover, if x ∈ D(C−1GC), then Cx ∈ D(G) and
GCx ∈ R(C), so that, by (a),

C
[
T(t)x− jα(t)Cx

]= [T(t)− jα(t)C
]
Cx = S(t)GCx

= S(t)CC−1GCx = CS(t)C−1GCx.
(3.12)

It follows from the injectivity of C that T(t)x− jα(t)Cx = S(t)C−1GCx for all 0 ≤ t < τ.
Therefore, C−1GC is a subgenerator of T(·).

Let B be any subgenerator of T(·). It follows from (3.1) and (3.2) that for every
x ∈ D(B), jα+1(t)Cx = S(t)x − (1∗ S)(t)Bx ∈ D(G). This together with (3.2) and the
closedness of G implies

GS(t)x−Gjα+1(t)Cx =G(1∗ S)(t)Bx = (1∗ [T − jαC
])

(t)Bx

= S(t)Bx− jα+1(t)CBx = BS(t)x− jα+1(t)CBx.
(3.13)
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SinceGS(t)= T(t)− jα(t)C = BS(t) by (3.2), we haveGjα+1(t)Cx = jα+1(t)CBx for all 0≤
t < τ. Since C is injective, this implies Bx = C−1GCx, that is, B ⊂ C−1GC. Hence C−1GC
is the generator of T(·). �

The next corollary is about the converse of (c) of Theorem 3.5.

Corollary 3.6. Let C ∈ B(X) be injective, let G be a closed operator satisfying G⊂ C−1GC,
and letT(·) : [0,τ)→B(X) be a strongly continuous function. IfC−1GC is a (C,α)-subgener-
ator of T(·), and if for every 0≤ t < τ, there is a dense subspace Dt of X such that S(t)Dt ⊂
D(G), then G is also a (C,α)-subgenerator of T(·). In particular, the conclusion holds when
C has dense range.

Proof. C−1GC and T(·) satisfy

T(t)x− jα(t)Cx = S(t)C−1GCx for x ∈D
(
C−1GC

)
; (3.14)

T(t)x− jα(t)Cx = C−1GCS(t)x for x ∈ X (3.15)

for 0≤ t < τ. Since G⊂ C−1GC, (3.14) implies that G satisfies (3.1). Equation (3.15) and
the assumption CG⊂GC imply that for every x ∈Dt,

C
[
T(t)− jα(t)C

]
x =GCS(t)x = CGS(t)x. (3.16)

Since C is injective, this implies T(t)x− jα(t)Cx =GS(t)x for x ∈Dt. It follows from Dt =
X and the closedness of G that, for every x ∈ X , S(t)x ∈ D(G), and T(t)x− jα(t)Cx =
GS(t)x for all x ∈ X , that is, G satisfies (3.2). Therefore G is a closed (C,α)-subgenerator
of T(·).

Since (3.15) shows that S(t)Cx = CS(t)x ∈ D(G) for all x ∈ X and 0 ≤ t < τ, we can
take Dt = R(C) if C has dense range. �

Corollary 3.7. Let C ∈ B(X) be injective and let T ,H : [0,τ)→ B(X) be strongly continu-
ous functions with closed (C,α)-subgenerators G and K , respectively. Suppose KG⊂GK and
(1∗T)(t)D(K)⊂D(K) for all 0≤ t < τ and K(1∗T)(·)x ∈ C([0,τ),X) for all x ∈D(K).
Then T(t)H(s)=H(s)T(t) for all 0≤ s, t < τ.

Proof. By Theorem 3.5, we haveCK ⊂ KC,CG⊂GC,CS(t)= S(t)C, andCH(t)=H(t)C.
Using these facts together with KG⊂GK , we obtain from Proposition 3.4 (by taking B =
K) that S(t)K ⊂ KS(t) for all 0≤ t < τ. Fix a t ≥ 0. Since S(t)K ⊂ KS(t) andCS(t)= S(t)C,
taking B = S(t) in Proposition 3.4 we deduce that H(s)S(t) = S(t)H(s) for all 0 ≤ s < τ.
This completes the proof. �

4. Generators of nondegenerate local α-times integrated C-semigroups

The results discussed so far are formulated under the assumption of existence of a (C,α)-
subgenerator of a strongly continuous local α-times integrated C-semigroup T(·). In this
section, we will see that subgenerators and generator do exist if T(·) is a nondegenerate
local α-times integrated C-semigroup.

Lemma 4.1. Let T(·) be a local α-times integrated C-semigroup on [0,τ). The following
conditions have the implication relations (c)⇒(a)⇒(b):
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(a) T(·) is nondegenerate;
(b) C is injective;
(c) u∈ C([0,τ/2),X) and T ∗u≡ 0 imply u≡ 0.

Moreover, when T(·) has a subgenerator, these three conditions are equivalent.

Proof. (a)⇒(b). If Cx = 0, then from (1.1) we see that T(s)T(t)x = 0 for all 0 < s, t < τ/2,
which implies x = 0 by our definition of nondegeneracy. Hence C is injective.

(c)⇒(a). If x ∈ X is such that T(t)x = 0 for all 0 < t < τ/2, then for u ≡ x we have
(T ∗u)(t)= (1∗T)(t)x = 0 for all 0 < t < τ/2. Thus, (a) follows from (c).

Next, suppose there is a subgenerator. We show “(b)⇒(c).” If u∈ C([0,τ/2),X) satisfies
T ∗u≡ 0, then S∗u≡ 1∗ (T ∗u)≡ 0. It follows from (3.2) that

0≡GS∗u= T ∗u− jαC∗u=− jα∗Cu. (4.1)

By Lemma 2.1(b), we have Cu≡ 0. Since C is injective, this proves u≡ 0. Therefore, (b)
implies (c) when T(·) has a subgenerator. �

Lemma 4.2. Let C ∈ B(X) be injective and {T(t); 0 ≤ t < τ} be a local α-times integrated
C-semigroup. If x ∈ X is such that T(r)x = 0 for all 0 < r ≤ s for some number s ∈ (0,τ),
then T(r)x = 0 for all 0 < r < τ. In particular, if T(·) is nondegenerate, then T(r)x = 0 for
all 0 < r ≤ s with some number 0 < s < τ implies x = 0.

Proof. For an arbitrary 0 ≤ t < τ, choose an s0 ∈ (0,min{s,τ − t}). The assumption im-
plies T(s0)x = 0 and (1∗T)(s0)x = 0. Then, it follows from Theorem 2.3 that

− jα(s0)C(1∗T)(t)x = (1∗T)(t)
[
T
(
s0
)− jα

(
s0
)
C
]
x

= [T(t)− jα(t)C
]
(1∗T)

(
s0
)
x = 0.

(4.2)

Since C is injective, this implies that (1∗T)(t)x = 0 for all 0≤ t < τ, and hence T(t)x = 0
for all 0≤ t < τ. �

We are ready to show the existence of subgenerators and generator for a nondegenerate
local α-times integrated C-semigroup.

Definition 4.3. Let C ∈ B(X) and let T(·) be a nondegenerate local α-times integrated
C-semigroup. We define for every 0 < t < τ a linear operator Gt : D(Gt)→ X by

D
(
Gt
)

:=
{ n∑

k=1

S
(
tk
)
xk; 0≤ tk < t, xk ∈ X , k = 1,2, . . . , n= 1,2, . . .

}
,

Gt y :=
n∑

k=1

[
T
(
tk
)− jα

(
tk
)
C
]
xk for y =

n∑
k=1

S
(
tk
)
xk ∈D

(
Gt
)
.

(4.3)

Fix a 0 < t < τ. We see that Gt is well-defined. Indeed, if
∑n

k=1 S(tk)xk = 0, then, by
Theorem 2.3, for every 0≤ r < τ − t

S(r)
n∑

k=1

[
T
(
tk
)− jα

(
tk
)
C
]
xk =

n∑
k=1

[
T(r)− jα(r)C

]
S
(
tk
)
xk = 0. (4.4)
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Since T(·) is nondegenerate, it follows from Lemma 4.2 that
∑n

k=1[T(tk)− jα(tk)C]xk =
0. This proves that Gt is well-defined. These operators Gt form an increasing net. Let us
define Gτ : D(Gτ)→ X by

D
(
Gτ
)

:=
⋃

0<t<τ

D
(
Gt
)
,

Gτx :=Gtx if x ∈D
(
Gt
)

for some 0 < t < τ.

(4.5)

Proposition 4.4. Let T(·) be a nondegenerate local α-times integrated C-semigroup on X ,
and let operators Gt, Gτ be defined as above.

(i) For 0≤ s < t < τ, we have

S(s)X ⊂D
(
Gt
)
, S(s)Gt ⊂GtS(s)= T(s)− jα(s)C. (4.6)

(ii) Gτ is a subgenerator of T(·), that is,

S(s)X ⊂D
(
Gτ
)
, S(s)Gτ ⊂GτS(s)= T(s)− jα(s)C ∀0≤ s < τ. (4.7)

Proof. (i) Since s < t, by the definition ofGt, we have S(s)x ∈D(Gt) andGtS(s)x = [T(s)−
jα(s)C]x for all x ∈ X . To show S(s)Gt ⊂ GtS(s) = T(s)− jα(s)C, let 0 ≤ r < τ − t. Then,
(1.1) implies that S(r) commutes with T(u) and S(u) for 0 ≤ u ≤ t. If y ∈ D(Gt), then
y =∑n

k=1 S(tk)xk for some tk ∈ [0, t), xk ∈ X , k = 1, . . . ,n. By Theorem 2.3, we have

S(r)S(s)Gt y = S(s)S(r)
n∑

k=1

[
T
(
tk
)− jα

(
tk
)
C
]
xk

= S(s)
[
T(r)− jα(r)C

] n∑
k=1

S
(
tk
)
xk = S(s)

[
T(r)− jαr)C

]
y

= [T(s)− jα(s)C
]
S(r)y = S(r)

[
T(s)− jα(s)C

]
y.

(4.8)

This being true for all r ∈ [0,τ − t), it follows from Lemma 4.2 that S(s)Gt y = [T(s)−
jα(s)C]y.

(ii) follows easily from (i) and the definition of Gτ . �

Lemma 4.5. Suppose G and B are subgenerators of T(·). Define a linear operator K : D(G) +
D(B)→ X by Ky := Gx1 +Bx2 whenever y = x1 + x2 for some x1 ∈ D(G) and x2 ∈ D(B).
Then, K is well-defined and it is also a subgenerator of T(·).

Proof. Suppose G and B are two subgenerators of T(·). If y = x1 + x2 = z1 + z2 for some
x1,z1 ∈D(G) and x2,z2 ∈D(B), then (3.1) implies

S(t)
(
Gx1 +Bx2

)= [T(t)− jα(t)C
](
x1 + x2

)

= [T(t)− jα(t)C
](
z1 + z2

)= S(t)
(
Gz1 +Bz2

) (4.9)
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and hence T(t)(Gx1 +Bx2)= T(t)(Gz1 +Bz2) for every 0≤ t < τ. Since T(·) is nondegen-
erate, Gx1 +Bx2 =Gz1 +Bz2. Therefore, K is a well-defined linear operator which satisfies
(3.1). Clearly, K contains both G and B. Hence

T(t)− jα(t)C =GS(t)= KS(t) for 0≤ t < τ, (4.10)

that is, (3.2) holds for K . �

Proposition 4.6. Let T(·) be a local α-times integrated C-semigroup.
(i) If T(·) has a subgenerator, then T(·) has a maximal subgenerator which contains

all subgenerators of T(·); it is called the generator of T(·).
(ii) If T(·) is nondegenerate, then T(·) has a generator.

(iii) Suppose T(·) is nondegenerate. Any subgenerator G is closable and its closure G is
also a subgenerator of T(·), and A := C−1GC is the generator of T(·). In particular,
the operator Gτ is closable and A := C−1GτC is the generator of T(·).

Proof. (i) Suppose B is a subgenerator of T(·). Let � be the set of all subgenerators of
T(·). Then, B ∈�. If G∈�, the definition of subgenerator implies S(t)X ⊂D(G).

Let {Gi}i∈I be an arbitrary chain in (�,⊂). Define G :
⋃

i∈I D(Gi)→ X by Gx :=Gix for
x ∈ Gi for some i ∈ I . It is clear that G is well-defined and D(G) =⋃i∈I Gi. If x ∈ D(G),
say x ∈D(Gi) for an i∈ I , then

S(t)Gx = S(t)Gix = T(t)x− jα(t)Cx =GiS(t)x =GS(t)x ∀t ≥ 0. (4.11)

Therefore, G is a subgenerator of T(·) and so is an upper bound of the chain {Gi}i∈I . By
the Zorn’s lemma, � has a maximal subgenerator, say G.

We claim that G contains all subgenerators. Suppose there were B∈� such that D(B) 
⊂
D(G). Then, the operator K as defined in Lemma 4.5 is a subgenerator which is a proper
extension of G. This contradicts the maximality of G and so we must have D(B)⊂D(G)
for any subgenerator B of T(·).

(ii) follows from (i) and Proposition 4.4(ii).
(iii) Let {xn} be a sequence in D(G) such that xn→ 0 and Gxn→ y as n→∞ for some

y ∈ X . It follows from (3.1) that for every 0≤ t < τ

S(t)y = lim
n→∞S(t)Gxn = lim

n→∞
[
T(t)− jα(t)C

]
xn = 0. (4.12)

Since T(·) is nondegenerate, this implies y = 0. Therefore, G is closable. Finally, let y ∈
D(G) and 0≤ t < τ. Then, there is a sequence {yn} in D(G) such that (yn,Gyn)→ (y,Gy)
as n→∞. By (3.1), we have

S(t)Gy = lim
n→∞S(t)Gyn = lim

n→∞
[
T(t)− jα(t)C

]
yn =

[
T(t)− jα(t)C

]
y. (4.13)

Since G is an extension of G, we also have that GS(t)=GS(t)= T(t)− jα(t)C, that is, G is
also a subgenerator of T(·). That C−1GC is the generator follows from Theorem 3.5(c).

�

Remark 4.7. It is seen from Proposition 4.6 (ii) and Theorem 3.5(c) that any nondegen-
erate local α-times integrated C-semigroup has a unique generator A, which is closed and
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satisfies C−1AC = A, and that the generator A is precisely the operator defined by

x ∈D(A), Ax = y⇐⇒ S(t)y = T(t)x− jα(t)Cx ∀0≤ t < τ. (4.14)

Example 4.8. If G is a (C,α)-subgenerator of a strongly continuous function T(·) and
C1 ∈ B(X) is such that CC1 = C1C and C1G ⊂ GC1, then G is (CC1,α)-subgenerator of
C1T(·).

Example 4.9. Let T0 : Cb[0,∞)→ Cb[0,∞) be the translation semigroup. Then, T0(·) is
not a (C0)-semigroup but {( jα∗T0)(t)}t≥0 is an α-times integrated semigroup on [0,∞)
for all α > 0.

Example 4.10. Let C ∈ B(X). T(t) := jα(t)C, t ≥ 0, is an α-times integrated C-semigroup.
It is easily seen from (3.1) and (3.2) that an operator G∈ B(X) is a subgenerator of T(·)
if and only if CG = GC = 0. For example, for any 2× 2 matrix H the matrix

(0 0
0 H

)
is a

maximal subgenerator of the α-times integrated
(2 0 0

0 0 0
0 0 0

)
-semigroup T(t) :=

(
2 jα(t) 0 0

0 0 0
0 0 0

)
.

Example 4.11. More generally, let T(·) be a nondegenerate local α-times integrated CX-
semigroup on a Banach space X with generator G. If Y 
= {0} is another Banach space
and CY ∈ B(Y), then

T̃(·) :=
(
T(·) 0

0 jα(·)CY

)
(4.15)

is a local α-times integrated
(
CX 0
0 CY

)
-semigroup on X ⊕Y . T̃(·) is nondegenerate if and

only if CY is injective. If CY is not injective, then for any H ∈ B(Y) which satisfies CYH =
HCY = 0, the operator

(
G 0
0 H

)
is a maximal subgenerator of T̃(·). If CY is injective, then(

G 0
0 0

)
is the generator of T̃(·).

Thus a degenerate local α-times integrated C-semigroup may have more than one
maximal subgenerator, and hence has no generator. This is in contrast to the nonde-
generate case (Proposition 4.6(ii)).

Example 4.12. Let T(·) be the family of operators on c0 (or �1) defined by T(t)x := ((n−
k)e−n

∫ t
0 jα−1(t− s)ensdsxn), for x = (xn) ∈ c0 (or �1) and for t ∈ [0,1]. Let C denote the

operator defined by Cx := ((n− k)e−nxn). T(·) is a local α-times integrated C-semigroup
which cannot be extended beyond 1. If k = 0, then C is injective and the generator of T(·)
is the operator G : (xn)→ (nxn). If k = 1, T(·) is a degenerate local α-times integrated C-
semigroup and for each a∈ C the operator Ga defined by Ga(x) := (ax1,2x2,3x3, . . .) is a
maximal subgenerator of T(·).

From Lemma 4.1, Proposition 4.4, and Theorem 3.5, we deduce the next corollary.

Corollary 4.13. If T(·) is a nondegenerate local α-times integrated C-semigroup, then
T(s)T(t)= T(t)T(s) for all 0≤ s, t < τ.

Remark 4.14. In the proof of Proposition 4.4 (i), we have used the commutativity:
T(s)T(t)= T(t)T(s) only for 0≤ s, t < τ with s+ t < τ, as given by (1.1). Now, Corollary
4.13 shows that the restriction s+ t < τ can be removed, and consequently, one can show
that the relation in Proposition 4.4 (i) actually holds for all s, t ∈ [0,τ).
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We can deduce the following characterization theorem for nondegenerate local α-
times integrated C-semigroups.

Theorem 4.15. Let C ∈ B(X) and let T(·) : [0,τ)→ B(X) be a strongly continuous func-
tion. Then, T(·) is a nondegenerate local α-times integrated C-semigroup if and only if C is
injective and there is a closed (C,α)-subgenerator G (i.e., satisfying (3.1) and (3.2)) of T(·).
In this case, G is a closed subgenerator and A := C−1GC is the generator of T(·).

Proof. The necessity follows from Lemma 4.1 and Proposition 4.4; the sufficiency follows
from Theorem 3.5(a) and Lemma 4.1. �

5. Relation with abstract Cauchy problems

Theorem 5.1. Let C ∈ B(X) be injective and α≥ 0, and let A be a closed linear operator on
X . Then, the following statements are equivalent

(i) A is a subgenerator of a local α-times integrated C-semigroup T(·).
(ii) CA⊂ AC (i.e.,Cx ∈D(A) andCAx = ACx for x ∈D(A)) and the equation: v(t)=

A(1∗ v)(t) + jα(t)Cx, 0≤ t < τ, has a unique solution vx for every x ∈ X .
(ii′) CA ⊂ AC and the equation: u′(t) = Au(t) + jα(t)Cx, 0 ≤ t < τ; u(0) = 0, has a

unique solution ux for every x ∈ X .
Moreover, the solutions are given by vx = T(·)x and ux(t)= ∫ t0 T(s)xds, t ≥ 0.

Proof. (i)⇒(ii). Since T(·) is an α-times integratedC-semigroup with A as a subgenerator
and C is injective, (3.1)–(3.3) hold. Thus (ii) can be deduced from (3.2), Lemmas 3.1 and
4.1, and Theorem 3.5(c).

(ii)⇒(i). We define the operator T(t) by T(t)x := vx(t) for x ∈ X . Then, T(·)x is
strongly continuous on [0,τ) for every x ∈ X . Since both A and C are linear, the unique-
ness of solution implies that T(t) is a linear operator on X for all 0≤ t < τ.

Next, we show thatT(t) is a bounded operator for each 0≤ t < τ. LetC([0,τ),X) be the
Frechét space with the quasinorm |‖v‖| :=∑∞

k=1‖v‖k/(2k(1 +‖v‖k)) for v ∈ C([0,τ),X),
where ‖v‖k :=maxt∈[0,pk]‖v(t)‖, k = 1,2, . . ., and 0 < pk ↗ τ. Consider the map η : X →
C([0,τ),X) defined by η(x) := T(·)x = vx. We show that η is a closed linear operator. Let
{xn} be a sequence in X such that (xn,η(xn))→ (x,v(·)) strongly as n→∞ for some x ∈ X
and v ∈ C([0,τ),X). Since A is closed and vxn = A(1∗ vxn) + jαCxn, we obtain that v =
A(1∗ v) + jαCx. It follows from the uniqueness of solutions that v = vx = T(·)x = η(x).
Hence η is closed. It follows from the closed graph theorem that η is continuous. This
shows that T(·) is a strongly continuous function of bounded linear operators on X and
it satisfies (3.2).

If A is shown to be a (C,α)-subgenerator of T(·), then by Theorem 3.5(c) we conclude
that T(·) is a local α-times integrated C-semigroup with subgenerator A. This will be
done if we can show S(t)Ax = AS(t)x for all x ∈D(A) and 0≤ t < τ. Since A is closed, we
obtain from (3.2) that AS(·)x ∈ C([0,τ),X) for all x ∈ X . Since (ii) implies that condition
(3.3) holds for G = A and Proposition 3.4 (a) holds for B = A, applying Proposition 3.4
we obtain S(t)A⊂ AS(t) (0≤ t < τ) as desired. Thus, A is a subgenerator of T(·).

Clearly, (ii) and (ii′) are equivalent. This completes the proof. �
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Lemma 5.2. Let C ∈ B(X) be injective and α ≥ 0, and let A be a closed subgenerator of a
local α-times integrated C-semigroup S(·) on X , and let 1 ≤ k ≤ [α] + 1. Then, for every
x ∈D(Ak), the problem ACP(A; jα−kCx,δα,[α]Cx) has a unique solution, which is given by

uk(t) := S(k−1)(t)x = S(t)Ak−1x+
k−2∑
j=0

jα−1− j(t)CAk−2− jx, 0≤ t < τ. (5.1)

Proof. Let Xk = D(Ak) be equipped with the norm ‖x‖k by ‖x‖k =
∑k

i=0‖Aix‖k for x ∈
Xk, k = 1,2, . . .. If y ∈ D(A), then (3.1) and (3.2) imply that S(·)y ∈ C1((0,∞),X)∩
C([0,∞),X1) and

S′(t)y = S(t)Ay + jα−1(t)Cy, 0≤ t < τ. (5.2)

If x ∈D(Ak), then x, Ax, A2x, . . . ,Ak−1x ∈D(A), so that by applying (5.2) repeatedly, we
obtain that S(·)x∈Ck((0,τ),X)∩C([0,τ),Xk) (whereXk=D(Ak) with ‖x‖k=

∑k
i=0‖Aix‖

for x ∈ Xk) and

S(k)(t)x = S(t)Akx+
k−1∑
j=0

jα−1− j(t)CAk−1− jx, 0≤ t < τ. (5.3)

Let uk(t) be defined as in (5.1). Then, uk(0)= δα,k−1Cx and

u′k(t)= S(k)(t)x = A

(
S(t)Ak−1x+

k−2∑
j=0

jα−1− j(t)CAk−2− jx

)
+ jα−k(t)Cx

= Auk(t) + jα−k(t)Cx.

(5.4)

This shows that uk is a solution of ACP(A; jα−kCx,δα,[α]Cx), or equivalently, vk = u′k is a
solution of v = A(1∗ v) + jα−kCx. The uniqueness of solution follows from Lemma 3.1.

�

6. Extension of local α-times integrated C-semigroups

Let T(·) be a local α-times integrated C-semigroup on [0,τ) with generator A, and let
n be an integer greater than or equal to α. We will show that A also generates a local
(α+n)-times integrated C2-semigroup on [0,2τ). Let H(t) := ( jn−α−1∗T)(t), τ > t ≥ 0.
Then, H(·) is an n-times integrated C-semigroup. Fix any τ0 ∈ (0,τ). Define an operator-
valued function Sτ0 : [0,2τ0)→ B(X) by

Sτ0 (t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
jn−1∗T

)
(t)C for 0≤ t ≤ τ0,

T
(
τ0
)
H
(
t− τ0

)
+
∑

jα−k−1
(
τ0
)(
jk ∗H

)(
t− τ0

)
C

+
n−1∑
k=0

jn−k−1
(
t− τ0

)(
jk ∗T

)(
τ0
)
C for τ0 ≤ t < 2τ0,

(6.1)
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where the k in the first summation runs over those nonnegative integers such that k−α
is not a nonnegative integer, that is, k runs from 0 to α− 1 when α is an integer and runs
over all nonnegative integers when α is not an integer.

Clearly, Sτ0 (·) is a local (α+n)-times integrated C2-semigroup on [0,τ0] with genera-
tor A. It is easy to see for every x ∈ X that

lim
t→τ+

0

Sτ0 (t)x = ( jn−1∗T
)(
τ0
)
Cx = Sτ0

(
τ0
)
x. (6.2)

Therefore, Sτ0 (·) is strongly continuous on [0,2τ0). Since A is the generator of T(·), we
see that A and Sτ0 (·) commute.

Theorem 6.1. Let T(·) be a local α-times integrated C-semigroup on [0,τ) with generator
A. For any τ0 ∈ (0,τ), the function Sτ0 (·), defined in (6.1), is a local α+n-times integrated
C2-semigroup on [0,2τ0) with generator A. Thus the function S(·) : [0,2τ)→ B(X), defined
by S(t) := Sτ0 (t) for 0 ≤ t < 2τ0 < 2τ, is a local (α+ n)-times integrated C2-semigroup on
[0,2τ) with generator A.

Proof. Since Sτ0 (·) is a local (α+n)-times integrated C2-semigroup on [0,τ0] with gener-
ator A, by Theorem 4.15 we need only to show that A and Sτ0 (·) satisfy

R
((

1∗ Sτ0

)
(t)
)⊂D(A), A

(
1∗ Sτ0

)
(t)= Sτ0 (t)x− jα+n(t)Cx (6.3)

for x ∈ X and τ0 ≤ t < 2τ0.
We need the following equations which follow from (4.14):

A
(
jk+1∗H

)
(t)= [( jk ∗H

)
(t)− jn+k+1(t)C

]
,

A
(
jk ∗T

)
(t)= ( jk−1∗T

)
(t)− jk+α(t)C for k =−1,0,1,2, . . . .

(6.4)

From the Taylor expansion, we have the next identity:

jα+n(t+ τ)= τα+n

Γ(α+n+ 1)

∞∑
k=0

(
α+n

k

)(
t

τ

)k
=

∞∑
k=0

jk(t) jα+n−k(τ)

= jα+n(τ) +

( ∞∑
k=n+1

+
n∑

k=1

)
jk(t) jα+n−k(τ)

= jα+n(τ) +
∞∑
k=0

jα−k−1(τ) jn+k+1(t) +
n−1∑
k=0

jn−k(t) jα+k(τ)

(6.5)

for 0 ≤ t < τ. Note that when α is an integer, all those terms with k > α− 1 in the first
summation vanish.
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It is easy to see that (1∗ Sτ0 )(t)= ( jn∗T)(t)C for 0≤ t ≤ τ0, and

(
1∗ Sτ0

)
(t)= (1∗ Sτ0

)(
τ0
)

+
∫ t−τ0

0
Sτ0

(
r + τ0

)
dr

= ( jn∗T
)(
τ0
)
C+T

(
τ0
)
(1∗H)

(
t− τ0

)

+
∑

jα−k−1
(
τ0
)(
jk+1∗H

)(
t− τ0

)
C

+
n−1∑
k=0

jn−k
(
t− τ0

)(
jk ∗T

)(
τ0
)
C

(6.6)

for τ0 ≤ t < 2τ0. Then, using (6.4)-(6.5), we have for every τ0 ≤ t < 2τ0,

A
(
1∗ Sτ0

)
(t)= A

(
jn∗T

)(
τ0
)
C+T

(
τ0
)
A(1∗H)

(
t− τ0

)

+
∑

jα−k−1
(
τ0
)
A
(
jk+1∗H

)(
t− τ0

)
C+

n−1∑
k=0

jn−k
(
t− τ0

)
A
(
jk ∗T

)(
τ0
)
C

= ( jn−1∗T
)(
τ0
)
C− jα+n

(
τ0
)
C2 +T

(
τ0
)[
H
(
t− τ0

)− jn
(
t− τ0

)
C
]

+
∑

jα−k−1
(
τ0
)[(

jk ∗H
)(
t− τ0

)
C− jn+k+1

(
t− τ0

)
C2]

+
n−1∑
k=0

jn−k
(
t− τ0

)[(
jk−1∗T

)(
τ0
)
C− jα+k

(
τ0
)
C2]

= T
(
τ0
)
H
(
t− τ0

)
+
∑

jα−k−1
(
τ0
)(
jk ∗H

)(
t− τ0

)
C

+
n−1∑
k=0

jn−k−1
(
t− τ0

)(
jk ∗T

)(
τ0
)
C

−
[
jα+n

(
τ0
)

+
∑

jα−k−1
(
τ0
)
jn+k+1

(
t− τ0

)
+

n−1∑
k=0

jn−k
(
t− τ0

)
jα+k

(
τ0
)]

C2

= Sτ0 (t)− jα+n(t)C2.
(6.7)

Since Sτ0 (·) is a local α + n-times integrated C2-semigroup on [0,τ0] generated by
C2AC−2 = A, (6.7) implies that Sτ0 (·) is a local (α+ n)-times integrated C2-semigroup
on [0,2τ0) with generator A, by Theorem 4.15. �
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