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We are interested in the first prolongational limit set of the boundary of parallelizable
regions of a given flow of the plane which has no fixed points. We prove that for every
point from the boundary of a maximal parallelizable region, there exists exactly one orbit
contained in this region which is a subset of the first prolongational limit set of the point.
Using these uniquely determined orbits, we study the structure of maximal parallelizable
regions.
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1. Introduction

We assume that f is a free mapping, that is, an orientation preserving homeomorphism
of the plane onto itself without fixed points. We consider a relation in R2 defined in the
following way:
p ∼ q if p = q or p and q are endpoints of some arcK for which f n(K)→∞ as n→±∞.

By an arc K with endpoints p and q, we mean that the image of a homeomorphism c :
[0,1]→ c([0,1]) satisfying conditions c(0)= p, c(1)= q, where the topology on c([0,1])
is induced by the topology of R2. It turns out that the relation defined above is an equiv-
alence relation (see [1]) and has the same equivalence classes as the relation defined by
Andrea [2]. Moreover, each equivalence class is an invariant simply connected set (see
[2, 1]).

From now on, we assume that f is embeddeable in a flow { f t : t ∈R}. It follows from
the Jordan theorem that each orbit C of { f t : t ∈ R} divides the plane into two simply
connected regions. Note that each of them is invariant under f t for t ∈R. Thus two dif-
ferent orbits Cp and Cq of points p and q, respectively, divide the plane into three simply
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connected invariant regions, one of which contains both Cp and Cq in its boundary. We
will call this region the strip between Cp and Cq and denote it by Dpq.

For any distinct orbits Cp1 , Cp2 , Cp3 of { f t : t ∈ R}, one of the following two possi-
bilities must be satisfied: exactly one of the orbits Cp1 , Cp2 , Cp3 is contained in the strip
between the other two, or each of the orbits Cp1 , Cp2 , Cp3 is contained in the strip between
the other two. In the first case, if Cpj is the orbit which lies in the strip between Cpi and
Cpk , we will write Cpi|Cpj |Cpk (i, j, k ∈ {1,2,3} and i, j, k are different). In the second
case, we will write |Cpi ,Cpj ,Cpk | (see [3, 4]).

Put

J+(q) := {p ∈R2 : there exist a sequence
(
qn
)
n∈N and a sequence

(
tn
)
n∈N

such that qn −→ q, tn −→ +∞, f tn
(
qn
)−→ p as n−→ +∞},

J−(q) := {p ∈R2 : there exist a sequence
(
qn
)
n∈N and a sequence

(
tn
)
n∈N

such that qn −→ q, tn −→−∞, f tn
(
qn
)−→ p as n−→ +∞}.

(1.1)

The set J(q) := J+(q)∪ J−(q) is called the first prolongational limit set of q. Let us observe
that p ∈ J(q) if and only if q ∈ J(p) for any p,q ∈R2. For a subset H ⊂R2, we define

J(H) :=
⋃

q∈H
J(q). (1.2)

One can observe that for each p ∈R2, the set J(p) is invariant. In [5], it has been proved
that each orbit contained in J(R2) is a boundary orbit of an equivalence class. Therefore
every equivalence class can contain at most two orbits from J(R2) (see [6]).

An invariant region M ⊂ R2 is said to be parallelizable if there exists a homeomor-
phism ϕ mapping M onto R2 such that

f t(x)= ϕ−1(ϕ(x) + (t,0)
)

for x ∈M. (1.3)

It is known that a region M is parallelizable if and only if there exists a homeomorphic
image K of a straight line which is a closed set in M such that K has exactly one common
point with every orbit of { f t : t ∈R} contained in M (see [7, page 49], and, e.g., [6]). We
will call such a set K a section in M.

It is known that a region M is parallelizable if and only if J(M)∩M =∅ (see [7, pages
46 and 49]). Hence for every parallelizable regionM, we have J(M)⊂ frM. If M is a max-
imal parallelizable region (i.e., M is not contained properly in any parallelizable region),
then J(M) = frM (see [8]). In [5], it has been proved that every maximal parallelizable
region M is a union of equivalence classes of the relation ∼.

Now we collect the results from [5, 9] which are needed in this paper.

Proposition 1.1. (see [5]) LetM be a parallelizable region and let p ∈ frM. Then clM \Cp

is contained in one of the components of R2 \Cp.

Proposition 1.2. (see [5]) Let M be a maximal parallelizable region and p ∈ frM. Let
G0 be the equivalence class which contains p. Assume that G0 does not consist of just one
orbit. Then p 
∈ J(q) for each point q belonging to the component of R2 \Cp that does not
contain M.
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Proposition 1.3. (see [9]) Let p and q belong to different equivalence classes G1 and G2,
respectively. Then there exists a point r lying in the strip between the orbits Cp and Cq of p
and q, respectively, such that r 
∈G1∪G2.

Proposition 1.4. (see [9]) Let M be a parallelizable region. Let G1∪G2 ⊂M and frG1∩
frG2 
= ∅. Let p ∈ G1, q ∈ G2. Then there exists a point z ∈Dpq such that z ∈ frM. More-
over |Cp,Cq,Cz| for each z ∈Dpq∩ frM.

2. Boundary orbits of a parallelizable region

In this section, we prove some properties of boundary orbits of parallelizable regions.
The main result of this section says that for every point from the boundary of a maximal
parallelizable region, there exists exactly one orbit contained in this region which is a
subset of the first prolongational limit set of the point.

Proposition 2.1. Let M be a parallelizable region of { f t : t ∈ R}. Then frM is invar-
iant.

Proof. Let p ∈ frM and t ∈R. Then on account of Proposition 1.1,M is contained in one
of the components of R2 \Cp. Denote this component by H0, and the other by H1. Fix
ε > 0 and consider the ball B( f t(p),ε) centered at f t(p) with radius ε. By the continuity
of f t, there exists δ > 0 such that f t(B(p,δ))⊂ B( f t(p),ε), where B(p,δ) denotes the ball
centered at p with radius δ.

Since p ∈ frM, there exists r ∈M∩B(p,δ). Thus f t(r)∈ B( f t(p),ε). Moreover, f t(r)
∈M since M is invariant. Consequently, B( f t(p),ε) contains a point from M. On the
other hand, B( f t(p),ε)∩H1 does not contain any point from M. Thus f t(p)∈ frM. �

Proposition 2.2. Let M be a parallelizable region of { f t : t ∈ R}. Then for all distinct
orbits Cp1 , Cp2 , Cp3 contained in frM, the relation |Cp1 , Cp2 , Cp3| holds.

Proof. Let Cp1 , Cp2 , Cp3 be distinct orbits which are contained in frM. Suppose, on the
contrary, that for these orbits the relation · | · | · holds. Without loss of generality, we
can consider only the case Cp1 | Cp2 | Cp3 . Then the orbits Cp1 and Cp3 are contained in
different components of R2 \Cp2 . On the other hand, by Proposition 1.1, clM \Cp2 is
contained in the same component of R2 \Cp2 . Hence Cp1 and Cp3 are contained in the
same component of R2 \Cp2 since Cp1 ∪Cp3 ⊂ clM \Cp2 . Thus we get a contradiction,
and consequently |Cp1 ,Cp2 ,Cp3|. �

Proposition 2.3. Let M be a parallelizable region of { f t : t ∈ R}. Let r ∈M and let H
be a component of R2 \Cr . Then for all distinct orbits Cp1 , Cp2 contained in frM ∩H , the
relation |Cp1 ,Cp2 ,Cr| holds.

Proof. By Proposition 1.1, the points r, p1 and r, p2 are contained in the same component
of R2 \Cp2 and in the same component of R2 \Cp1 , respectively. Hence, by assumption
that p1 and p2 are contained in the same component of R2 \Cr , we obtain |Cp1 ,Cp2 ,Cr|.

�

Proposition 2.4. Let q1,q2 ∈ J(p), Cq1 
= Cq2 . Then |Cq1 ,Cq2 ,Cr| for every r ∈Dq1,q2 \Cp

holds (cf. Figure 2.1).
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Figure 2.1. The first prolongational limit set of p containing two orbits.

Proof. First we show that p ∈ Dq1,q2 . Suppose, on the contrary, that p belongs to the
component of R2 \Cq1 which does not contain q2. Denote this component by H0. Then
J(p) ⊂ clH0 =H0∪Cq1 . Hence q2 
∈ J(p), which is a contradiction. In the same way, we
can show that p cannot belong to the component of R2 \Cq2 which does not contain
q1. Fix a point r ∈ Dq1,q2 \Cp. Then either |Cq1 ,Cq2 ,Cr| or Cq1 | Cr | Cq2 holds. We show
that the second possibility cannot hold. Suppose that Cq1 | Cr | Cq2 holds. Then either
p ∈Dq1,r or p ∈Dr,q2 since p 
∈ Cr and p ∈Dq1,q2 . The first case contradicts the assump-
tion that q2 ∈ J(p), and the second one contradicts the assumption that q1 ∈ J(p) since
J(p)⊂ clH1, where H1 is the component of R2 \Cr which contains p . Thus |Cq1 ,Cq2 ,Cr|
holds. �

Corollary 2.5. Let M be a parallelizable region of { f t : t ∈R}. Let p ∈ frM and q1,q2 ∈
M. Assume that q1,q2 ∈ J(p). Then Cq1 = Cq2 .

Proof. Suppose, on the contrary, that Cq1 
= Cq2 . Since q1,q2 ∈M and M is arcwise con-
nected, there exists a point r ∈M ∩Dq1,q2 . Hence by the parallelizability of M, we get
Cq1 | Cr | Cq2 . By Proposition 2.1, we have Cp ⊂ frM. Hence r 
∈ Cp since r ∈M and M
is open. Thus on account of Proposition 2.4, we have |Cq1 ,Cq2 ,Cr|, which is a contradic-
tion. �

Remark 2.6. From Corollary 2.5, we get that for every parallelizable region M and every
p ∈ frM, the set M ∩ J(p) is either an orbit (in case p ∈ J(M)) or empty (in case p ∈
frM \ J(M)). In the case where M is a maximal parallelizable region such that M 
= R2

(i.e., frM 
= ∅), the existence of such an orbit for each p ∈ frM follows from the fact
that J(M) = frM (see [8]). In this case, for each p ∈ frM the set J(p) can contain also
orbits from frM and orbits from the component of R2 \Cp which does not contain M.
By Proposition 1.2, the last possibility can hold only if the equivalence class containing p
consists of just one orbit.

3. First prolongational limit set of the boundary of a parallelizable region

In this section, we study properties of orbits contained in a parallelizable region M by
using the set J(frM)∩M.

Proposition 3.1. Let p ∈ J(q). Then |Cp,Cq,Cr| for every r ∈Dpq holds.



Zbigniew Leśniak 5
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Figure 3.1. A parallelizable region with two boundary orbits.

Proof. Since r ∈Dpq, the points r and q belong to the same component of R2 \Cp and r
and p belong to the same component of R2 \Cq. Now we prove that the points p and q
are elements of the same component of R2 \Cr . Denote by H0 the component of R2 \Cr
which contains q. Then, by the definition of J(q), we have J(q) ⊂ clH0. Hence p ∈ H0

since p 
∈ Cr . Therefore |Cp,Cq,Cr| holds since each orbit of Cp, Cq, Cr divides the plane
in such a way that the other two orbits are contained in the same component. �

Corollary 3.2. Let M be a parallelizable region of { f t : t ∈ R}, p ∈ frM and q ∈M ∩
J(p). Let r ∈M be contained in the component ofR2\Cq which contains p. Then |Cp,Cq,Cr|
holds.

Proof. On account of Proposition 1.1, the point r is contained in the component of R2 \
Cp which contains q. Thus r ∈Dpq. Hence by Proposition 3.1, we have |Cp,Cq,Cr|. �

Proposition 3.3. Let M be a parallelizable region of { f t : t ∈R}. Let p1, p2 ∈ frM, q1,q2

∈M, q1 ∈ J(p1), q2 ∈ J(p2), and Cq1 
= Cq2 . Then there exists r ∈M such that Cq1|Cr|Cp2 ,
Cp1|Cr|Cq2 , and Cp1|Cr|Cp2 hold (cf. Figure 3.1).

Proof. Since q1,q2 ∈M, Cq1 
= Cq2 , and M is arcwise connected, there exists r ∈M ∩
Dq1q2 . Then Cq1|Cr|Cq2 holds since M is parallelizable. Denote by H1 the component of
R2 \Cr which contains q1 and byH2 the component ofR2 \Cr which contains q2. Then by
the definition of the first prolongational limit set, we have p1 ∈ clH1 and p2 ∈ clH2, since
p1 ∈ J(q1), p2 ∈ J(q2). By the fact that p1, p2 
∈M, we have p1, p2 
∈ Cr . Thus p1 ∈H1 and
p2 ∈H2. Since each component of R2 \Cr is invariant, we have Cq1 ⊂H1 and Cq2 ⊂H2.
Consequently Cq1|Cr|Cp2 , Cp1|Cr|Cq2 , and Cp1|Cr|Cp2 hold. �

Remark 3.4. From Proposition 3.3, we get that if Cp1 and Cp2 are boundary orbits of a
maximal parallelizable region M such that the only orbit Cq1 contained in M∩ J(p1) and
the only orbit Cq2 contained in M∩ J(p2) are different, then there exists an orbit Cr ⊂M
such that Cp1 and Cp2 belong to the different components ofR2 \Cr . However, in the case
where the boundary orbits Cp1 and Cp2 have the same orbit Cq contained in M ∩ J(p1)
and in M ∩ J(p2), we get from Proposition 2.4 that for every r ∈M \Cq, the orbits Cp1

and Cp2 belong to the same component of R2 \Cr (the assumptions of Proposition 2.4
are satisfied, since on account of Proposition 1.1 M ⊂Dp1,p2 ). Moreover, by Corollary 3.2
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for i ∈ {1,2}, we have |Cpi ,Cq,Cr| if pi and r are contained in the same component of
R2 \Cq.

4. Properties of components of parallelizable regions

In this section, we will consider orbits Cr of a parallelizable regionM having the property
that at least one of the components of R2 \Cr does not contain any point from J(frM)∩
M.

Proposition 4.1. Let M be a parallelizable region of { f t : t ∈R}. Let r ∈M and let H be a
component of R2 \Cr . Assume that H ∩ J(frM)∩M =∅. Then H ∩M is contained in an
equivalence class.

Proof. Suppose, on the contrary, that there exist p,q ∈H ∩M such that p ∈ G1 and q ∈
G2 for some distinct equivalence classes G1, G2. On account of Proposition 1.3, there
exists a point s ∈ Dpq such that s 
∈ G1 ∪G2. Denote by G3 the equivalence class which
contains s. Now we will show that Dpq is contained in an equivalence class.

First we will show that Dpq ⊂M. Suppose, on the contrary, that there exists x ∈ Dpq

such that x 
∈M. Put A :=Dpq∩M and B :=Dpq \A. SinceDpq is connected,A is open in
Dpq, A 
= ∅, and B 
= ∅, there exists a point y ∈Dpq such that y ∈ frA. Hence y ∈ frM.

Let M1 be a maximal parallelizable region such that M ⊂M1. Now we prove that M1∩
clDpq =M ∩ clDpq. Let z ∈M1 ∩Dpq. Then Cp|Cz|Cq holds since M1 is parallelizable.
Hence Cz ∩M 
= ∅ since M is arcwise connected and p,q ∈M. Thus by the fact that M
is invariant, we have z ∈M.

Take a ball B(y,ε) centered at y with radius ε > 0. Without loss of generality, we can
assume that B(y,ε)⊂Dpq (such a ball exists since Dpq is an open set). From the fact that
y ∈ frM, we obtain that there exist z1 ∈ B(y,ε)∩M and z1 ∈ B(y,ε) \M. Then by the
equalityM1∩ clDpq =M∩ clDpq, we have z1 ∈M1 and z2 
∈M1. Consequently y ∈ frM1.

Since M1 is a maximal parallelizable region, we have J(M1) = frM1 (see [8]). Thus
y ∈ J(M1). Hence J(y)∩M1 
= ∅. By the definition of the first prolongational limit set,
we have J(y)⊂ clDpq since y ∈Dpq. Hence J(y)∩M 
= ∅ sinceM1∩ clDpq =M∩ clDpq.
Thus by the fact that clDpq ⊂H , the set J(y)∩M is contained in H , which contradicts
the assumption that H ∩ J(frM)∩M =∅. Consequently Dpq ⊂M.

Fix p1,q1 ∈Dpq. Then p1,q1 ∈M. Since M is parallelizable, there exists a homeomor-
phism ϕ : M → R2 such that f t(x) = ϕ−1(ϕ(x) + (t,0)) for x ∈M and t ∈ R. Let K be
preimage of the segment with endpoints ϕ(p1) and ϕ(q1). Then K is an arc with end-
points p1 and q1. We will prove that f n(K)→∞ as n→±∞.

Take a ball B(s,ε) centered at a point s∈Dpq with radius ε > 0. Then clB(s,ε)∩ clDpq is
a compact set. Hence ϕ(clB(s,ε)∩ clDpq) is compact, since ϕ is a homeomorphism. Using
properties of the flow of translations, we get (ϕ(K) + (n,0))∩ ϕ(clB(s,ε)∩ clDpq) 
= ∅
only for finitely many n ∈ Z. Hence f n(K)∩ (clB(s,ε)∩ clDpq) 
= ∅ only for finitely
many n∈ Z. Since Dpq is invariant and K ⊂Dpq, we have f n(K)∩ (clB(s,ε) \ clDpq)=∅
for all n ∈ Z. Hence by the definition of the equivalence relation, p1 and q1 belong to
the same class. Thus we have shown that Dpq is contained in an equivalence class. Since
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Figure 4.1. A maximal parallelizable region containing two classes.

s ∈ Dpq ∩ G3, we have Dpq ⊂ G3. Hence by the fact that p 
∈ G3 and q 
∈ G3, we get
Dpq =G3 since each equivalence class is connected.

From the fact that p ∈ G1, q ∈ G2, Dpq = G3, it follows that p ∈ frG1 ∩ frG3 and
q ∈ frG2 ∩ frG3. Assume without loss of generality that q is contained in the compo-
nent of R2 \ Cp which does not contain r. Then Cr|Cp|Cq holds. Let y ∈ Dpq. Then
Cp|Cy|Cq holds since clDpq ⊂M and M is parallelizable. Hence Dyq ⊂Dpq. On account
of Proposition 1.4, there exists a point z ∈ Dyq such that z ∈ frM, since G2 ∪G3 ⊂M
and frG2 ∩ frG3 
= ∅. Hence z ∈ Dpq and z 
∈M since Dyq ⊂ Dpq and M is an open set,
respectively. But this contradicts the fact that Dpq ⊂M. Thus H ∩M is contained in an
equivalence class. �

Corollary 4.2. Let M be a parallelizable region of { f t : t ∈R}. Let r ∈M and let H be a
component of R2 \Cr . Assume that H ∩ frM =∅. Then H ⊂M and H is contained in an
equivalence class.

Proof. LetH′ =R2 \ (Cr ∪H). From the assumptionH ∩ frM =∅, we obtain that frM ⊂
H′ since Cr ⊂M. Thus by the definition of the first prolongational limit set, J(frM) ⊂
clH′ =H′ ∪Cr . Hence H ∩ J(frM) =∅. Thus on account of Proposition 4.1, H ∩M is
contained in an equivalence class. Put H1 =H ∩M and H2 =H \H1. Then H1 is an open
set in H . Suppose, on the contrary, that H2 
= ∅. Then H2 cannot be an open set in H
since H is connected, H1 ∩H2 =∅, and H = H1 ∪H2. Hence there exists a point p ∈
H2∩ frH2. Take a ball B(p,ε) centered at p with radius ε > 0 such that B(p,ε)⊂H . Then
there exist q 
∈ H2 such that q ∈ B(p,ε), since p ∈ frH2. Hence q ∈ H1. Thus p ∈ frH1

and consequently p ∈ frM, which contradicts the assumption that H ∩ frM =∅. Hence
H2 =∅ and consequentlyH ⊂M. ThusH ∩M =H andH is contained in an equivalence
class. �

Remark 4.3. From Proposition 4.1, we do not obtain thatH is contained in an equivalence
class. Let us consider the case where J(R2)= Cr ∪Cq for some r,q ∈R2 such that r 
∈ Cq
(cf. Figure 4.1). Let H be the component ofR2 \Cr which contains q. Let H′ =R2 \ (Cr ∪
H) and let M be a maximal parellelizable region containing r. Then M =H′ ∪Cr ∪Drq,
frM = Cq, and H ∩ J(frM)∩M =∅. The only equivalence class containing H ∩M is the
strip Drq, and Drq is a proper subset of H since q 
∈Drq.
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[7] N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, vol. 161 of Die Grundlehren
der mathematischen Wissenschaften, Springer, New York, NY, USA, 1970.

[8] R. C. McCann, “Planar dynamical systems without critical points,” Funkcialaj Ekvacioj, vol. 13,
pp. 67–95, 1970.
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